首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The TTAGG repeat, the only determined telomerase-dependent sequence in the Insecta, is generally reputed to be the canonical telomeric motif within the class. By studying the distribution of telomeric DNAs in 30 coleopteran beetles using Southern hybridization, BAL 31 DNA end-degradation assay and fluorescence in situ hybridization, we showed that arrays built of a TCAGG repeat substitute for (TTAGG)n sequences in all tested species within the superfamily Tenebrionoidea. We also provided the experimental evidence that (TCAGG)n repeats represent the terminal sequences on all chromosomes of the model species Tribolium castaneum. (TCAGG)n repeats are therefore promoted as the first sequence-motif alternative to TTAGG-type chromosome ends in insects. Detection of species negative for both TTAGG and TCAGG reveals that, although widespread, these motifs are not ubiquitous telomeric sequences within the order Coleoptera. In addition, Timarcha balearica proved to be a species that harbors (TTAGG)n repeats, but not at telomeric positions, thus further increasing the complexity of telomeric DNAs. Our experiments discarded CTAGG, CTGGG, TTGGG, and TTAGGG variants as potential replacements in TTAGG/TCAGG-negative species, indicating that chromosome termini of these beetles comprise other form(s) of telomeric sequences and telomere maintenance mechanisms.  相似文献   

2.
Japanese red pine Pinus densiflora has 2 n=24 chromosomes and after FISH-detection of Arabidopsis-type (A-type) telomere sequences, many telomere signals were observed on these chromosomes at interstitial and proximal regions in addition to the chromosome ends. These interstitial and proximal signal sites were observed as DAPI-positive bands, suggesting that the interstitial and proximal telomere signal sites are composed of AT-rich highly repetitive sequences. Four DNA clones (PAL810, PAL1114, PAL1539, PAL1742) localized at the interstitial telomere signals were selected from AluI-digested genomic DNA library using colony blot hybridization probed with A-type telomere sequences and characterized using FISH and Southern blot hybridization. The AT-contents of these selected four clones were 60.8–76.3%, and repeat units of the telomere sequence and degenerated telomere sequences were found in their nucleotide sequences. Except for two sites of PAL1114, FISH signals of the four clones co-localized with interstitial and proximal A-type telomere sequence signals. FISH signals a showed similar distribution pattern, but the patterns of signal intensity were different among the four clones. PAL810, PAL1539 and PAL 1742 showed similar FISH signal patterns, and the differences were only with respect to the signal intensity of some signal sites. PAL1114 had unique signals that appeared on chromosomes 7 and 10. Based on results of the Southern blot hybridization these four sequences are not arranged tandemly. Our results suggest that the interstitial A-type telomere sequence signal sites were composed of a mixture of several AT-rich repetitive sequences and that these repetitive sequences contained A-type telomere sequences or degenerated A-type telomere sequence repeats.  相似文献   

3.
Siroky J  Zluvova J  Riha K  Shippen DE  Vyskot B 《Chromosoma》2003,112(3):116-123
The ends of eukaryotic chromosomes are capped with special nucleoprotein structures called telomeres. Telomere shortening due to telomerase inactivation may result in fusion of homologous or heterologous chromosomes, leading to their successive breakage during anaphase movement, followed by fusion of broken ends in the next cell cycle, i.e. the breakage-fusion-bridge (BFB) cycle. Using fluorescence in situ hybridization (FISH) with 25S rDNA and specific bacterial artificial chromosome (BAC) probes we demonstrate participation of chromosomes 2 and 4 of Arabidopsis thaliana AtTERT null plants in the formation of anaphase bridges. Both homologous and non-homologous chromosomes formed transient anaphase bridges whose breakage and unequal separation led to genome rearrangement, including non-reciprocal translocations and aneuploidy. The 45S rDNA regions located at the ends of chromosomes 2 and 4 were observed in chromosome bridges at a frequency approximately ten times higher than expected in the case of random fusion events. This outcome could result from a functional association of rDNA repeats at nucleoli. We also describe increased variation in the number of nucleoli in some interphase cells with supernumerary rDNA FISH signals. These data indicate that dysfunctional telomeres in Arabidopsis lead to massive genome instability, which is induced by multiple rounds of the BFB mechanism.  相似文献   

