首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In congenital heart block (CHB), binding of maternal anti-SSA/Ro Abs to fetal apoptotic cardiocytes impairs their removal by healthy cardiocytes and increases urokinase plasminogen activator (uPA)/uPA receptor (uPAR)-dependent plasmin activation. Because the uPA/uPAR system plays a role in TGF-β activation, we evaluated whether anti-Ro binding to apoptotic cardiocytes enhances plasmin-mediated activation of TGF-β, thereby promoting a profibrosing phenotype. Supernatants from cocultures of healthy cardiocytes and apoptotic cardiocytes bound by IgG from a mother whose child had CHB (apoptotic-CHB-IgG [apo-CHB-IgG]) exhibited significantly increased levels of active TGF-β compared with supernatants from cocultures of healthy cardiocytes and apoptotic cardiocytes preincubated with IgG from a healthy donor. Treatment of the culture medium with anti-TGF-β Ab or TGF-β inhibitor (SB431542) abrogated the luciferase response, thereby confirming TGF-β dependency. Increased uPA levels and activity were present in supernatants generated from cocultures of healthy cardiocytes and apo-CHB-IgG cardiocytes compared with healthy cardiocytes and apoptotic cardiocytes preincubated with IgG from a healthy donor, respectively. Treatment of apo-CHB-IgG cardiocytes with anti-uPAR or anti-uPA Abs or plasmin inhibitor aprotinin prior to coculturing with healthy cardiocytes attenuated TGF-β activation. Supernatants derived from cocultures of healthy cardiocytes and apo-CHB-IgG cardiocytes promoted Smad2 phosphorylation and fibroblast transdifferentiation, as evidenced by increased smooth muscle actin and collagen expression, which decreased when fibroblasts were treated with supernatants from cocultures pretreated with uPAR Abs. These data suggested that binding of anti-Ro Abs to apoptotic cardiocytes triggers TGF-β activation, by virtue of increasing uPAR-dependent uPA activity, thus initiating and amplifying a cascade of events that promotes myofibroblast transdifferentiation and scar.  相似文献   

2.
Children randomised in the neonatal period to high frequency oscillatory ventilation (HFOV) or conventional mechanical ventilation (CMV) in the United Kingdom Oscillation study (UKOS) had superior lung function at 11 to 14 years of age. During HFOV, much smaller tidal volumes, but a higher mean airway distending pressure is delivered, hence, a possible explanation for a volume dependent effect on long term lung function could be an increase in inflammation in response to higher tidal volumes and strains. We tested that hypothesis by assessing interleukin-6 (IL-6) and -8 (IL-8) release from A549 alveolar analogue cells following biaxial mechanical strain applied at 0.5 Hz occurring during conditions mimicking strain during CMV (5–20% strain) and conditions mimicking strain during HFOV (17.5% ± 2.5% strain) for up to 4 h. Cyclic strain of 5–20%, occurring during CMV, increased levels of both IL-6 and IL-8 compared to unstrained controls, while 17.5% ± 2.5% strain, occurring during HFOV, was associated with significantly lower levels of IL-6 (46.31 ± 2.66 versus 56.79 ± 3.73 pg/mL) and IL-8 (1340.2 ± 74.9 versus 2522 ± 248 pg/mL) secretion compared to conditions occurring during CMV at four hours. These results may provide a possible explanation for the superior lung function in 11–14-year-old children who had been supported in the neonatal period by HFOV.  相似文献   

