首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kim SY  Kang SK  Lee DG  Park YG  Lee YC  Chung JC  Kim CH 《Life sciences》2000,67(11):1251-1263
The inhibitory effects of the traditional herbal medicine Jindangwon (JDW) on streptozotocin (ST)-induced diabetic mellitus were studied using the ST-treated diabetic model. Glucokinase activity of pancreatic islets was severely impaired by ST treatment. However, when ST-treated islets were treated with 1 mg/ml of JDW, the enzyme activities of glucokinase and hexokinase were protected, glucose-6-phosphatase was not. When the effects of JDW on ST-induced ATP/ADP ratio of islets were assayed, JDW was effective in restoring of ATP/ADP ratio. In addition, ST decreased the enzyme activities of PDH, while JDW had a protective effect on the enzyme. ST-induced cGMP accumulation was significantly inhibited by JDW treatment. Furthermore, ST-induced nitrite formation was significantly inhibited by JDW treatment. JDW also showed the suppressed nitrite production in ST-treated pancreatic islet cells. When the islets (200/condition) were treated with ST (5 mM for 30 min), and then JDW was added to the ST-treated cells, 1.0 mg/ml of JDW showed the activated and recovered aconitase activity in pancreatic islet cells. When the effect of ST on the gene expression of pancreatic GLUT2 and glucokinase were examined, the level of GLUT2 and glucokinase mRNA in pancreatic islets was significantly decreased. However, JDW protected and improved the expression of protein and genes, indicating that JDW is effective on ST-induced inhibition of gene expression of GLUT2, glucokinase and proinsulin in islets. These results suggested that JDW is effective in this model to treat ST-induced diabetes.  相似文献   

2.
Effect of nickel chloride on streptozotocin-induced diabetes in rats   总被引:1,自引:0,他引:1  
The potential of nickel chloride to prevent streptozotocin-induced hyperglycemia was tested in rats in vivo. To induce diabetes, streptozotocin (100 mg/kg body weight) was injected as a single dose. Streptozotocin treatment resulted in a significant decrease in plasma insulin and ceruloplasmin, and pancreatic Cu, protein, and Cu-Zn superoxide dismutase activity. In rats treated with nickel chloride (10 mg/kg body weight) and streptozotocin, these values were comparable with those observed in control rats. The results indicate that nickel chloride injected before streptozotocin prevented streptozotocin-induced hyperglycemia, and suggest that the protective effect was related to Cu-Zn superoxide dismutase activity, mediated by copper.  相似文献   

3.
The effect of streptozotocin-induced diabetes on cholinesterases activities was studied in the retina and, for comparison, in other nervous and nonnervous tissues. Streptozotocin diabetes did not affect acetylcholinesterase activity in the retina but increased its activity in the cerebral cortex (100%) and in serum (55%), and decreased it by 30-40% in erythrocytes. The butyrylcholinesterase activity was decreased by 30-50% in retina and hippocampus and to a lesser extent in retinal pigment epithelium from rats treated with streptozotocin for one week. Changes observed in cholinesterase activities were not correlated with the fasting blood glucose concentration. The results suggest that diabetes might influence a specific subset of cells and isoforms of cholinesterases. This, in turn, could lead to alterations associated with diabetes complications.  相似文献   

4.
Skeletal muscle hexokinase II activity and turnover rates were measured in the normal and streptozotocin-induced diabetic rat. Enzyme activity decreases in the diabetic animal relative to the normal rat; however, the specific activity of hexokinase II is essentially the same for the two conditions. No alteration is observed in the relative rate of hexokinase II synthesis in the normal or diabetic rats, but there is a 3-fold increase in the rate of hexokinase II degradation in the latter group of animals. These results suggest that the primary cause of the well-established decrease in hexokinase II activity in skeletal muscle of the diabetic is an increase in the rate of enzyme degradation.  相似文献   

5.
Intravenously injected collagenase, detectable in brain microvessels by immunological methods, partially degrades the constituents of the vascular wall and so increases the permeability of the blood-brain barrier (BBB). Intravenous administration of collagenase is a model for diseases in which the concentration of endogenous proteases is increased. Peroral treatment of rats with chromocarb diethylamine (CD) significantly reduced the degradation of the vascular wall by intravenous collagenase, as demonstrated by a lesser permeability increase of the BBB, a shorter recovery time, lower hydroxyproline levels in the cerebrospinal fluid and a lesser decrease of the collagen content of the brain capillary basal lamina.  相似文献   

