首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We report here, the design and synthesis of a positional scanning synthetic combinatorial library for the identification of novel peptide ligands targeted against the cancer‐specific epidermal growth factor tyrosine kinase receptor mutation variant III (EGFRvIII). This receptor is expressed in several kinds of cancer, in particular, ovarian, glioblastomas, and breast cancer, but not in normal tissue. The library consisted of six individual positional sublibraries in the format, H‐O1–6XXXXX‐NH2, O being one of the 19 proteinogenic amino acids (cysteine omitted) and X an equimolar mixture of these. The library consisted of 114 mixtures in total. Using a biotin‐streptavidin assay, the binding of each sublibrary to NR6M, NR6W‐A, and NR6 cells was tested. These cells express EGFRvIII, EGFR, and neither of the receptors, respectively. The result from each sublibrary was examined to identify the most active amino acid residue at each position. On the basis of this knowledge, eight peptides were synthesized and tested for binding to EGFRvIII. We identified one peptide, H‐FALGEA‐NH2, that showed more selective binding to the mutated receptor than the EGFRvIII specific peptide PEPHC1. This study demonstrates the value of using mixture‐based combinatorial positional scanning libraries for the identification of novel peptide ligands targeted against the cancer‐specific EGFRvIII. Our best candidate H‐FALGEA‐NH2 will be radioactively labeled and evaluated as an imaging agent for positron emission tomography investigation for diagnosis, staging, and monitoring of therapy of various types of cancer. © 2008 Wiley Periodicals, Inc. Biopolymers 91: 201–206, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

2.
The article describes the use of a PNA duplex (PNA zipper) as a tool to dimerize or bring in close proximity two polypeptides or protein domains. The amino acid sequence to be dimerized is covalently bound to complementary PNA sequences. Annealing of the PNA strands results in dimer formation. To test the ability of the “PNA‐zipper” as a dimerization tool, we designed a GCN4 mimetic, where the leucine‐zipper dimerization domain was replaced by the PNA zipper, whereas the basic DNA‐binding domain was covalently attached to the PNA. The molecule was assembled by chemical ligation of the peptide corresponding to the DNA‐binding domain of GCN4 modified with a succinyl thioester with two complementary PNAs harboring a cysteine residue. Electromobility‐shift experiments show the ability of the PNA zipper‐GCN4 to bind selected DNA duplexes. The PNA zipper‐GCN4 binds both the TRE and CRE DNA sites, but it does not bind TRE and CRE mutants containing even a single base mutation, as the native GCN4. The ability to fold upon complexation with DNA was investigated by CD. A good correlation between the ability of the PNA zipper‐GCN4 to fold into α helices and the ability to bind DNA was found. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 434–441, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

3.
The sesquiterpene antibiotic koningic acid (heptelidic acid) has been previously demonstrated to modify glyceraldehyde-3-phosphate dehydrogenase in specific manner, probably by binding to the sulfhydryl residue at the active site of the enzyme (Sakai, K., Hasumi, K. and Endo, A. (1988) Biochim. Biophys. Acta 952, 297-303). Rabbit muscle glyceraldehyde-3-phosphate dehydrogenase labeled with [3H]koningic acid was digested with trypsin. Reverse-phase HPLC revealed that the label is associated exclusively with a tryptic peptide having 17 amino acid residues. Microsequencing and fast atom bombardment mass spectrometry demonstrated that the peptide has the sequence Ile-Var-Ser-Asn-Ala-Ser-Cys-Thr-Thr-Asn-Cys-Leu-Ala-Pro-Leu-Ala-Lys. In comparison to the amino acid sequence of glyceraldehyde-3-phosphate dehydrogenase from other species, this peptide is in a highly conserved region and is part of the active site of the enzyme. The cysteine residue corresponding to the Cys-149 in the pig muscle enzyme, which has been shown to be an essential residue for the enzyme activity, was shown to be the site modified by koningic acid. Structural analyses of the reaction product of koningic acid and L-cysteine suggested that the epoxide of koningic acid reacts with the sulfhydryl group of cysteine residue, resulting in a thioether.  相似文献   