3.
We have performed cytophotometry for DNA in isolated myocytes of the left ventricle from 16 men, aged 19–39 years, who died from various non-cardiac or pulmonary causes. The mean ploidy of myocytes varied from 3.2–3.9 c to 6.6–7.3 c in different layers of the anterior wall of the left ventricle (where c is the haploid DNA content measured by cytophotometry in Feulgenstained preparations). There was no correlation between the layers. The percentage of binuclear cells varied from 25 to 86% and correlated in every layer with the mean ploidy value of the whole myocyte population. Approximate calculation of total ploidy revealed low values in the ventricles of some individuals, and high values in others. Averaging the values for all the hearts studied obscures this variation. Mean myocyte ploidy in different layers of the anterior wall was similar: in the external layer it was 5.1±0.3 c, in the middle layer 5.5±0.3 c and in the inner layer 4.8±0.4 c. The mean percentage of binuclear myocytes in these three layers was also similar, being 61±3%, 63±4% and 54±5%, respectively. Myocyte ploidy in tissue from the posterior wall of the left ventricle also varied, but was always higher than for the same layer of the anterior wall in the same ventricle. We propose that high or low myocyte ploidy, as well as different proportions of mono- and binucleate cells, can be a factor affecting the course and result of cardiac pathology in the absence of any changes of myocyte genome determined during early ontogenesis and representing a stable characteristic of the individual.  相似文献   

4.
Whole-cell and single-channel inwardly-rectifying K+ currents (IK1) of early (3-day-old) and late (17-day-old) embryonic chick ventricular myocytes were compared to ascertain whether there are developmental changes in the properties of this conductance. The magnitude of the IK1 conductance in the early myocytes was small, but it was increased about five-fold in the older embryonic myocytes. It was found that the density of inwardly-rectifying K+ channels was greater (in the surface membrane) of the 17-day than in the 3-day embryonic myocyte. In addition, the single channel conductance for 17-day myocytes was several-fold larger than for the 3-day myocytes. These results suggest that cardiac inward rectifier channels may not only proliferate in number, but may also undergo structural alterations during development.  相似文献   

5.
The goal of this investigation is to identify molecules that mediate embryonic cardiac myocyte adhesion during chick cardiac morphogenesis. The assay used employs culturing embryonic myocytes on substrata containing embryonic heart proteins separated by molecular weight. This assay shows that embryonic myocytes from 10- to 14-day-old embryos will bind to 140,000 and 128,000 Da proteins present in embryonic hearts and do not require Mg2+ or Ca2+ for adhesion. Myocytes from embryos younger than 10 days or older than 14 days display little or no binding. Embryonic heart flbroblasts collected at these same ages do not bind to these proteins. The 140- and 128-kDa proteins were found to copurify in extraction procedures for procollagens. Amino acid analysis shows that both proteins contain high glycine and hydroxyproline, indicating that they are collagens. However, glycine and imino acid levels are low relative to other known collagens, indicating a nonhelical domain present in each molecule and most closely resembled levels present in procollagens. Immunoblots show that antisera to chick collagen type I recognizes the 128-kDa protein while anti-collagen type III recognizes the 140-kDa protein. Monoclonal antibodies to the amino terminal propeptide of collagen type I recognize the 128-kDa protein in immunoblotting procedures. Embryonic chick myocytes bind to 140/128 kDa proteins present in extracts of sympathetic trunk, although they do not bind to 140/128 kDa proteins in embryonic tendon. The findings thereby indicate that forms of type III and type I collagens in embryonic heart support direct adhesion of embryonic myocytes for a restricted period of cardiac myogenesis and that these proteins differ from collagen types I and III present in other tissues and from fully processed collagen types I and III.  相似文献   

6.
Our goal was to define the role of phosphorylated cardiac troponin-I in the adult myocyte contractile performance response to activated protein kinase C. In agreement with earlier work, endothelin enhanced both adult rat myocyte contractile performance and cardiac troponin-I phosphorylation. Protein kinase C participated in both responses. The role of cardiac troponin-I phosphorylation in the contractile function response to protein kinase C was further investigated using gene transfer into myocytes of troponin-I isoforms/mutants lacking one or more phosphorylation sites previously identified in purified cardiac troponin-I. Sarcomeric replacement with slow skeletal troponin-I-abrogated protein kinase C-mediated troponin-I phosphorylation. In functional studies, endothelin slowed relaxation in myocytes expressing slow skeletal troponin-I, while the relaxation rate increased in myocytes expressing cardiac troponin-I. Based on these results, acceleration of myocyte relaxation during protein kinase C activation largely depended on cardiac troponin-I phosphorylation. Experiments with troponin-I isoform chimeras provided evidence that phosphorylation sites in the amino portion of cardiac troponin I-mediated the protein kinase C acceleration of relaxation. The cardiac troponin-I Thr-144 phosphorylation site identified in earlier biochemical studies was not significantly phosphorylated during the acute contractile response. Thus, amino-terminal protein kinase C-dependent phosphorylation sites in cardiac troponin-I are likely responsible for the accelerated relaxation observed in adult myocytes.  相似文献   