6.
The present studies were carried out to characterize the cAMP-phosphodiesterase enzyme (PDE) in luteal cells recovered from pseudopregnant rats with streptozotocin-induced diabetes. A significant increase in the specific activity of the enzyme was detected in luteal cells from diabetic rats (Group D) with respect to control rats (Group C). This increase could not be prevented by insulin therapy (Group I). Luteal cells from Groups C and D rats responded in vitro to insulin by increasing their PDE activity (% of stimulus of specific activity: C = 75%, D = 110%). However, in cells isolated from Group I, the hormone caused an inhibition of PDE activity (% of inhibition of specific activity: 48%). When cytosolic fractions from Groups C, D, and I were submitted to ion exchange chromatography, two PDE activity peaks could be observed and the activity of the different fractions was increased in the presence of Ca2+ and calmodulin. Nevertheless, the Ca2+—calmodulin effect was much lower in the extracts from Groups D and I than for controls. Kinetic studies of luteal PDE showed nonlinear Lineweaver-Burk graphs with two apparent ATP hydrolysis sites. Similar Km values were found for PDE from groups C, D, and I, whereas the Vmax2 for the enzyme was higher in Groups D and I. The endogenous concentration of cAMP, measured by RIA, showed no significant differences among Groups C, D, and I. On the basis of these results, we conclude that the specific activity of PDE is significantly increased in luteal cells from streptozotocin-induced diabetic animals, which could explain the previously described reduction in LH-stimulated progesterone production by luteal cells in diabetic rats. © 1996 Wiley-Liss, Inc.  相似文献   

7.
Recent studies have demonstrated receptors for atrial natriuretic factor on endothelium of intracerebral vessels. The physiological role of these receptors is not known. The present study was undertaken to determine whether atrial natriuretic factor has an effect on blood-brain barrier permeability to protein and ions using horseradish peroxidase and lanthanum as markers of permeability alterations. This study does not demonstrate a significant effect of atrial natriuretic factor on blood-brain barrier permeability mechanisms in steady states.  相似文献   

8.
Our previous publication has stressed the benefits of losartan, an angiotensin II receptor blocker, on the permeability of blood-brain barrier (BBB) and blood pressure during L-NAME-induced hypertension. This study reports the impacts of anti-hypertensive treatment by losartan on the brain endothelial barrier function and the arterial blood pressure, during acute hypertension episode, in experimentally diabetic hypertensive rats. Systolic blood pressure measurements were taken with tail cuff method before and during administration of L-NAME (0.5 mg/ml). We induced diabetes by using alloxan (50 mg/kg, i.p). Losartan (3 mg/kg, i.v) was given to rats following the L-NAME treatment. Acute hypertensive vascular injury was induced by epinephrine (40 microg/kg). The BBB disruption was quantified according to the extravasation of the Evans blue (EB) dye. L-NAME induced a significant increase in arterial blood pressure on day 14 in normoglycemic and hyperglycemic rats (p < 0.05). Losartan significantly reduced the increased blood pressure in hypertensive and diabetic hypertensive rats (p < 0.01). Epinephrine-induced acute hypertension in diabetic hypertensive rats increased the content of EB dye dramatically in cerebellum and diencephalon (p < 0.01) and slightly in both cerebral cortex (p < 0.05). Losartan treatment reduced the increased BBB permeability to EB dye in the brain regions of diabetic hypertensive rats treated with epinephrine (p < 0.05). This study indicates that, in diabetic hypertensive rats, epinephrine administration leads to an increase in microvascular-EB-albumin efflux to brain, however losartan treatment significantly attenuates this protein's transport to brain tissue.  相似文献   

9.
It has recently been shown that food intake is not essential for the resynthesis of the stores of muscle glycogen in fasted animals recovering from high-intensity exercise. Because the effect of diabetes on this process has never been examined before, we undertook to explore this issue. To this end, groups of rats were treated with streptozotocin (60 mg/kg body mass ip) to induce mild diabetes. After 11 days, each animal was fasted for 24 h before swimming with a lead weight equivalent to 9% body mass attached to the tail. After exercise, the rate and the extent of glycogen repletion in muscles were not affected by diabetes, irrespective of muscle fiber composition. Consistent with these findings, the effect of exercise on the phosphorylation state of glycogen synthase in muscles was only minimally affected by diabetes. In contrast to its effects on nondiabetic animals, exercise in fasted diabetic rats was accompanied by a marked fall in hepatic glycogen levels, which, surprisingly, increased to preexercise levels during recovery despite the absence of food intake.  相似文献   