4.
High-resolution fluorescence in situ hybridization (FISH) on interphase and pachytene nuclei, and extended DNA fibers enabled microscopic distinction of DNA sequences less than a few thousands of base pairs apart. We applied this technique to reveal the molecular organization of telomere ends in japonica rice (Oryza sativa ssp. japonica), which consist of the Arabidopsis type TTTAGGG heptameric repeats and the rice specific subtelomeric tandem repeat sequence A (TrsA). Southern hybridizations of DNA digested with Bal31 and EcoRI, and FISH on chromosomes and extended DNA fibers demonstrated that (1) all chromosome ends possess the telomere tandem repeat measuring 3–4 kb; (2) the subtelomeric TrsA occurs only at the ends of the long arms of chromosomes 6 and 12, and measure 6 and 10 kb, which corresponds to 231 and 682 copies for these sites, respectively; (3) the telomere and TrsA repeats are separated by at most a few thousands of intervening nucleotide sequences. The molecular organization for a general telomere organization in plant chromosomes is discussed.  相似文献   

5.
The molecular and cytological organization of the telomeric repeat (TR) and the subtelomeric repeat (TGR1) of tomato were investigated by fluorescence in situ hybridization (FISH) techniques. Hybridization signals on extended DNA fibres, visualized as linear fluorescent arrays representing individual telomeres, unequivocally demonstrated the molecular co-linear arrangement of both repeats. The majority of the telomeres consisted of a TR and a TGR1 region separated by a spacer. Microscopic measurements of the TR and TGR1 signals revealed high variation in length of both repeats, with maximum sizes of 223 and 1330 kb, respectively. A total of 27 different combinations of TR and TGR1 was detected, suggesting that all chromosome ends have their own unique telomere organization. The fluorescent tracks on the extended DNA fibres were subdivided into four classes: (i) TR–spacer–TGR1; (ii) TR–TGR1; (iii) only TR; (iv) only TGR1. FISH to pachytene chromosomes enabled some of the TR/TGR1 groups to be assigned to specific chromosome ends and to interstitial regions. These signals also provided evidence for a reversed order of the TR and TGR1 sites at the native chromosome ends, suggesting a backfolding telomere structure with the TGR1 repeats occupying the most terminal position of the chromosomes. The FISH signals on diakinesis chromosomes revealed that distal euchromatin areas and flanking telomeric heterochromatin remained highly decondensed around the chiasmata in the euchromatic chromosome areas. The rationale for the occurrence and distribution of the TR and TGR1 repeats on the tomato chromosomes are discussed.  相似文献   

6.
Telomeres, DNA–protein structures, are important elements of the eukaryotic chromosome. Telomeric regions of the majority of higher plants contain heptanucleotides TTTAGGG arranged into a tandem repeat. However, some taxa have no such repeats. These are some species of Liliaceae and Alliaceae. For example, terminal regions of chromosomes of bunching onion (Allium fistulosum) contain satellite DNA whose unit repeats are 380 bp in length, and the short arm of its chromosome 8 contains rDNA repeats. This study deals with the terminal heterochromatin and organization of the satellite repeat in A. fistulosum. Fluorescent in situ hybridization (FISH) was used to locate the satellite DNA on chromosomes and on extended DNA of A. fistulosum.Nonsatellite DNA was found in the structure of telomeric repeat. Polymerase chain reaction (PCR) and Southern hybridization were used for analysis of terminal heterochromatin. Various rearrangements were found in the satellite repeat. The roles of retrotransposons and microsatellites in the formation of terminal heterochromatin are discussed.  相似文献   