4.
Here we describe the features of a peptide that was selected from the human immunodeficiency virus Type 1 (HIV‐1) Integrase (IN) peptide library which interacts with both, the viral Rev and IN proteins. Because of its ability to stimulate the IN enzymatic activity this peptide was designated INS (IN stimulatory). Modification of its amino acid sequence revealed that replacement of its C‐terminal lysine by glutamic acid (INS K188E) converts it from a stimulatory peptide to an inhibitory one. Both peptides promoted the dissociation of a previously described complex formed between Rev and IN whose formation results in IN inactivation. INS and INS K188E penetrated HIV‐1‐infected cells and caused stimulation and inhibition of viral genome integration, respectively. Using cultured cells infected with a ΔRev HIV revealed that INS can directly activate the viral IN. These results suggest that the stimulatory effect of INS in wild‐type virus‐infected cells is due to a dual effect: it dissociates the inactive Rev‐IN complex and directly activates the free IN. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 740–751, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

5.
Two glycoside hydrolase (GH) families were analyzed to detect the presence of functional divergence using the program DIVERGE. These two families, GH7 and GH16, each contain members related by amino acid sequence similarity, retaining hydrolytic mechanisms, and catalytic residue identity. GH7 and GH16 comprise GH Clan B, with a shared β‐jelly roll topology and mechanism. GH7 contains fungal cellobiohydrolases and endoglucanases and is divided into five main subfamilies, four of the former and one of the latter. Cluster comparisons between three of the cellobiohydrolase subfamilies and the endoglucanase subfamily identified specific amino acid residues that play a role in the functional divergence between the two enzyme types. GH16 contains subfamilies of bacterial agarases, xyloglucosyl transferases, 1,3‐β‐D ‐glucanases, lichenases, and other enzymes with various substrate specificities and product profiles. Four cluster comparisons between these four main subfamilies again have identified amino acid residues involved in functional divergence between the subfamilies. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 478–495, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

6.
A new amino acid derivative, N alpha-(tert-butoxycarbonyl)-N epsilon-[N-(bromoacetyl)-beta-alanyl]-L-lysine (BBAL), has been synthesized as a reagent to be used in solid-phase peptide synthesis for introducing a side-chain bromoacetyl group at any desired position in a peptide sequence. The bromoacetyl group subsequently serves as a sulfhydryl-selective cross-linking function for the preparation of cyclic peptides, peptide conjugates, and polymers. BBAL is synthesized by condensation of N-bromoacetyl-beta-alanine with N alpha-Boc-L-lysine and is a white powder which is readily stored, weighed, and used with a peptide synthesizer, programmed for N alpha-Boc amino acid derivatives. BBAL residues are stable to final HF deprotection/cleavage. BBAL peptides can be directly coupled to other molecules or surfaces which possess free sulfhydryl groups by forming stable thioether linkages. Peptides containing both BBAL and cysteine residues can be self-coupled to produce either cyclic molecules or linear peptide polymers, also linked through thioether bonds. Products made with BBAL peptides may be characterized by amino acid analysis of acid hydrolyzates by quantification of beta-alanine, which separates from natural amino acids in suitable analytical systems. Where sulfhydryl groups on coupling partners arise from cysteine residues, S-(carboxymethyl)cysteine in acid hydrolyzates may also be assayed for this purpose. Examples are given of the use of BBAL in preparing peptide polymers and a peptide conjugate with bovine albumin to serve as immunogens or model vaccine components.  相似文献   

