首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 151 毫秒
1.
Yeast cells deficient in DNA ligase were also deficient in their capacity to rejoin single-strand scissions in prelabeled nuclear DNA. After high-dose-rate gamma irradiation (10 and 25 krads), cdc9-9 mutant cells failed to rejoin single-strand scissions at the restrictive temperature of 37 degrees C. In contrast, parental (CDC9) cells (incubated with mutant cells both during and after irradiation) exhibited rapid medium-independent DNA rejoining after 10 min of post-irradiation incubation and slower rates of rejoining after longer incubation. Parental cells were also more resistant than mutant cells to killing by gamma irradiation. Approximately 2.5 +/- 0.07 and 5.7 +/- 0.6 single-strand breaks per 10(8) daltons were detected in DNAs from either CDC9 or cdc9-9 cells converted to spheroplasts immediately after 10 and 25 krads of irradiation, respectively. At the permissive temperature of 23 degrees C, the cdc9-9 cells contained 2 to 3 times the number of DNA single-strand breaks as parental cells after 10 min to 4 h of incubation after 10 krads of irradiation, and two- to eightfold more breaks after 10 min to 2.5 h of incubation after 25 krads of irradiation. Rejoining of single-strand scissions was faster in medium. After only 10 min in buffered growth medium and after 10 krads of irradiation, the number of DNA single-strand breaks was reduced to 0.32 +/- 0.3 (at 23 degrees C) or 0.21 +/- 0.05 (at 37 degrees C) per 10(8) daltons in parental cells, but remained at 2.1 +/- 0.06 (at 23 degrees C) or 2.3 +/- 0.07 (at 37 degrees C) per 10(8) daltons in mutant cells. After 10 or 25 krads of irradiation plus 1 h of incubation in medium at 37 degrees C, only DNA from CDC9 cells was rejoined to the size of DNA from unirradiated cells, whereas at 23 degrees C, DNAs in both strains were completely rejoined.  相似文献   

2.
3.
Intracellular particle movements, of both saltatory and streaming types, in HeLa S-3 cells were simultaneously interrupted after 1 h exposure of cells to 43 degrees C, within 10 min at 44 degrees C and within 5 min at 45 degrees C. Intracellular movement inhibited after 15 min at 44 degrees C and 10 min at 45 degrees C was not reversible in cells rescued at 37 degrees C. Brownian motion was not observed in heat-treated cells while they were maintained at elevated temperatures, but became pronounced in blebbing which occurred shortly after they were returned to 37 degrees C. Returning these cells to 45 degrees C intensified the Brownian activity inside blebs, and rapidly induced cell lysis. The same heat-treated cells were simultaneously studied by laser-Doppler microscopy, which confirmed: a) that flow (cytoplasmic streaming) is completely arrested at 44 degrees C within 10 min, b) flow recovered in 10-15 min in cells rescued after 10-15 min at 44 degrees C, c) submicroscopic particles down to the size of water molecules had faster self-diffusion coefficients at 44 degrees C than at 37 degrees C. Proton nmr studies on cells exposed from 4 to 45 degrees C gave corrected relaxation times T1 and T2 which rose with temperature in a predictable manner. Inhibition of cellular movement at elevated temperatures was not specifically attributable to the depletion of intracellular ATP levels.  相似文献   

4.
Host dna functions involved in the replication of microvirid phage phiC DNA were investigated in vivo. Although growth of this phage was markedly inhibited even at 35-37 degrees C even in dna+ host, conversion of the infecting single-stranded DNA into the double-stranded parental replicative form (stage I synthesis) occurred normally at 43 degrees C in dna+, dnaA, dnaB, dnaC(D), and dnaE cells. In dnaG mutant, the stage I synthesis was severely inhibited at 43 degrees C but not at 30 degrees C. The stage I replication of phiC DNA was clearly thermosensitive in dnaZ cells incubated in nutrient broth. In Tris-casamino acids-glucose medium, however, the dnaZ mutant sufficiently supported synthesis of the parental replicative form. At 43 degrees C, synthesis of the progeny replicative form DNA (stage II replication) was significantly inhibited even in dna+ cells and was nearly completely blocked in dnaB or dnaC(D) mutant. At 37 degrees C, the stage II replication proceeded normally in dna+ bacteria.  相似文献   