7.
The goal of this investigation is to identify molecules that mediate embryonic cardiac myocyte adhesion during chick cardiac morphogenesis. The assay used employs culturing embryonic myocytes on substrata containing embryonic heart proteins separated by molecular weight. This assay shows that embryonic myocytes from 10- to 14-day-old embryos will bind to 140,000 and 128,000 Da proteins present in embryonic hearts and do not require Mg2+ or Ca2+ for adhesion. Myocytes from embryos younger than 10 days or older than 14 days display little or no binding. Embryonic heart fibroblasts collected at these same ages do not bind to these proteins. The 140- and 128-kDa proteins were found to copurify in extraction procedures for procollagens. Amino acid analysis shows that both proteins contain high glycine and hydroxyproline, indicating that they are collagens. However, glycine and imino acid levels are low relative to other known collagens, indicating a nonhelical domain present in each molecule and most closely resembled levels present in procollagens. Immunoblots show that antisera to chick collagen type I recognizes the 128-kDa protein while anti-collagen type III recognizes the 140-kDa protein. Monoclonal antibodies to the amino terminal propeptide of collagen type I recognize the 128-kDa protein in immunoblotting procedures. Embryonic chick myocytes bind to 140/128 kDa proteins present in extracts of sympathetic trunk, although they do not bind to 140/128 kDa proteins in embryonic tendon. The findings thereby indicate that forms of type III and type I collagens in embryonic heart support direct adhesion of embryonic myocytes for a restricted period of cardiac myogenesis and that these proteins differ from collagen types I and III present in other tissues and from fully processed collagen types I and III.  相似文献   

8.
We tested the hypothesis that the negative functional effects of cyclic GMP on cardiac myocytes were mediated through phospholamban (PLB) and activation of sarcoplasmic reticulum Ca(2+)-ATPase. Using ventricular myocytes from wild type (WT, n=10) and PLB knockout (PLB-KO, n=10) mouse hearts, functional changes were measured using a video edge detector at baseline and after 10(-6), 10(-5)M 8-bromo-cyclic GMP (cGMP), 10(-8), 10(-7)M C-type natriuretic peptide (CNP), or 10(-6), 10(-5)M S-nitroso-N-acetyl-penicillamine (SNAP, nitric oxide donor). Changes in cytosolic Ca(2+) concentration were assessed in fura 2-loaded WT and PLB-KO myocytes. Cyclic GMP dependent phosphorylation analysis was also performed in WT and PLB-KO myocytes. 8-bromo-cGMP 10(-5)M caused a significant decrease in %shortening (3.6+/-0.2% to 2.3+/-0.1%) in WT, but little change in PLB-KO myocytes (3.4+/-0.1% to 3.2+/-0.2%). Similarly, CNP and SNAP reduced %shortening of WT, but not PLB-KO myocyte. Changes in other contractile parameters such as maximum rate of shortening and relaxation were consistent with the changes in % shortening. Intracellular Ca(2+) transients changed similarly to cell contractility in WT and PLB-KO myocytes treated with cGMP and CNP; i.e. Ca(2+) transients decreased with cGMP or CNP in WT myocytes, but were unchanged in PLB-KO myocytes. cGMP dependent phosphorylation analysis showed that some proteins were phosphorylated by cGMP to a lesser extent in PLB-KO compared with WT myocytes, suggesting impaired cGMP-kinase function in PLB-KO cardiac myocytes. These results indicated that cGMP-induced reductions in cardiac myocyte function were at least partially mediated through the action of phospholamban.  相似文献   