7.
We describe a method by which sulfhydryl compounds may be transported into Escherichia coli as the mixed disulfides with a cysteine residue of a di- or tripeptide. Transport occurs through the di- or oligopeptide transport systems, and it is suggested that subsequent release of the sulfhydryl compound occurs as a result of a disulfide exchange reaction with components of the sulfhydryl-rich cytoplasm. The free sulfhydryl compounds used here (2-mercaptopyridine and 4-[N-(2-mercaptoethyl)]aminopyridine-2,6-dicarboxylic acid) show weak growth-inhibitory properties in their own right, but disulfide linkage to a cysteinyl peptide results in a considerable enhancement (up to 2 orders of magnitude). This is the first example of the use of the peptide transport systems of E. coli to effect portage transport of a poorly permeant molecule by using attachment to the side chain of one of the amino acid residues of a peptide; all previous examples have involved the incorporation of amino acid analogues into the peptide backbone. The synthesis of cysteinyl peptides containing disulfide-linked 2-mercaptopyridine is described. Displacement of the 2-mercaptopyridine by sulfhydryl compounds of interest proceeds rapidly and quantitatively in aqueous alkaline solution to provide the required peptide disulfides.  相似文献   

8.
Mok H  Park TG 《Biopolymers》2008,89(10):881-888
A novel self-crosslinked and reducible peptide was synthesized for stable formation of nanoscale complexes with an siRNA-PEG conjugate to enhance transfection efficiency in serum containing condition without compromising cytotoxicity. A fusogenic peptide, KALA, with two cysteine residues at both terminal ends was crosslinked via disulfide linkages under mild DMSO oxidation condition. The reducible crosslinked KALA (cl-KALA) was used to form nano-complexes with green fluorescent protein (GFP) siRNA. Size and morphology of various polyelectrolyte complexes formulated with KALA and cl-KALA were comparatively analyzed. cl-KALA exhibited more reduced cell cytotoxicity and formed more stable and compact polyelectrolyte complexes with siRNA, compared with naked KALA and polyethylenimine (PEI), probably because of its increased charge density. The extent of gene silencing was quantitatively evaluated using MDA-MB-435 cells. cl-KALA/siRNA complexes showed comparable gene silencing efficiency with those of cytotoxic PEI. In a serum containing medium, cl-KALA/siRNA-PEG conjugate complexes exhibited superior gene inhibition because of the shielding effect of PEG on the surface. The formulation based on the self-crosslinked fusogenic peptide could be used as a biocompatible and efficient nonviral carrier for siRNA delivery. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 881-888, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

9.
A fluorescently labeled 20‐residue polyglutamic acid (polyE) peptide 20 amino acid length polyglutamic acid (E20) was used to study structural changes which occur in E20 as it co‐aggregates with other unlabeled polyE peptides. Resonance energy transfer (RET) was performed using an o‐aminobenzamide donor at the N‐terminus and 3‐nitrotyrosine acceptor at the C‐terminus of E20. PolyE aggregates were not defined as amyloid, as they were nonfibrillar and did not bind congo red. Circular dichroism measurements indicate that polyE aggregation involves a transition from α‐helical monomers to aggregated β‐sheets. Soluble oligomers are also produced along with aggregates in the reaction, as determined through size exclusion chromatography. Time‐resolved and steady‐state RET measurements reveal four dominant E20 conformations: (1) a partially collapsed conformation (24 Å donor–acceptor distance) in monomers, (2) an extended conformation in soluble oligomers (>29 Å donor–acceptor distance), (3) a minor partially collapsed conformation (22 Å donor‐acceptor distance) in aggregates, and (4) a major highly collapsed conformation (13 Å donor–acceptor distance) in aggregates. These findings demonstrate the use of RET as a means of determining angstrom‐level structural details of soluble oligomer and aggregated states of proteins. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 299–317, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