5.
Apurinic sites cause mutations in simian virus 40   总被引:7,自引:0,他引:7  
SV40 has been used as a molecular probe to study the mutagenicity of apurinic sites (Ap) in mammalian cells. Untreated or UV-irradiated monkey kidney cells were transfected with depurinated DNA from the temperature-sensitive tsB201 SV40 late mutant which grows normally at the permissive temperature of 33 degrees C but which is unable to grow at 41 degrees C. Phenotypic revertants were screened at 41 degrees C for their ability to grow at the restrictive temperature and the mutation frequency was calculated in the viral progeny. Ap sites were introduced into DNA by heating at 70 degrees C under acid conditions (pH 4.8). This treatment induces one Ap site per SV40 genome per 15 min of heating as measured by alkaline denaturation or by treatment with the T4-encoded UV-specific endonuclease which possesses Ap-endonuclease activity. The experiments reported here show that Ap sites strongly decrease virus survival with a lethal hit corresponding roughly to 3 Ap lesions per SV40 genome, and indicate for the first time that apurinic sites produced by heating are highly mutagenic in animal cells. UV irradiation of the host cells 24 h prior to transfection with depurinated DNA did not modify the mutation frequency in the virus progeny.  相似文献   

6.
Cell free extracts were prepared from E. coli CRT266 9 min after infection with T3 phages. RNA synthesis in these extracts is almost entirely due to T3 RNA polymerase. The inactivation of T3 RNA polymerase in these extracts proceeds rapidly at 42 degrees C. 90% of the activity is lost within 10 min at this temperature. Under conditions where the formation of a stable initiation complex with T3 DNA is possible, i.e., in the presence of GPT, APT, and UTP the T3 RNA polymerase becomes protected against heat inactivation losing only )0% of its activity during an exposure to 42 degrees C for 10 min. Studies on the time course of RNA synthesis have shown that reinitiation is still possible at 37 degrees C and 42 degrees C. At 44 degrees C, however, RNA synthesis stops abruptly after 3 min indicating that reinitiation does no longer take place. The elongation of already initiated T3 RNA chains is rather resistant to heat. At 44 degrees C the same elongation rates are observed as at 37 degrees C and 42 degrees C, respectively.  相似文献   

7.
8.
DNA repair has been investigated, estimated by unscheduled DNA synthesis (UDS) and the cellular NAD+ pool, after exposing human mononuclear leukocytes to hyperthermia and gamma radiation separately and in combination. It was found that gamma radiation induced a decline in UDS with increasing temperature through the temperature region studied (37-45 degrees C). At 42.5 degrees C the gamma-ray-induced UDS was reduced to about 70% of that at 37 degrees C. Following gamma-ray damage the NAD+ pool dropped to about 20% of control values. Without hyperthermic treatment the cells completely recovered to the original level within 5 hr. Moderate hyperthermia (42.5 degrees C for 45 min) followed by gamma-ray damage altered the kinetics so that even after 8 hr the NAD+ pool had recovered to only 70% of the original level. After heat treatment at 44 degrees C for 45 min prior to gamma radiation the cells did not recover at all, presumably because of the cytotoxic effects from the combined treatment.  相似文献   

9.
The upper limiting temperature of growth of Staphylococcus aureus MF31 in heart infusion broth (HI) was about 44 degrees C but addition of monosodium glutamate (MSG) and soy sauce permitted the organism to grow above this temperature. This effect is similar to that of NaCl. Tomato ketchup, Worcestershire and HP sauces added to HI did not allow growth at the non-permissive temperature of 46 degrees C but death was delayed. Staphylococcus aureus died in unsupplemented chicken meat slurry at 46 degrees C but grew at 48 degrees C in slurry supplemented with 5.8% NaCl and survived incubation for 18 h at 50 degrees C in slurry supplemented with 5.8% NaCl and 5% MSG. Cultures grown at 37 degrees C had a D60 value of 2 min in 50 mmol/l Tris (pH 7.2) buffer. Cultures grown at 46 degrees C in HI containing 5.8% NaCl had a D60 value of 8 min in Tris buffer. Addition of 5.8% NaCl plus 5% MSG to the buffer increased the D60 by a factor of about 7 for both cultures. In storage experiments at room temperature, the culture grown at 37 degrees C and at 46 degrees C plus 5.8% NaCl died at about the same rate in salami. In milk powder, however, the count of 37 degrees C culture decreased from 10% g to 10(6)/g in 5 weeks while the count of 46 degrees C culture remained unchanged. In cottage cheese, freeze-dried rice and macaroni, the 37 degrees C cultures also died more rapidly. It is suggested that cultures grown at 46 degrees C plus 5.8% NaCl may be suitable for experiments with artificially contaminated foods.  相似文献   