9.
Cardiac myocytes isolated and cultured from 11 day chick embryos present a Ca(2+)-dependent regulatory volume decrease (RVD) when exposed to hyposmotic stimulus. The RVD of myocytes from different embryonic stages were analyzed to evaluate their physiological performance through development. Among the several embryonic stages analyzed (6, 11, 16 and 19 days) only 19 day cardiac myocytes present a greater RVD when compared with 11 day (considered as control), the other ages showed no difference in the regulatory response. As it is known that RVD is Ca(2+) dependent, we decided to investigate the transient free Ca(2+) response during the hyposmotic swelling of the 11 and 19 day stages. The 11 day cardiac myocyte showed a transient 40% increase in intracellular free Ca(2+) when submitted to hyposmotic solutions, and the free Ca(2+) returned to baseline levels while the cells remained in hyposmotic buffer. However, the intracellular free Ca(2+) transient in the 19 day cells during hyposmotic challenge increases 100% and instead of returning to baseline levels, declines to 55% above control, well after the 11 day transient has returned to baseline. Also, quantitative fluorescence microscopy revealed that 19 day cardiac myocytes have more sarcoplasmic reticulum (SR) Ca(2+) ATPase sites per cell as compared to the 11 day cells. Our findings suggest that 19 day cells have more developed intracellular Ca(2+) stores (SR). By evoking the mechanism of Ca(2+) induced Ca(2+) release, the cells have more free Ca(2+) available for signaling the RVD during hyposmotic swelling.  相似文献   

10.
We have established a heart slice primary culture, which allows us to mechanically separate distinct cardiac cell populations and assay their relative mitogenic and trophic effects on cardiac myocyte proliferation and survival. Using this system, we have found that a signal(s) from the epicardium, but not the trabeculae and endocardium, is required in embryonic day 10 (E10) chick heart slices for continued cardiac myocyte proliferation and survival. An examination of potential epicardial growth or trophic factors has revealed that blockade of either retinoic acid (RA) or erythopoietin (epo) signaling from the epicardium inhibits cardiac myocyte proliferation and survival. The blockade of cardiac myocyte proliferation following administration of an RA antagonist can be rescued by exogenous epo. Conversely, the blockade of cardiac myocyte proliferation following administration of an anti-epo receptor antisera can be rescued by exogenous RA. Thus, our findings suggest that RA and epo signals work in parallel to support myocardial cell proliferation. In addition, we have found that these factors do not act directly on myocardial cells. Rather, they induce another soluble factor(s) in the epicardium that directly regulates proliferation of cardiac myocytes. We therefore postulate that the epicardium controls normal heart growth in ventricular segments of the embryonic chick heart by secreting a cardiac myocyte mitogen whose expression (or activity) is regulated by both RA and erythropoietin signaling.  相似文献   

11.
Ten successive3H-thymidine injections at 12h intervals (which is a little shorter than the adult heart myocyte S phase) were performed for labeling of the majority of cardiac myocytes synthesizing DNA at any moment of such a 5 days experiment. In the hearts of control unoperated rats ten-fold repeated3H-thymidine administration results in labeling of 2–3% myocyte nuclei, in both atria, ca. 1% of the specialized muscle cell nuclei in the atrioventricular conductive system, only occasional muscle cells being labeled in the working ventricular myocardium. When ten successive3H-thymidine injections were made between the 5th and 10th days following extended left ventricle infarction, the percentage of labeled myocytes in left and right atria reaches, respectively, 51.4±4.4% and 34.7±3.6%. In the left ventricle labeled muscle nuclei are accumulated predominantly (9.3±2.1%) within the thin subepicardial layer of the surviving myofibers, while myofibers located in other perinecrotic areas contained only 1.3±0.5% labeled muscle nuclei. The number of these nuclei in the atrioventricular system remains at the level observed in control hearts (up to 2%), approaching closely the zero level in the working myocardium of both the ventricles and interventricular septum, located at the considerable distance from the infarcted region. When similar experiments with ten-fold repeated3H-thymidine injections were performed between 15th and 20th post-infarction days the number of labeled myocyte nuclei was found to be reduced 4–6 times in atria, being changed rather a little in the perinecrotic ventricular myocardium and in the specialized myocardium of the atrioventricular system. Some possible reasons of the observed differences in the proliferative behaviour of cardiac myocytes in terms of their topology and/or specialization are discussed  相似文献   