10.
A sequence derived from the epithelial receptor tyrosine kinase Ros (pY2267) represents a high‐affinity binding partner for protein tyrosine phosphatase SHP‐1 and was recently used as lead structure to analyze the recognition requirements for the enzyme's N‐SH2 domain. Here, we focused on a set of peptides comprising C‐terminally extended linear and conformationally constrained side chain‐bridged cyclic N‐SH2 ligands based on the consensus sequence LxpYhxh(h/b)(h/b) (x = any amino acid, h = hydrophobic, and b = basic residue). Furthermore, the bivalent peptides described were designed to modulate the activity of SHP‐1 through binding to both, the N‐SH2 domain as well as an independent binding site on the surface of the catalytic domain (PTP domain). Consistent with previous experimental findings, surface plasmon resonance experiments revealed dissociation constants of most compounds in the low micromolar range. One peptide, EGLNpYc[KVD]MFPAPEEE? NH2, displayed favorable binding affinity, but reduced ability to stimulate SHP‐1. Docking experiments revealed that the binding of this ligand occurs in binding mode I, recently described to lead to an inhibited activation of SHP‐1. In summary, results presented in this study suggest that inhibitory N‐SH2 ligands of SHP‐1 may be obtained by designing bivalent compounds that associate with the N‐SH2 domain and simultaneously occupy a specific binding site on the PTP domain. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 102–112, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

11.
The reaction of histidine‐containing polypeptides with toxic and essential metals and the molecular mechanism of complexation has yet to be determined, particularly with respect to the conformational changes of the interacting macromolecules. Therefore, a system of oligopeptides containing histidine residues in various positions of Ala or Gly sequences has been designed and used in heavy metal comparatively binding experiments. The role of spacing residues (Gly and Ala repeats) in selecting the various conformations was investigated. The newly synthesized peptides and metal ion adducts have been characterized by Fourier transform infrared spectroscopy (FTIR) as well as electrospray ion trap mass spectrometry (ESI–MS) and circular dichroism (CD). The analysis of CD‐spectra of the four peptides in water revealed that the secondary structure depends much on the position of each amino acid in the peptide backbone. Our peptides system reveals various binding mechanisms of metal ions to peptides depending on the position of histidine residue and the corresponding conformations of Ala or Gly sequences. Biological and medical consequences of conformational changes of metal‐bound peptides are further discussed. Thus, the binding of heavy metals to four peptides may serve as a model system with respect to the conformational consequences of the metal addition on the amino acid repeats situated in prion protein. © 2010 Wiley Periodicals, Inc. Biopolymers 93:497–508, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

12.
A method has been developed for the simultaneous detection of cysteine and cystine in proteins by amino acid analysis. In this method, the sulfhydryl groups of the cysteine residues are first blocked with 2-aminoethyl methanethiosulfonate (AEMTS). This reagent converts all free sulfhydryl groups to mixed disulfides with 2-aminoethanethiol (AET). The isolated blocked protein is subjected to oxidation with performic acid prior to hydrolysis and amino acid analysis. This procedure quantitatively converts the 2-aminoethanethiol blocking groups into taurine, and all cysteine residues (including those involved in disulfide bonds) into cysteic acid. Both of these derivatives are stable and can be recovered quantitatively by amino acid analysis. The speed and specificity with which AEMTS reacts with thiols make this method particularly effective for the characterization of disulfide-coupled folding intermediates.  相似文献   

13.
The loss of metal homeostasis and the toxic effect of metal ion are important events in neurodegenerative and age‐related diseases, such as Alzheimer's disease (AD). For the first time, we investigated the impacts of mercury(II) ions on the folding and aggregation of Alzheimer's tau fragment R2 (residues 275‐305: VQIIN KKLDL SNVQS KCGSK DNIKH VPGGGS), corresponding to the second repeat unit of the microtubule‐binding domain, which was believed to be pivotal to the biochemical properties of full tau protein. By ThS fluorescence assay and electron microscopy, we found that mercury(II) dramatically promoted heparin‐induced aggregation of R2 at an optimum molar ratio of 1: 2 (metal: protein), and the resulting R2 filaments became smaller. Isothermal titration calorimetry (ITC) experiment revealed that the strong coordination of mercury(II) with R2 was an enthalpy‐controlled, entropy‐decreased thermodynamic process. The exceptionally large magnitude of heat release (ΔH1 = ?34.8 Kcal mol?1) suggested that the most possible coordinating site on the R2 peptide chain was the thiol group of cysteine residue (Cys291), and this was further confirmed by a control experiment using Cys291 mutated R2. Circular dichroism spectrum demonstrated that this peptide underwent a significant conformational change from random coil to β‐turn structure upon its binding to mercury(II) ion. This study was undertaken to better understand the mechanism of tau aggregation, and evaluate the possible role of mercury(II) in the pathogenesis of AD. © 2010 Wiley Periodicals, Inc. Biopolymers 93: 1100–1107, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