10.
The genetic analysis of the papillomaviruses has been hampered by the lack of mutants conditionally defective for viral biological activities. We report here the construction and characterization of a temperature-sensitive papillomavirus mutant. The mutation is predicted to insert the sequence Pro-Arg-Ser-Arg into the N-terminal half of the bovine papillomavirus type 1 (BPV1) ORF E2 protein, the major viral regulatory protein. The cloned mutant viral DNA displays temperature-sensitive defects in the induction of focus formation in mouse C127 cells, in its establishment as an extrachromosomal plasmid and in transactivation of a BPV1 enhancer. Genetic experiments confirm that this pleiotropic phenotype is caused by the insertion mutation in ORF E2 and that the transformation and replication defects of the mutant at 37 degrees C are corrected in trans by wild-type E2 gene activity. Most cell lines stably transformed by the mutant at 32.5 degrees C display a reduced ability to overgrow a monolayer of normal cells following temperature shift to 37 degrees C and the mutant viral DNA after temperature shift is present in decreased copy number and/or in an integrated state. These results provide strong genetic evidence that continued ORF E2 activity is required for maintenance of BPV1-induced transformation and for normal viral DNA replication.  相似文献   

11.
To identify specific cellular factors which could be required during the synthesis of retroviral DNA, we have studied the replication of murine leukemia virus in mouse cells temperature sensitive for cell DNA synthesis (M. L. Slater and H. L. Ozer, Cell 7:289-295, 1976) and in several of their revertants. This mutation has previously been mapped on the X chromosome. We found that a short incubation of mutant cells at a nonpermissive temperature (39 degrees C) during the early part of the virus cycle (between 0- to 20-h postinfection) greatly inhibited virus production. This effect was not observed in revertant or wild-type cells. Molecular studies by the Southern transfer procedure of the unintegrated viral DNA synthesized in these cells at a permissive (33 degrees C) or nonpermissive temperature revealed that the levels of linear double-stranded viral DNA (8.8 kilobase pairs) were nearly identical in mutant or revertant cells incubated at 33 or 39 degrees C. However, the levels of two species of supercoiled viral DNA (with one or two long terminal repeats) were significantly lower in mutant cells incubated at 39 degrees C than in mutant cells incubated at 33 degrees C or in revertant cells incubated at 39 degrees C. Pulse-chase experiments showed that linear viral DNA made at 39 degrees C could not be converted into supercoiled viral DNA in mutant cells after a shift down to 33 degrees C. In contrast, such conversion was observed in revertant cells. Restriction endonuclease analysis did not detect differences in the structure of linear viral DNA made at 39 degrees C in mutant cells as compared to linear viral DNA isolated from the same cells at 33 degrees C. However, linear viral DNA made at 39 degrees C in mutant cells was poorly infectious in transfection assays. Taken together, these results strongly suggest that this X-linked gene, affecting mouse cell DNA synthesis, is operating in the early phase of murine leukemia virus replication. It seems to affect the level of production of unintegrated linear viral DNA only slightly while greatly reducing the infectivity of these molecules. In contrast, the accumulation of supercoiled viral DNA and subsequent progeny virus production are greatly reduced. Our pulse-chase experiments suggest that the apparent, but not yet identified, defect in linear viral DNA molecules might be responsible for their subsequent impaired circularization.  相似文献   

12.
Host functions required for replication of progeny double-stranded DNA of bacteriophage G4 were examined by using metabolic inhibitors and Escherichia coli dna mutants. In dna+ bacteria, synthesis of the progeny replicative form (RF) was relatively resistant to 30 microgram/ml of chloramphenicol, but considerably sensitive to 200 microgram/ml of rifampicin. The RF replication was severely inhibited by 50 microgram/ml of mitomycin C, 50 microgram/ml of nalidixic acid, or 200 microgram/ml of novobiocin. At 41 degrees C, synthesis of G4 progeny RF was distinctly affected in a dnaC(D) mutant and in a dnaG host. The progeny RF replication was prevented at 42 degrees C in a dnaE strain as well as in a dnaB mutant. In a dnaZ strain, the synthetic rate of the progeny RF was markedly reduced at 42 degrees C. At 43 degrees C, the rate of G4 progeny RF synthesis was reduced even in dna+ or dnaA bacteria, but significant amounts of the progeny RF were still synthesized in these hosts at the high temperature. In addition to five dna gene products, host rep function was essential for the RF replication.  相似文献   