7.
Hartmann N  Scherthan H 《Chromosoma》2004,112(5):213-220
Tandem fusion, a rare evolutionary chromosome rearrangement, has occurred extensively in muntjac karyotypic evolution, leading to an extreme fusion karyotype of 6/7 (female/male) chromosomes in the Indian muntjac. These fusion chromosomes contain numerous ancestral chromosomal break and fusion points. Here, we designed a composite polymerase chain reaction (PCR) strategy which recovered DNA fragments that contained telomere and muntjac satellite DNA sequence repeats. Nested PCR confirmed the specificity of the products. Two-color fluorescence in situ hybridization (FISH) with the repetitive sequences obtained and T2AG3 telomere probes showed co-localization of satellite and telomere sequences in Indian muntjac chromosomes. Adjacent telomere and muntjac satellite sequences were also seen by fiber FISH. These data lend support to the involvement of telomere and GC-rich satellite DNA sequences during muntjac chromosome fusions.Communicated by E.A. NiggAccession numbers: AY322158, AY322159, AY322160  相似文献   

8.
Telomeres of most insects are composed of simple (TTAGG) n repeats that are synthesized by telomerase. However, in some dipteran insects such as Drosophila melanogaster, (TTAGG) n repeats or telomerase activity has not been detected. Although telomere structure is well documented in Diptera and Lepidoptera, very limited information is available on lower insect groups. To understand general aspects of telomere function and evolution in insects, we endeavored to characterize structures of the telomeric and subtelomeric regions in a lower insect, the Taiwan cricket, Teleogryllus taiwanemma. FISH analysis of this insect's chromosomes demonstrated (TTAGG) n repeat elements in all distal ends. Just proximal to the telomeric repeats, the highly conserved 9-kb long terminal unit (LTU) sequences are tandemly repeated. These were observed in four of six chromosomes, three autosomal ends, and one X-chromosomal end. LTU sequences represent about 0.2% of the T. taiwanemma genome. Each LTU contains a core (TTAGG)8-like sequence (TRLS) and five types of conserved sequences—ST (short telomere associated), J (joint), X, SR (satellite sequence rich), and Y—which vary in length from about 150 bp to 2.7 kb. The LTU sequence is defined as ST–J–TRLS–SR–X–Y–X–Y–X. Most LTU regions may be derived from the ancestral common sequence, which is observed in ST regions six times and at many other LTU sites. We could not find the LTU-like sequence in three other crickets including the closest species, T. emma, suggesting that the LTU in T. taiwanemma has been rapidly amplified in subtelomeric regions through recent evolutional events. It is also suggested that the highly conserved structure of the LTU is maintained by recombination and may contribute to telomere elongation, as seen in dipteran insects. Received: 6 August 2001/Accepted: 10 October 2001  相似文献   

9.
Lack of Arabidopsis-type T3AG3 telomere sequences has recently been reported for the majority of investigated taxa of the monocot order Asparagales. In order to investigate this phenomenon in more detail, we conducted extensive cytogenetic and molecular analyses of the telomeres in Othocallis siberica, a member of this order. Terminal restriction fragment analysis together with Bal31 exonuclease assay showed that chromosome termini in O. siberica are formed by long stretches (more than 10 kbp) of vertebrate-type T2AG3 repeats. In addition, telomerase activity specifically synthesising (T2AG3)n sequence was detected in O. siberica protein extracts by telomerase repeat amplification protocol (TRAP). Fluorescence in situ hybridisation (FISH) revealed the presence of the vertebrate-type T2AG3 telomere sequences at all chromosome termini and at a few additional regions of O. siberica chromosomes, whereas Arabidopsis-type T3AG3 DNA and peptide nucleic acid (PNA) probes did not hybridise to chromosomes of Othocallis, except for polymorphic blocks in chromosomes 2 (interstitial) and 4 (terminal). These interstitial/terminal regions are apparently composed of large blocks of (T2AG3)n and (T3AG3)n DNA and represent a unique example of interspersion of two types of telomeric repeats within one genome. This may be a reflection of the recent evolutionary switch from Arabidopsis- to vertebrate-type telomeric repeats in this plant group.  相似文献   