10.
Effect of cyclosporin-A on insulin secretion in vitro   总被引:1,自引:0,他引:1  
  相似文献   

11.
Ligation of the descending branch of the left coronary artery caused an increase in the permeability of the histo-hematic barrier of the myocardium for sulfacyl-sodium in the ischemic area and in the region adjacent to it. Trasylol proved to decrease the permeability of the histo-hematic barrier of the myocardium in the mentioned area, without influencing the intact zone. Fluoresceine test demonstrated the presence of membranotropic effect of trasylol; the preparation had no effect on the osmotic stability of erythrocytes in vitro.  相似文献   

12.
13.
This study investigated the effects of streptozotocin-induced diabetes on the functional integrity of the blood-brain barrier in the rat at 7, 28, 56, and 90 days, using vascular space markers ranging in size from 342 to 65,000 Da. We also examined the effect of insulin treatment of diabetes on the formation and progression of cerebral microvascular damage and determined whether observed functional changes occurred globally throughout the brain or within specific brain regions. Results demonstrate that streptozotocin-induced diabetes produced a progressive increase in blood-brain barrier permeability to small molecules from 28 to 90 days and these changes in blood-brain barrier permeability were region specific, with the midbrain most susceptible to diabetes-induced microvascular damage. In addition, results showed that insulin treatment of diabetes attenuated blood-brain barrier disruption, especially during the first few weeks; however, as diabetes progressed, it was evident that microvascular damage occurred even when hyperglycemia was controlled. Overall, results of this study suggest that diabetes-induced perturbations to cerebral microvessels may disrupt homeostasis and contribute to long-term cognitive and functional deficits of the central nervous system.  相似文献   

14.
The effect of chemically-induced diabetes on the handling of phosphate (Pi) by rat jejunal enterocytes has been investigated in the presence of a Na- or a choline-gradient. Pi uptake was significantly increased in both gradients. The Pi efflux rate constants for enterocytes from diabetic rats were similar to those of control rats. The effect of diabetes on both the protein and alkaline phosphatase isoenzymes of the rat small intestinal brush-border membranes was examined using SDS-PAGE. The patterns given by membranes from rats 14 days after the induction of diabetes were no different from those of controls.  相似文献   

15.
We examined the effect of aluminum on the permeability of the blood-brain barrier (BBB) during nitric oxide-blockade-induced chronic hypertension in rats. Animals were given the inhibitor of nitric oxide synthase, l-NAME (N ω-nitro-l-arginine methyl ester), for 4 wk to induce chronic hypertension. Two groups of rats were given an intraperitoneal injection of aluminum chloride. The integrity of the BBB was assessed by a quantitative measurement for Evans blue (EB) dye. The arterial blood pressure in l-NAME- and l-NAME plus aluminum-treated animals was significantly elevated from 115±2.8 and 110±1.7 mm Hg to 174±5.2 and 175±4.8 mm Hg, respectively (p<0.01). The EB dye content in the brain regions of the rats in the l-NAME group was increased, but there was no statistical significance compared to the saline group. The extravasation of EB dye was significantly increased in the brain regions of the animals treated with aluminum compared to the rats treated with saline (p<0.05). A significantly higher EB dye content in the brain regions was observed in the l-NAME plus aluminium group compared to l-NAME, aluminum, and saline groups (p<0.01). These findings indicate that exposure to a high level of aluminum leads to an additional increase in BBB permeability where nitric oxide-blockade-induced chronic hypertension potentiates the effect of aluminum to enhance BBB permeability to EB dye.  相似文献   

16.
The effect of streptozotocin-induced diabetes on 125I-labeled epidermal growth factor (EGF) binding was studied in microsomal membranes from rat liver. The binding of EGF in membranes from diabetic animals was significantly low, the value being about 60% of the control level. Scatchard analysis of the binding data clearly showed that the decrease in EGF binding was due to a decrease in the number of receptors. Treatment of diabetic animals with insulin restored EGF receptors to control levels, whereas the treatment with triiodothyronine had no effect. Serum EGF concentrations measured were almost the same among the control, diabetic, and insulin-treated diabetic groups. These results suggest that insulin deficiency in vivo causes a decrease in hepatic EGF receptors.  相似文献   