14.
Recently, ubiquitin was suggested as a promising anti‐inflammatory protein therapeutic. We found that a peptide fragment corresponding to the ubiquitin50–59 sequence (LEDGRTLSDY) possessed the immunosuppressive activity comparable with that of ubiquitin. CD and NMR spectroscopies were used to determine the conformational preferences of LEDGRTLSDY in solution. The peptide mixture, obtained by pepsin digestion of ubiquitin, was even more potent than the intact protein. Although the peptide exhibited a well‐defined conformation in methanol, its structure was distinct from the corresponding 50–59 fragment in the native ubiquitin molecule. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 423–431, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

15.
To determine whether the alpha-helix in the B3 immunoglobulin binding domain of protein G from group G Streptococcus has conformational stability as an isolated fragment, we carried out a CD and NMR study of the 16-residue peptide in solution corresponding to this alpha-helix. Based on two-dimensional H-NMR spectra recorded at three different temperatures (283, 305, and 313 K), it was found that this peptide is mostly unstructured in water at these temperatures. Weak signals corresponding to i,i+3 or i,i+4 interactions, which are characteristic of formation of turn-like structures, were observed in the ROE spectra at all temperatures. The absence of a stable three-dimensional structure of the investigated peptide supports an earlier study (Blanco and Serrano, Eur J Biochem 1995, 230, 634-649) of a possible mechanism for folding of other (B1 and B2) immunoglobulin binding domains of Protein G. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 1032-1044, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

16.
Peptides of alternating charge and hydrophobic amino acids have a tendency to adopt unusually stable beta-sheet structures that can form insoluble macroscopic aggregates under physiological conditions. In this study, analogues of a well-known self-assembling peptide, characterized by the same polar/nonpolar periodicity but with different residues, were designed to study the relationship between sequence, conformation in solution and film-forming capacity in saline solution. Peptide conformation, evaluated by circular dichroism, correlated with film forming capacity observed by inverted optical microscopy after addition of saline solution and subsequent drying. We found that polar/nonpolar periodicity of several analogues is not criterion enough to induce beta-sheet and thus film formation and that conformations different from beta-sheet also allow self-assemblage. Furthermore, addition of the short adhesive sequence RGD to a known self-assembling sequence was shown to not prevent the self-assembling process. This finding might prove useful for the design of biomimetic scaffolds. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 906-915, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

17.
Radiosequence analysis of peptide fragments of the estrogen receptor (ER) from MCF-7 human breast cancer cells has been used to identify cysteine 530 as the site of covalent attachment of an estrogenic affinity label, ketononestrol aziridine (KNA), and an antiestrogenic affinity label, tamoxifen aziridine (TAZ). ER from MCF-7 cells was covalently labeled with [3H]TAZ or [3H]KNA and purified to greater than 95% homogeneity by immunoadsorbent chromatography. Limit digest peptide fragments, generated by prolonged exposure of the labeled receptor to trypsin, cyanogen bromide, or Staphylococcus aureus V8 protease, were purified to homogeneity by high performance liquid chromatography (HPLC), and the position of the labeled residue was determined by sequential Edman degradation. With both aziridines, the labeled residue was at position 1 in the tryptic peptide, position 2 in the cyanogen bromide peptide, and position 7 in the V8 protease peptide. This localizes the site of labeling to a single cysteine at position 530 in the receptor sequence. The identity of cysteine as the site of labeling was confirmed by HPLC comparison of the TAZ-labeled amino acid (as the phenylthiohydantoin and phenylthiocarbamyl derivatives) and the KNA-labeled amino acid (as the phenylthiocarbamyl derivative) with authentic standards prepared by total synthesis. Cysteine 530 is located in the hormone binding domain of the receptor, near its carboxyl terminus. This location is consistent with earlier studies using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to analyze the size of the proteolytic fragments containing the covalent labeling sites for TAZ and KNA and the antigen recognition sites for monoclonal antibodies. The fact that both the estrogenic and antiestrogenic affinity labeling agents react covalently with the same cysteine indicates that differences in receptor-agonist and receptor-antagonist complexes do not result in differential covalent labeling of amino acid residues in the hormone binding domain.  相似文献   

