首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

5′-O-Trityl-O2,3′-cycloanhydrothymidine (1) heated at 150°C in the presence of O,O-diethyl phosphate or O,O-diethyl phosphorothioate anions undergoes rearrangement into N3-isomer (2); its structure was established by both advanced NMR methods and X-ray crystallographic studies. The most probable mechanism of 1→2 rearrangement relies upon reversibility of glycosidic bond cleavage process.  相似文献   

2.
The breakdown of sodium O,O-diethyl dithiophosphate (O,O-diethyl phosphorodithioate) by four bacterial strains (tentatively identified as strains of Aeromonas, Pseudomonas, Flavobacterium and Bacillus) isolated from contaminated metalworking fluids was shown to involve the successive formation of ethanol, aldehyde and orthophosphate. An acid phosphodiesterase was identified in cell-free extracts that was five- to sevenfold enhanced in specific activity in bacteria grown on O,O-diethyl dithiophosphate as sole phosphorus source, compared with bacteria grown on orthophosphate. This is thought to initiate the breakdown process.  相似文献   

3.
Various O,O-dialkyl O-cyanophenyl phosphates and phosphorothioates were prepared and their biological activities were examined. Among them, O,O-dimethyl O- (4-chloro-2-cyanophenyl) phosphorothioate was found to have selective and high toxicity to houseflies. O,O-Dimethyl O- (4-cyanophenyl) phosphorothioate, O,O-diethyl O- (4-cyanophenyl) phosphorothioate and O,O-diethyl O- (2-chloro-4-cyanophenyl) phosphorothioate showed high insecticidal activty to American cockroaches, though the former two were not so effective to houseflies. The dimethyl esters of these series exhibited markedly lowered mammalian toxicity. Among the O-ethyl O-cyanophenyl phenylphosphonothioates, O-ethyl O- (2-chloro-4-cyanophenyl) phenylphosphonothioate was highly effective to mites, while less effective to insects.  相似文献   

4.
The primary and secondary 18O isotope effects for the alkaline (KOH) and enzymatic (phosphotriesterase) hydrolysis of two phosphotriesters, O,O-diethyl p-nitrophenyl phosphate (I) and O,O-diethyl O-(4-carbamoylphenyl) phosphate (II), are consistent with an associative mechanism with significant changes in bond order to both the phosphoryl and phenolic leaving group oxygens in the transition state. The synthesis of [15N, phosphoryl-18O]-, [15N, phenolic-18O]-, and [15N]-O,O-diethyl p-nitrophenyl phosphate and O,O-diethyl O-(4-carbamoylphenyl)phosphate is described. The primary and secondary 18O isotope effects for the alkaline hydrolysis of compound I are 1.0060 and 1.0063 +/- 0.0001, whereas for compound II they are 1.027 +/- 0.002 and 1.025 +/- 0.002, respectively. These isotope effects are consistent with the rate-limiting addition of hydroxide and provide evidence for a SN2-like transition state with the absence of a stable phosphorane intermediate. For the enzymatic hydrolysis of compound I, the primary and secondary 18O isotope effects are very small, 1.0020 and 1.0021 +/- 0.0004, respectively, and indicate that the chemical step in the enzymatic mechanism is not rate-limiting. The 18O isotope effects for the enzymatic hydrolysis of compound II are 1.036 +/- 0.001 and 1.0181 +/- 0.0007, respectively, and are comparable in magnitude to the isotope effects for alkaline hydrolysis, suggesting that the chemical step is rate-limiting. The relative magnitude of the primary 18O isotope effects for the alkaline and enzymatic hydrolysis of compound II reflect a transition state that is more progressed for the enzymatic reaction.  相似文献   