10.
The centromeric region of a telocentric field bean chromosome that resulted from centric fission of the metacentric satellite chromosome was microdissected. The DNA of this region was amplified and biotinylated by degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR)/linker-adapter PCR. After fluorescence in situ hybridization (FISH) the entire chromosome complement of Vicia faba was labelled by these probes except for the nucleolus organizing region (NOR) and the interstitial heterochromatin, the chromosomes of V. sativa and V. narbonensis were only slightly labelled by the same probes. Dense uniform labelling was also observed when a probe amplified from a clearly delimited microdissected centromeric region of a mutant of Tradescantia paludosa was hybridized to T. paludosa chromosomes. Even after six cycles of subtractive hybridization between DNA fragments amplified from centromeric and acentric regions no sequences specifically located at the field bean centromeres were found among the remaining DNA. A mouse antiserum was produced which detected nuclear proteins of 33 kDa and 68 kDa; these were predominantly located at V. faba kinetochores during mitotic metaphase. DNA amplified from the chromatin fraction adsorbed by this serum out of the sonicated total mitotic chromatin also did not cause specific labelling of primary constrictions. From these results we conclude: (1) either centromere-specific DNA sequences are not very conserved among higher plants and are — at least in species with large genomes — intermingled with complex dispersed repetitive sequences that prevent the purification of the former, or (2) (some of) the dispersed repeats themselves specify the primary constrictions by stereophysical parameters rather than by their base sequence.  相似文献   

11.
We developed a flow cytometry method, chromosome flow fluorescence in situ hybridization (FISH), called CFF, to analyze repetitive DNA in chromosomes using FISH with directly labeled peptide nucleic acid (PNA) probes. We used CFF to measure the abundance of interstitial telomeric sequences in Chinese hamster chromosomes and major satellite sequences in mouse chromosomes. Using CFF we also identified parental homologs of human chromosome 18 with different amounts of repetitive DNA.  相似文献   

12.
To determine the telomere sequence in Tapinoma nigerrimum, we carried out in situ hybridization using TTAGGG and TTAGG repeat polymerase chain reaction (PCR)-generated probes. No hybridization signals were found when TTAGGG was used as a probe. However, strong signals were observed at the end of the chromosomes with the TTAGG probe. Southern blot analysis carried out on genomic DNA using TTAGG as a probe showed a strong hybridization signal even under highly stringent conditions. Similar results were obtained in Southern blot analysis carried out on genomic DNA of 19 species of ants belonging to three different subfamilies. In accordance with all the results shown in this article, the TTAGG repeat seems to be the major component of the telomere sequence in the majority of ant species.  相似文献   

13.
BAC2, a rice BAC clone containing (TTTAGGG)n homologous sequences, was analyzed by Southern hybridization and DNA sequencing of its subclones. It was disclosed that there were many tandem repeated satellite DNA sequences, called TA352, as well as simple tandem repeats consisting of TTTAGGG or its variant within the BAC2 insert. A 0. 8 kb (TTTAGGG) n-containing fragment in BAC2 was mapped in the telomere regions of at least 5 pairs of rice chromosomes by using fluorescence in situ hybridization (FISH). By RFLP analysis of low copy sequences the BAC2 clone was localized in one terminal region of chromosome 6. All the results strongly suggest that the telomeric DNA sequences of rice are TTTAGGG or its variant, and the linked satellite DNA TA352 sequences belong to telomere-associated sequences.  相似文献   