12.
13.
Transgenic mice with cardiac-specific overexpression of active Akt (TG) not only exhibit hypertrophy but also show enhanced left ventricular (LV) function. In 3-4-month-old TG, heart/body weight was increased by 60% and LV ejection fraction was elevated (84 +/- 2%, p < 0.01) compared with nontransgenic littermates (wild type (WT)) (73 +/- 1%). An increase in isolated ventricular myocyte contractile function (% contraction) in TG compared with WT (6.1 +/- 0.2 versus 3.5 +/- 0.2%, p < 0.01) was associated with increased Fura-2 Ca2+ transients (396 +/- 50 versus 250 +/- 24 nmol/liter, p < 0.05). The rate of relaxation (+dL/dt) was also enhanced in TG (214 +/- 15 versus 98 +/- 18 microm/s, p < 0.01). L-type Ca2+ current (ICa) density was increased in TG compared with WT (-9.0 +/- 0.3 versus 7.2 +/- 0.3 pA/pF, p < 0.01). Sarcoplasmic reticulum Ca2+ ATPase 2a (SERCA2a) protein levels were increased (p < 0.05) by 6.6-fold in TG, which could be recapitulated in vitro by adenovirus-mediated overexpression of Akt in cultured adult ventricular myocytes. Conversely, inhibiting SERCA with either ryanodine or thapsigargin affected myocyte contraction and relaxation and Ca2+ channel kinetics more in TG than in WT. Thus, myocytes from mice with overexpressed Akt demonstrated enhanced contractility and relaxation, Fura-2 Ca2+ transients, and Ca2+ channel currents. Furthermore, increased protein expression of SERCA2a plays an important role in mediating enhanced LV function by Akt. Up-regulation of SERCA2a expression and enhanced LV myocyte contraction and relaxation in Akt-induced hypertrophy is opposite to the down-regulation of SERCA2a and reduced contractile function observed in many other forms of LV hypertrophy.  相似文献   

14.
Currently, there are two points of view on the ability of adult human heart to regenerate. One of them holds that the myocardium has a poor ability to regenerate. According to the other, the myocardium can rapidly regenerate due to the presence of resident stem cells in it. The purpose of this study was to test these hypotheses by investigating the distribution of cardiomyocytes by size and ploidy in human beings of different age. Using cytofluorometry and interferometry, we determined the dry weight, volume, and ploidy of myocytes isolated from the left ventricle of a normal heart of 12 men at the age of 20–30 (n = 7) and 40–50 (n = 5) years. The mean dry weight of cardiomyocytes was 6906 ± 182 pg (10–12 g) in the 20- to 30-yearold men and 9126 ± 263 pg in 40- to 50-year-old men; the myocyte volume was 55250 ± 1457 and 73005 ± 2106 µm3, respectively. Cells with volumes intermediate between the cells at the stage of “dividing myocytes” and mature myocytes were absent. The number of cardiomyocytes in the left ventricle was (3.18 ± 0.05) × 109 in the 20–30-year-old age group and (2.06 ± 0.6) × 109 in the 40–50-year-old group. The largest subset (41.3%) of the myocyte population was represented by mononuclear cells with tetraploid nuclei. The proportion of myocytes of different ploidy classes and their mean ploidy did not change in the range of 20–50 years. On the basis on these data, we concluded that stem cells do not play a significant role in restoring the number of lost myocytes. Hypertrophy of myocytes caused by the increase in their cytoplasm is the main mechanism of compensation of the function of the left ventricle of the heart in aging human beings.  相似文献   