5.
Laboratory tests were conducted with four organophosphorus insecticides, Bay 37289 (O-ethyl O-2,4,5-trichlorophenyl ethylphosphonothioate), diazinon [O,O-diethyl O-(2-isopropyl-4-methyl-6-pyrimidinyl) phosphorothioate], Dursban (O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate), and Zinophos (O,O-diethyl O-2-pyrazinyl phosphorothioate), applied to a sandy loam at rates of 10 and 100 mug/g to determine whether these materials caused any serious effects on microbial activities related to soil fertility. All insecticides showed an effect on fungi and bacteria for the first and second week of incubation, but, subsequently, the populations returned to levels similar to those obtained in the controls. All insecticide applications increased ammonium production, but, in some instances, there appeared to be a slight depression of nitrification. Sulfur oxidation was equal to or better than that obtained with untreated soil in most cases. There was no significant effect on phosphorus mineralization. Oxygen consumption indicated that microbial respiration increased in proportion to the concentration of insecticides, suggesting the possibilities of microbial degradation of the insecticides or their degradation products and of uncoupling oxidative phosphorylation.  相似文献   

6.
Various gene transfer and automated/monitorized analytical applications require the controlled release of nucleic acid. A solid phase with spermine or polyethyleneimines (PEI, 600 MW) tethered by o-nitrobenzyl linkages was synthesized with polyethylene oxide beads (ArgoGel-NH(2)). The photolysis of test compound O-2-nitrophenethyl O,O-diethyl phosphate or solid phase with o-nitrobenzyl group as synthetic linker was completely degradable with photoirradiation at 365 nm for 10-18 min at 3.5 mW/cm(2). DNA binding with polyamine of the solid phase and releasing of DNA/polyamine were monitored by UV measurement and gel electrophoresis. The potential exists to employ a DNA-loaded solid phase for spatially, temporally, or dose-controlled release of DNA, at extracellular or intracellular sites.  相似文献   

7.
Alkyl phosphorothionates are isomerized to phosphorothiolates by the catalytic action of dimethylformamide. Methyl parathion (O,O-dimethyl O-p-nitrophenyl phosphorothionate) and sumithion (O,O-dimethyl O-3-methyl-4-nitrophenyl phosphorothionate) are more reactive than ethyl parathion (O,O-diethyl O-p-nitrophenyl phosphorothionate). Saligenin cyclic methyl phosphorothionate (salithion) decomposed to give a complicated pattern of products on thin layer chromatography. Besides S-methyl isomer, desmethyl sumithion (O-methyl O-3-methyl-4-nitrophenyl hydrogen phosphorothioate), 3-methyl-4-nitrophenol, methyl formate and dimethylamine were detected as reaction products from sumithion. Some other carboxylic amides including dimethylacetamide, acetamide and urea are also active. A reaction mechanism is proposed.  相似文献   

8.
Methane monooxygenase catalyzes the oxygenation of 1,1-dimethylcyclopropane in the presence of O2 and NADH to (1-methylcyclopropyl)methanol (81%), 3-methyl-3-buten-1-ol (6%), and 1-methyl-cyclobutanol (13%). Oxygenation by 18O2 using the purified enzyme proceeds with incorporation of 18O into the products. Inasmuch as methane monooxygenase catalyzes the insertion of O from O2 into a carbon-hydrogen bond of alkanes, (1-methylcyclopropyl)methanol appears to be a conventional oxygenation product. 3-Methyl-3-buten-1-ol is a rearrangement product that can be rationalized on the basis that enzymatic oxygenation of 1,1-dimethylcyclopropane proceeds via the (1-methylcyclopropyl)carbinyl radical, which is expected to undergo rearrangement with ring opening to the homoallylic 3-methyl-3-buten-1-yl radical in competition with conventional oxygenation. Oxygenation of the latter radical gives 3-methyl-3-buten-1-ol. 1-Methylcyclobutanol is a ring-expansion product, whose formation is best explained on the basis that the 1-methylcyclobutyl tertiary carbocation is an oxygenation intermediate. This cation would result from rearrangements of carbocations derived by one-electron oxidation of either radical intermediate. The fact that both 3-methyl-3-buten-1-ol and 1-methylcyclobutanol are produced suggests that the oxygenation mechanism involves both radical and carbocationic intermediates. Radicals and carbocations can both be intermediates if they are connected by an electron-transfer step. A reasonable reaction sequence is one in which the cofactor (mu-oxo)diiron reacts with O2 and two electrons to generate a hydrogen atom abstracting species and an oxidizing agent. The hydrogen-abstracting species might be the enzymic radical or another species generated by the iron complex and O2.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The new adduct N6-(2-carboxyethyl)adenine (N6-CEA) was prepared from 1-(2-carboxyethyl)adenine (1-CEA) by base catalyzed (Dimroth) rearrangement of 1-CEA. The structure of N6-CEA was assigned on the basis of UV spectra and electron impact and isobutane chemical ionization mass spectra. When the carcinogen beta-propiolactone was reacted in vitro with calf thymus DNA, 1-CEA but not N6-CEA was detected on paper chromatograms following acid hydrolysis of the DNA. When BPL-reacted single-stranded DNA was incubated at pH 11.7 (37 degrees C, 18 h) prior to acid hydrolysis, it was found that 1-CEA was completely converted to N6-CEA in DNA by Dimroth rearrangement, whereas no conversion occurred at pH 7.5. The extent of Dimroth rearrangement at various pHs and temperatures was determined for 1-CEA, 1-methyladenine (1-MeA), 1-(2-carboxyethyl)-deoxyadenosine-5'-monophosphoric acid (1-CEdAdo5'P) and the phosphodiester 5'-O-(2-carboxyethyl)phosphono-1-(2-carboxyethyl)deoxyadenosine (1-CE-Ado-5'-P-CE).  相似文献   