13.
A temperature-sensitive DNA replication mutant of Staphylococcus aureus NCTC 8325 has been isolated and characterized. After transfer to the non-permissive-temperature (42 degrees C), DNA synthesis continued for 30 min and the mean DNA content increased by 56%. The amount of residual DNA synthesis was not reduced when the non-permissive temperature was raised, nor when chloramphenicol was added at the time of the temperature shift. During incubation at 42 degrees C, mutant bacteria accumulated the capacity to synthesize DNA after return to the permissive temperature (30 degrees C) in the presence of chloramphenicol. This capacity was lost when chloramphenicol was present at 42 degrees C. The properties of the mutant are consistent with a defect in the initiation of DNA replication at 42 degrees C.  相似文献   

14.
Mutants of thermotolerant fungus Aspergillus fumigatus I-21 (ATCC 32722) unable to grow at 37 degrees C were sought. Cold-sensitive mutants were enriched from progeny spores of gamma-irradiated conidia by two or more incubations at various nonpermissive temperatures alternating with filtrations through chessecloth. The approximate minimum, optimum, and maximum growth temperatures of the parent were 12, 40, and 50 degrees C, respectively. Mutants unable to grow at 37 degrees C were not successfully isolated directly from the wild type. A mutant unable to grow at 25 degrees C was isolated and mutations further increasing the cold sensitivity by increments of 3-5 degrees C were found to occur. Mutants completely unable to grow at 37 degrees C were obtained by five sequential mutations. All mutants grew as fast as the wild-type parent at 45 degrees C and higher. Each mutant produced revertants able to grow not only at the nonpermissive temperature used for its isolation but also at lower temperatures.  相似文献   

15.
The physiological effects of incubation at nonpermissive temperatures of Escherichia coli mutants that carry a temperature-sensitive dnaZ allele [dnaZ(Ts)2016] were examined. The temperature at which the dnaZ(Ts) protein becomes inactivated in vivo was investigated by measurements of deoxyribonucleic acid (DNA) synthesis at temperatures intermediate between permissive and nonpermissive. DNA synthesis inhibition was reversible by reducing the temperature of cultures from 42 to 30 degrees C; DNA synthesis resumed immediately after temperature reduction and occurred even in the presence of chloramphenicol. Inasmuch as DNA synthesis could be resumed in the absence of protein synthesis, we concluded that the protein product of the dnaZ allele (Ts)2016 is renaturable. Cell division, also inhibited by 42 degrees C incubation, resumed after temperature reduction, but the length of time required for resumption depended on the duration of the period at 42 degrees C. Replicative synthesis of cellular DNA, examined in vitro in toluene-permeabilized cells, was temperature sensitive. Excision repair of ultraviolet light-induced DNA lesions was partially inhibited in dnaZ(Ts) cells at 42 degrees C. The dnaZ(+) product participated in the synthesis of both Okazaki piece (8-12S) and high-molecular-weight DNA. During incubation of dnaZ(Ts)(lambda) lysogens at 42 degrees C, prophage induction occurred, and progeny phage were produced during subsequent incubation at 30 degrees C. The temperature sensitivity of both DNA synthesis and cell division in the dnaZ(Ts)2016 mutant was suppressed by high concentrations of sucrose, lactose, or NaCl. Incubation at 42 degrees C was neither mutagenic nor antimutagenic for the dnaZ(Ts) mutant.  相似文献   