18.
Many studies have examined consensus sequences required for protein‐glycosaminoglycan interactions. Through the synthesis of helical heparin binding peptides, this study probes the relationship between spatial arrangement of positive charge and heparin binding affinity. Peptides with a linear distribution of positive charge along one face of the α‐helix had the highest affinity for heparin. Moving the basic residues away from a single face resulted in drastic changes in heparin binding affinity of up to three orders of magnitude. These findings demonstrate that amino acid sequences, different from the known heparin binding consensus sequences, will form high affinity protein‐heparin binding interactions when the charged residues are aligned linearly. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 290–298, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

19.
Human cystatin C (HCC) is one of the amyloidogenic proteins to be shown to oligomerize via a three‐dimensional domain swapping mechanism. This process precedes the formation of a stable dimer and proceeds particularly easily in the case of the L68Q mutant. According to the proposed mechanism, dimerization of the HCC precedes conformational changes within the β2 and β3 strands. In this article, we present conformational studies, using circular dichroism and MD methods, of the β2‐L1‐β3 (His43‐Thr72) fragment of the HCC involved in HCC dimer formation. We also carried out studies of the β2‐L1‐β3 peptide, in which the Val57 residue was replaced by residues promoting β‐turn structure formation (Asp, Asn, or Pro). The present study established that point mutation could modify the structure of the L1 loop in the β‐hairpin peptide. Our results showed that the L1 loop in the peptide excised from human cystatin C is broader than that in cystatin C. In the HCC protein, broadening of the L1 loop together with the unfavorable L68Q mutation in the hydrophobic pocket could be a force sufficient to cause the partial unfolding and then the opening of HCC or its L68Q mutant structure for further dimerization. We presume further that the Asp57 and Asn57 mutations in the L1 loop of HCC could stabilize the closed form of HCC, whereas the Pro57 mutation could lead to the opening of the HCC structure and then to dimer/oligomer formation. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 373–383, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

20.
Fructose 1,6-bisphosphatases contain a highly reactive cysteine residue, the reactivity of which is influenced by ligands that bind at the catalytic and at the allosteric AMP sites of the enzyme. Nevertheless, the sulfhydryl group appears to be proximal to these sites and not a functional component of either. Modification of pig kidney fructose 1,6-bisphosphatase with three reagents, 5,5'-dithiobis-(2-nitrobenzoic acid), iodoacetamide, and phenacyl bromide, yields derivatives with similar properties, thus suggesting that the same residue was modified in each case. The modified enzymes exhibited: (a) higher Vmax when Mn2+ was used as the activating cation; (b) decreased activity in the presence of nonsaturating Mg2+ concentrations; (c) no change in sensitivity toward AMP inhibition. Automated Edman degradation of a tryptic peptide containing radioactive carboxamidomethylcysteine showed the sequence of residues Gly-111-Arg-140 of pig kidney fructose 1,6-bisphosphatase. The modified residue was shown to be cysteine-128, and the same cysteine residue was alkylated when the enzyme was reacted with phenacyl bromide. Cysteine-128 is also present in rat and sheep liver fructose 1,6-bisphosphatase and a long stretch of the sequence around this reactive cysteine residue is highly conserved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号