10.
Nitrous oxide (N2O) is a greenhouse gas with a global warming potential approximately 298 times greater than that of CO2. In 2006, the Intergovernmental Panel on Climate Change (IPCC) estimated N2O emission due to synthetic and organic nitrogen (N) fertilization at 1% of applied N. We investigated the uncertainty on this estimated value, by fitting 13 different models to a published dataset including 985 N2O measurements. These models were characterized by (i) the presence or absence of the explanatory variable “applied N”, (ii) the function relating N2O emission to applied N (exponential or linear function), (iii) fixed or random background (i.e. in the absence of N application) N2O emission and (iv) fixed or random applied N effect. We calculated ranges of uncertainty on N2O emissions from a subset of these models, and compared them with the uncertainty ranges currently used in the IPCC-Tier 1 method. The exponential models outperformed the linear models, and models including one or two random effects outperformed those including fixed effects only. The use of an exponential function rather than a linear function has an important practical consequence: the emission factor is not constant and increases as a function of applied N. Emission factors estimated using the exponential function were lower than 1% when the amount of N applied was below 160 kg N ha−1. Our uncertainty analysis shows that the uncertainty range currently used by the IPCC-Tier 1 method could be reduced.  相似文献   

11.
N2O uptake activity of cells and N2O reductase activity of the soluble fraction from denitrifying bacteria were assayed. Pseudomonas aeruginosa strains PAO1 and P1 lost most of their N2O uptake activity and the ability to grow well on N2O within 2 to 5 h after exposure to N2O. Extensive loss of N2O reductase activity accompanied the nearly complete loss of N2O uptake activity under N2O. Paracoccus denitrificans retained much, but not all, of both activities and the ability to grow vigorously on N2O. The pattern with P. aeruginosa strain P2 resembled that for PAO1 and P1 except that loss of the activities proceeded at a slower rate and growth could continue for up to 12 h after exposure to N2O. The inability of a number of P. aeruginosa strains to grow well on N2O is therefore a direct consequence of the nearly complete loss of N2O reductase activity. Turnover-dependent inactivation of N2O reductase and its reactivation under reducing conditions occurred in vitro for the enzyme from P. aeruginosa and Paracoccus denitrificans. These events may be significant in determining the activity level of N2O reductase in denitrifying bacteria during N2O respiration.  相似文献   

12.
N2O uptake activity of cells and N2O reductase activity of the soluble fraction from denitrifying bacteria were assayed. Pseudomonas aeruginosa strains PAO1 and P1 lost most of their N2O uptake activity and the ability to grow well on N2O within 2 to 5 h after exposure to N2O. Extensive loss of N2O reductase activity accompanied the nearly complete loss of N2O uptake activity under N2O. Paracoccus denitrificans retained much, but not all, of both activities and the ability to grow vigorously on N2O. The pattern with P. aeruginosa strain P2 resembled that for PAO1 and P1 except that loss of the activities proceeded at a slower rate and growth could continue for up to 12 h after exposure to N2O. The inability of a number of P. aeruginosa strains to grow well on N2O is therefore a direct consequence of the nearly complete loss of N2O reductase activity. Turnover-dependent inactivation of N2O reductase and its reactivation under reducing conditions occurred in vitro for the enzyme from P. aeruginosa and Paracoccus denitrificans. These events may be significant in determining the activity level of N2O reductase in denitrifying bacteria during N2O respiration.  相似文献   