14.
The physical ends of mammalian and other vertebrate chromosomes consist of tandemly repeated (TTAGGG)(n) hexamers, nucleating a specialized telomeric structure. However, (TTAGGG)(n) sequences can also occur at non-telomeric sites, providing important insights into karyotypic evolution. By fluorescence in situ hybridization (FISH) we studied the chromosomal distribution of (TTAGGG)(n) sequences in 16 bird species, representing seven different orders. Many species, in particular the ratites, display (TTAGGG)(n) hybridization signals in interstitial and centromeric regions of their macrochromosomes in addition to the typical telomeric signals. In some but not all species these non-telomeric sites coincide with C-band-positive heterochromatin. The retention and/or amplification of telomeric (TTAGGG)(n) repeats at interstitial and centromeric sites may indicate the fusion of ancestral chromosomes. Compared with the macrochromosomes, the microchromosomes of most species are enriched with (TTAGGG)(n) sequences, displaying heterogeneous hybridization patterns. We propose that this high density of (TTAGGG)(n) repeats contributes to the exceptionally high meiotic recombination rate of avian microchromosomes.  相似文献   

15.
Silene latifolia is a key plant model in the study of sex determination and sex chromosome evolution. Current studies have been based on genetic mapping of the sequences linked to sex chromosomes with analysis of their characters and relative positions on the X and Y chromosomes. Until recently, very few DNA sequences have been physically mapped to the sex chromosomes of S. latifolia. We have carried out multicolor fluorescent in situ hybridization (FISH) analysis of S. latifolia chromosomes based on the presence and intensity of FISH signals on individual chromosomes. We have generated new markers by constructing and screening a sample bacterial artificial chromosome (BAC) library for appropriate FISH probes. Five newly isolated BAC clones yielded discrete signals on the chromosomes: two were specific for one autosome pair and three hybridized preferentially to the sex chromosomes. We present the FISH hybridization patterns of these five BAC inserts together with previously described repetitive sequences (X-43.1, 25S rDNA and 5S rDNA) and use them to analyze the S. latifolia karyotype. The autosomes of S. latifolia are difficult to distinguish based on their relative arm lengths. Using one BAC insert and the three repetitive sequences, we have constructed a standard FISH karyotype that can be used to distinguish all autosome pairs. We also analyze the hybridization patterns of these sequences on the sex chromosomes and discuss the utility of the karyotype mapping strategy presented to study sex chromosome evolution and Y chromosome degeneration.Communicated by J.S. Heslop-Harrison  相似文献   

16.
Telomeres are a class of repetitive DNA sequences that are located at chromosome termini and that act to stabilize the chromosome ends. The rapid karyotypic evolution of the genus Equus has given rise to ten taxa, all with different diploid chromosome numbers. Using fluorescence in situ hybridization (FISH) we localized the mammalian telomere sequence, (TTAGGG)(n), to the chromosomes of nine equid taxa. TTAGGG signal was located at chromosome termini in all species, however additional signal was seen at interstitial sites on some chromosomes in the Burchell's zebra, Equus quagga burchelli, the Hartmann's zebra, Equus zebra hartmannae, and at large heterochromatin-associated regions on the chromosomes of the donkey, Equus asinus. The interstitial signal in the zebras may be a relic of an ancient telomere-telomere fusion and mark the point at which two ancestral chromosomes may have fused. For the donkey, the heterochromatin-associated signal may represent degenerate telomere-like satellite sequences and identify a second type of satellite DNA for this taxon.  相似文献   

17.
The W chromosome of the codling moth, Cydia pomonella, like that of most Lepidoptera species, is heterochromatic and forms a female-specific sex chromatin body in somatic cells. We collected chromatin samples by laser microdissection from euchromatin and W-chromatin bodies. DNA from the samples was amplified by degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR) and used to prepare painting probes and start an analysis of the W-chromosome sequence composition. With fluorescence in situ hybridization (FISH), the euchromatin probe labelled all chromosomes, whereas the W-chromatin DNA proved to be a highly specific W-chromosome painting probe. For sequence analysis, DOP-PCR-generated DNA fragments were cloned, sequenced, and tested by Southern hybridization. We recovered single-copy and low-copy W-specific sequences, a sequence that was located only in the W and the Z chromosome, multi-copy sequences that were enriched in the W chromosome but occurred also elsewhere, and ubiquitous multi-copy sequences. Three of the multi-copy sequences were recognized as derived from hitherto unknown retrotransposons. The results show that our approach is feasible and that the W-chromosome composition of C. pomonella is not principally different from that of Bombyx mori or from that of Y chromosomes of several species with an XY sex-determining mechanism. The W chromosome has attracted repetitive sequences during evolution but also contains unique sequences.  相似文献   