16.
We report on the properties of a temperature-sensitive mutant produced by transfection of cells with intact DNA and a specific DNA fragment mutagenized with low levels of hydroxylamine. The plating efficiency of the mutant at 39 degrees C relative to that at 33.5 degrees C was 5 X 10(-6). The pattern of polypeptides produced at the nonpermissive temperature was similar to that seen with wild-type virus in infected cells treated with inhibitory concentrations of phosphonoacetic acid in that alpha and beta polypeptides were produced, whereas most gamma polypeptides were either reduced or absent. Consistently, the mutant did not make viral DNA, although temperature sensitivity of the viral DNA polymerase could not be demonstrated. Marker rescue studies with herpes simplex virus type 2 (HSV-2) DNA mapped the mutant in the L component within map positions 0.385 and 0.402 in the prototype (P) arrangement of the HSV-1 genome. Analysis of the recombinants permitted the mapping of the genes specifying infected cell polypeptides 36, 35, 37, 19.5, 11, 8, 2, 43, and 44, but only the infected cell polypeptide 8 of HSV-2 was consistently made by all recombinants containing demonstrable HSV-2 sequences. Marker rescue studies with cloned HSV-1 DNA fragments mapped the temperature-sensitive lesion within less than 10(3) base pairs between 0.383 and 0.388 map units. Translation of the RNA hybridizing to cloned HSV-1 DNA, encompassing the smallest region containing the mutation, revealed polypeptide 8 (128,000 molecular weight), which was previously identified as a beta polypeptide with high affinity for viral DNA, and a polypeptide (25,000 molecular weight) not previously identified in lysates of labeled cells.  相似文献   

17.
Ypt1p of Saccharomyces cerevisiae is a ras-related GTP-binding protein that fulfils an essential function in intracellular protein transport between the endoplasmic reticulum (ER) and the Golgi complex. Ypt proteins from yeasts and mammals that share an identical sequence in the region analogous to the ras effector domain are functionally interchangeable. We analyzed the function of the putative effector domain of yeast Ypt1p (amino acids 37-45) using site-directed mutagenesis and gene replacement. Four out of six point mutations leading to single amino acid substitutions (Y37F, S39A, T40S and V43E) did not cause any particular phenotype. ypt1(I41M) mutants were inviable whereas ypt1(D44N) mutant cells were temperature sensitive at 37 degrees C and accumulated core-glycosylated invertase at the nonpermissive temperature. This mutant also accumulated ER and small vesicles both at 25 degrees C and 37 degrees C. From porcine liver we identified and partially purified a GTPase-activating protein (yptGAP) that is similarly active with mouse ypt1p/rab1p and yeast Ypt1p but is inactive with H-ras protein as a substrate. Although none of the yeast ypt1 mutant proteins were significantly impaired in their ability to bind GTP, purified ypt1(D44N)p responded only partially and ypt1(I41M)p did not respond at all, to yptGAP. Thus we suggest that analogous to rasGAP/H-ras p21 interaction in mammalian cells, yptGAP is an intracellular target of Ypt1p, interacting with the effector domain and regulating its GTPase activity, and that this interaction is required for the functioning of yeast Ypt1p in intracellular protein transport.  相似文献   

18.
19.
In transformation of Haemophilus influenzae, donor deoxyribonucleic acid (DNA) enters into competent cells in the presence of ethylenediaminetetraacetic acid (EDTA), which prevents the formation of single stranded regions in the donor DNA that has entered. If after entry of DNA the recipient cells were first incubated at 17 degrees C and then at 37 degrees C in the continuous presence of EDTA, almost no integration occurred. On the other hand, if after entry of DNA the cells were incubated first at 17 degrees C in the absence of EDTA, allowing the generation of single-stranded regions (integration is blocked at this temperature), and then at 37 degrees C in the presence of EDTA, donor-recipient DNA complexes were formed. These results suggest that single-stranded regions are required for integration. Integration to completion was strongly inhibited by EDTA. In a rec-1 mutant of H. influenzae no donor-recipient DNA complexes carrying recombinant-type activity were formed during incubation at 37 degrees C in the absence of EDTA. If rec-1 cells were incubated at 37 degrees C in the presence of EDTA, which strongly inhibited breakdown of DNA, donor-recipient DNA complexes were formed if previously single-stranded regions in the donor DNA that had entered were generated by incubation at 17 degrees C in the absence of EDTA. This suggests that the rec-1 protein protects the initial donor-recipient DNA complex against degradation, so that further steps in the recombination process can proceed.  相似文献   

20.
Herpes simplex virus type 1 DNA synthesis and infections progeny production were studied in five different conditional hamster (BHK-21) cell cycle mutants. At the nonpermissive temperature (39.5 degrees C), both events were strongly inhibited in four of these cell lines. The degree of inhibition was a reproducible characteristic of each cell mutant and in two cases was dependent upon the multiplicity of infection. Experiments involving shifts to the nonpermissive temperature at least 3 h postinfection at 33.5 degrees C suggested that the defects in viral replication were not due to faulty adsorption, penetration, or uncoating, whereas experiments involving shifts of infected cells from the nonpermissive temperature to 33.5 degrees C revealed the reversible nature of the inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号