17.
Increased oxidative stress has been suggested to be involved in the pathogenesis and progression of diabetic tissue damage. The aim of this study was to investigate the effect of ethanolic extract of Eugenia jambolana seed kernel on antioxidant defense systems of plasma and pancreas in streptozotocin-induced diabetes in rats. The levels of glucose, vitamin-C, vitamin-E, ceruloplasmin, reduced glutathione and lipidperoxides were estimated in plasma of control and experimental groups of rats. The levels of lipidperoxides, reduced glutathione and activities of superoxide dismutase, catalase and glutathione peroxidase were assayed in pancreatic tissue of control and experimental groups of rats. A significant increase in the levels of plasma glucose, vitamin-E, ceruloplasmin, lipid peroxides and a concomitant decrease in the levels of vitamin-C, reduced glutathione were observed in diabetic rats. The activities of pancreatic antioxidant enzymes were altered in diabetic rats. These alterations were reverted back to near normal level after the treatment with Eugenia jambolana seed kernel and glibenclamide. Histopathological studies also revealed that the protective effect of Eugenia jambolana seed kernel on pancreatic beta-cells. The present study shows that Eugenia jambolana seed kernel decreased oxidative stress in diabetic rats, which inturn may be due to its hypoglycemic property.  相似文献   

18.
19.
Increased platelet aggregation and secretion in response to various agonists has been described in both diabetic humans and animals. Alterations in the platelet membrane fatty acid composition of phospholipids and changes in the prostacyclin and thromboxane formation could only partly explain the altered platelet function in diabetes. In the present study, we have examined the role of phosphoinositide turnover in the diabetic platelet function. We report alterations in 2-[3H] myo-inositol uptake, phosphoinositide turnover, inositol phosphate and diacylglycerol (DAG) formation, phosphoinositide mass, and phospholipase C activity in platelets obtained from streptozotocin (STZ)-induced diabetic rats. There was a significant increase in the 2-[3H) myo-inositol uptake in washed platelets from diabetic rats. Basal incorporation of 2-[3H] myo-inositol into phosphatidylinositol 4,5-bisphosphate (PIP2), phosphatidylinositol 4-phosphate (PIP) or phosphatidylinositol (PI) in platelets obtained from diabetic rats was, however, not affected. Thrombin stimulation of platelets from diabetic rats induced an increase in the hydrolysis of [32P]PIP2 but indicated no change in the hydrolysis of [32P]PIP and [32P]PI as compared to their basal levels. Thrombin-induced formation of [3H]inositol phosphates was significantly increased in both diabetic as well as in control platelets as compared to their basal levels. This formation of [3H]inositol phosphates in diabetic platelets was greater than controls at all time intervals studied. Similarly, there was an increase in the release of DAG after thrombin stimulation in the diabetic platelets. Based on these results, we conclude that there is an increase in the transport of myoinositol across the diabetic platelet membrane and this feature, along with alterations in the hydrolysis of PIP2, inositol phosphates and DAG in the diabetic platelets, may play a role in increased phosphoinositide turnover which could explain the altered platelet function in STZ-induced diabetes.  相似文献   

20.
Na+/K+-ATPase during diabetes may be regulated by synthesis of its alpha and beta subunits and by changes in membrane fluidity and lipid composition. As these mechanisms were unknown in liver, we studied in rats the effect of streptozotocin-induced diabetes on liver Na+/K+-ATPase. We then evaluated whether fish oil treatment prevented the diabetes-induced changes. Diabetes mellitus induced an increased Na+/K+-ATPase activity and an enhanced expression of the beta1 subunit; there was no change in the amount of the alpha1 and beta3 isoenzymes. Biphasic ouabain inhibition curves were obtained for diabetic groups indicating the presence of low and high affinity sites. No alpha2 and alpha3 isoenzymes could be detected. Diabetes mellitus led to a decrease in membrane fluidity and a change in membrane lipid composition. The diabetes-induced changes are not prevented by fish oil treatment. The results suggest that the increase of Na+/K+-ATPase activity can be associated with the enhanced expression of the beta1 subunit in the diabetic state, but cannot be attributed to changes in membrane fluidity as typically this enzyme will increase in response to an enhancement of membrane fluidity. The presence of a high-affinity site for ouabain (IC50 = 10-7 M) could be explained by the presence of (alphabeta)2 diprotomeric structure of Na+/K+-ATPase or an as yet unknown alpha subunit isoform that may exist in diabetes mellitus. These stimulations might be related, in part, to the modification of fatty acid content during diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号