15.
Individual cardiomyocytes are lengthened in dilated cardiomyopathy. However, it is not known how the new sarcomeres are added to preexisting myofibrils. Using a three-dimensional microtextured culturing system, a 10% mechanical static strain was applied to aligned, well-attached cardiomyocytes from neonatal rat. The morphology of the myofibrils and the ends of the myocytes were examined. Disruptions of the sarcomeric pattern for actin showed a progression from weak to intense staining over 4 hr. The lightly stained sarcomeres were common at 1 hr after being strained, peaked at 2 hr, and then subsided. In contrast, the numbers of intensely stained sarcomeres were initially low, peaked at 3 hr, and then began to decline when compared with control values. The myocyte ends showed elongations and convolutions after 3 hr and 4 hr of mechanical strain when observed with alpha-actinin and N-cadherin staining. We suggest that myocytes from neonatal rat hearts remodel by insertion of new sarcomeres throughout the cell length and also by enhancement at the intercalated discs.  相似文献   

16.
A deep inspiration (DI) temporarily relaxes agonist-constricted airways in normal subjects, but in asthma airways are refractory and may rapidly renarrow, possibly due to changes in the structure and function of airway smooth muscle (ASM). Chronic largely uniaxial cyclic strain of ASM cells in culture causes several structural and functional changes in ASM similar to that in asthma, including increases in contractility, MLCK content, shortening velocity, and shortening capacity. However, changes in recovery from acute stretch similar to a DI have not been measured. We have therefore measured the response and recovery to large stretches of cells modified by chronic stretching and investigated the role of MLCK. Chronic, 10% uniaxial cyclic stretch, with or without a strain gradient, was administered for up to 11 days to cultured cells grown on Silastic membranes. Single cells were then removed from the membrane and subjected to 1 Hz oscillatory stretches up to 10% of the in situ cell length. These oscillations reduced stiffness by 66% in all groups (P < 0.05). Chronically strained cells recovered stiffness three times more rapidly than unstrained cells, while the strain gradient had no effect. The stiffness recovery in unstrained cells was completely inhibited by the MLCK inhibitor ML-7, but recovery in strained cells exhibiting increased MLCK was slightly inhibited. These data suggest that chronic strain leads to enhanced recovery from acute stretch, which may be attributable to the strain-induced increases in MLCK. This may also explain in part the more rapid renarrowing of activated airways following DI in asthma.  相似文献   

17.
The adult heart responds to contraction demands by hypertrophy, or enlargement, of cardiac myocytes. Adaptive hypertrophy can occur in response to hyperoxic conditions such as exercise, while pathological factors that result in hypoxia ultimately result in heart failure. The difference in the outcomes produced by pathologically versus physiologically induced hypertrophy suggests that the cellular signaling pathways or conditions of myocytes may be different at the cellular level. The structural and functional changes in myocytes resulting from hyperoxia (simulated using hydrogen peroxide) and hypoxia (using oxygen deprivation) were tested on fetal chick cardiac myocytes grown in vitro. Structural changes were measured using immunostaining for α-sarcomeric actin or MyoD, while functional changes were assessed using immunostaining for calcium/calmodulin-dependent kinase (CaMKII) and by measuring intracellular calcium fluxes using live cell fluorescence imaging. Both hypoxic and hyperoxic stress resulted in an upregulation of actin and MyoD expression. Similarly, voltage-gated channels governing myocyte depolarization and the regulation of CaMK were unchanged by hyperoxic or hypoxic conditions. However, the dynamic features of calcium fluxes elicited by caffeine or epinephrine were different in cells subjected to hypoxia versus hyperoxia, suggesting that these different conditions differentially affect components of ligand-activated signaling pathways that regulate calcium. Our results suggest that changes in signaling pathways, rather than structural organization, may mediate the different outcomes associated with hyperoxia-induced versus hypoxia-induced hypertrophy, and these changes are likely initiated at the cellular level.  相似文献   