18.
A comparison of sequence resolution on plant chromosomes: PRINS versus FISH   总被引:2,自引:0,他引:2  
 The resolution of the chromosomal positions of six high- and one low-copy sequences by oligonucleotide-primed in situ (PRINS) labelling was compared with corresponding data obtained after fluorescent in situ hybridization (FISH) on field-bean and barley chromosomes. While PRINS proved to be suitable for the rapid detection of high-copy tandem repeats at the same loci as those revealed by FISH, no clear PRINS signal was obtained for the low-copy family of vicilin genes at their locus on field-bean chromosome II. This indicates that localization of short target sequences by primer extension via Taq polymerase in situ does not yet provide a resolution equal, or superior, to FISH on plant chromosomes. Therefore, the use of a cocktail of chromosome-specific single-copy sequences as primers for PRINS is no alternative for the not as yet feasible chromosome painting in plants. Received: 21 April 1998 / Accepted: 12 May 1998  相似文献   

19.
A family of endogenous retroviruses (enJSRV) closely related to Jaagsiekte sheep retrovirus (JSRV) is ubiquitous in domestic and wild sheep and goats. Southern blot hybridization studies indicate that there is little active replication or movement of the enJSRV proviruses in these species. Two approaches were used to investigate the distribution of proviral loci in the sheep genome. Fluorescence in situ hybridization (FISH) to metaphase chromosome spreads using viral DNA probes was used to detect loci on chromosomes. Hybridization signals were reproducibly detected on seven sheep chromosomes and eight goat chromosomes in seven cell lines. In addition, a panel of 30 sheep-hamster hybrid cell lines, each of which carries one or more sheep chromosomes and which collectively contain the whole sheep genome, was examined for enJSRV sequences. DNA from each of the lines was used as a template for PCR with JSRV gag-specific primers. A PCR product was amplified from 27 of the hybrid lines, indicating that JSRV gag sequences are found on at least 15 of the 28 sheep chromosomes, including those identified by FISH. Thus, enJSRV proviruses are essentially randomly distributed among the chromosomes of sheep and goats. FISH and/or Southern blot hybridization on DNA from several of the sheep-hamster hybrid cell lines suggests that loci containing multiple copies of enJSRV are present on chromosomes 6 and 9. The origin and functional significance of these arrays is not known.  相似文献   

20.
Telomeres, DNA-protein structures, are important elements of the eukaryotic chromosome. Telomeric regions of the majority of higher plants contain heptanucleotides TTTAGGG arranged into a tandem repeat. However, some taxa have no such repeats. These are some species of lilies (Lilium) and onions (Allium). For example, terminal regions of chromosomes of Spanish onion (Allium fistulosum) contain satellite DNA whose unit repeats are 380 bp in length, and the short arm of its chromosome 8 contains rDNA repeats. This study deals with the terminal heterochromatin and organization of the satellite repeat in A. fistulosum. Fluorescent in situ hybridization (FISH) was used to locate the satellite DNA on chromosomes and on extended DNA of A. fistulosum. Nonsatellite DNA was found in the structure of telomeric repeat. Polymerase chain reaction (PCR) and Southern hybridization were used for analysis of terminal heterochromatin. Various rearrangements were found in the satellite repeat. The roles of retrotransposones and microsatellites in the formation of terminal heterochromatin are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号