18.
The distribution of atrial natriuretic peptide (ANP) in blood plasma and cardiac muscle and its effects on ventricular myocyte contraction and intracellular free calcium concentration [Ca2+]i in the streptozotocin (STZ)-induced diabetic rat have been investigated. Blood plasma concentration and heart atrial and ventricular contents of ANP were significantly increased in STZ-treated rats compared to age-matched controls. STZ treatment increased the number of ventricular myocytes immunolabeled with antibodies against ANP. In control myocytes the percentage of cells that labeled positively and negatively were 17% versus 83%, respectively. However, in myocytes from STZ-treated rat the percentages were 52% versus 53%. Time to peak (TPK) shortening was significantly and characteristically prolonged in myocytes from STZ-treated rats (360+/-5 ms) compared to controls (305+/-5 ms). Amplitude of the Ca2+ transient was significantly increased in myocytes from STZ-treated rats compared to controls (0.39+/-0.02 versus 0.29+/-0.02 fura-2 RU in controls) and treatment with ANP reduced the amplitude of the Ca2+ transient to control levels. ANP may have a protective role in STZ-induced diabetic rat heart.  相似文献   

19.
Basic fibroblast growth factor (bFGF) has been identified in cultured cardiac myocytes as well as in myocardial tissue of both embryonic and adult organisms; bFGF has also been demonstrated to regulate proliferation and differentiation of these cells in culture. Such studies suggest a possible role for bFGF in cardiac myogenesis. In vitro studies using cultured endothelial and neuronal cells also suggest that myocyte-derived bFGF may be involved in the regulation of vascularization and/or innervation of the developing heart. We have generated a spatial and temporal map for bFGF in the developing chick heart using immunohistochemical techniques and our monospecific polyclonal rabbit antihuman bFGF IgG. A progressive decrease in bFGF expression was seen in the highly trabeculated region of the ventricular myocardium, relative to the myocardium directly underlying the epicardial tissue, with increasing developmental age. bFGF expression was limited to the cytoplasm of cardiac myocytes; neither vascular endothelium nor smooth muscle contained anti-bFGF immunoreactive material. A correlation between the temporal and spatial pattern of bFGF expression seen here, with the pattern of myocyte proliferation and differentiation reported by others, suggests a role for bFGF in the autocrine regulation of myocyte proliferation and differentiation.  相似文献   

20.
Zhang Q  Jiang J  Han P  Yuan Q  Zhang J  Zhang X  Xu Y  Cao H  Meng Q  Chen L  Tian T  Wang X  Li P  Hescheler J  Ji G  Ma Y 《Cell research》2011,21(4):579-587
Although myocyte cell transplantation studies have suggested a promising therapeutic potential for myocardial infarction, a major obstacle to the development of clinical therapies for myocardial repair is the difficulties associated with obtaining relatively homogeneous ventricular myocytes for transplantation. Human embryonic stem cells (hESCs) are a promising source of cardiomyocytes. Here we report that retinoid signaling regulates the fate specification of atrial versus ventricular myocytes during cardiac differentiation of hESCs. We found that both Noggin and the pan-retinoic acid receptor antagonist BMS-189453 (RAi) significantly increased the cardiac differentiation efficiency of hESCs. To investigate retinoid functions, we compared Noggin+RAi-treated cultures with Noggin+RA-treated cultures. Our results showed that the expression levels of the ventricular-specific gene IRX-4 were radically elevated in Noggin+RAi-treated cultures. MLC-2V, another ventricular-specific marker, was expressed in the majority of the cardiomyocytes in Noggin+RAi-treated cultures, but not in the cardiomyocytes of Noggin+RA-treated cultures. Flow cytometry analysis and electrophysiological studies indicated that with 64.7 ± 0.88% (mean ±s.e.m) cardiac differentiation efficiency, 83% of the cardiomyocytes in Noggin+RAi-treated cultures had embryonic ventricular-like action potentials (APs). With 50.7 ± 1.76% cardiac differentiation efficiency, 94% of the cardiomyocytes in Noggin+RA-treated cultures had embryonic atrial-like APs. These results were further confirmed by imaging studies that assessed the patterns and properties of the Ca(2+) sparks of the cardiomyocytes from the two cultures. These findings demonstrate that retinoid signaling specifies the atrial versus ventricular differentiation of hESCs. This study also shows that relatively homogeneous embryonic atrial- and ventricular-like myocyte populations can be efficiently derived from hESCs by specifically regulating Noggin and retinoid signals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号