13.
Chemical rearrangement and repair pathways of 1,N6-ethenoadenine   总被引:1,自引:0,他引:1  
Speina E  Kierzek AM  Tudek B 《Mutation research》2003,531(1-2):205-217
1,N(6)-Ethenoadenine (epsilonA) is an exocyclic DNA adduct introduced to DNA by vinyl chloride and related compounds as well as in the consequence of oxidative stress and lipid peroxidation (LPO). This highly genotoxic DNA damage is chemically unstable and either depurinates or converts into pyrimidine ring-opened secondary lesions. We have studied the structures of derivatives formed during epsilonA chemical rearrangement and identified enzymes repairing one of the rearrangement products. Rearrangement involves a water molecule addition to the C(2)-N(3) bond of epsilonA, resulting in formation of pyrimidine ring-closed B1 product, which is in equilibrium with pyrimidine ring-opened B2 compound. B2 further deformylates to yield compound C. N-Glycosidic bond of compound C is unstable and C depurinates, yielding compound D. These secondary lesions are not repaired by alkylpurine DNA N-glycosylase, which excises the parental epsilon A. Compound B, when paired with thymine and cytosine is efficiently excised by Escherichia coli formamidopirymidine DNA N-glycosylase (Fpg), and thymine glycol DNA N-glycosylases from E. coli (Nth) and Saccharomyces cerevisiae (Ntg2). B is eliminated from B:G pair only by Nth and Ntg2 glycosylases, however none of the enzymes studied is excising B from B:A pair. This enables finishing of rearrangement, formation of AP sites and subsequently DNA strand breaks. During in vitro translesion synthesis, C is much easier bypassed by DNA polymerases, than compound B, and also than the parental epsilonA as well as than the AP site. This bypass beyond C proceeds mainly by misinsertion of adenine and guanine, or by insertion of thymine, the latter restoring the parental A:T pair. Alternatively, looping out of adducted nucleotide alone or with adjacent one generates one- or two-nucleotide deletions. This may explain the previously reported 20-fold higher mutagenic potency of product C in comparison to epsilon A in E. coli [Biochemistry 32 (1993) 12793].  相似文献   

14.
2-Chloroethylphosphonic acid (ethephon) as the dianion phosphorylates butyrylcholinesterase (BChE) at its active site. In contrast, the classical organophosphorus esterase inhibitors include substituted-phenyl dialkylphosphates (e.g., paraoxon) with electron-withdrawing aryl substituents. The chloroethyl and substituted-phenyl moieties are combined in this study as 2-chloro-1-(substituted-phenyl)ethylphosphonic acids (1) to define the structure--activity relationships and mechanism of BChE inhibition by ethephon and its analogues. Phenyl substituents considered are 3- and 4-nitro, 3- and 4-dimethylamino, and 3- and 4-trimethylammonium. Phosphonic acids were synthesized via the corresponding O,O-diethyl phosphonate precursors followed by deprotection with trimethylsilyl bromide. They decompose under basic conditions about 100-fold faster than ethephon to yield the corresponding styrene derivatives. Electron-withdrawing substituents on the phenyl ring decrease the hydrolysis rate while electron-donating substituents increase the rate. The 4-trimethylammonium analogue has the highest affinity (K(i)=180 microM) and potency (IC(50)=19 microM) in first binding reversibly at the substrate site (possibly with stabilization in a dianion--monoanion environment) and then progressively and irreversibly inhibiting the enzyme activity. These observations suggest dissociation of chloride as the first and rate-limiting step both in the hydrolysis and by analogy in phosphorylation of BChE by bound at the active site.  相似文献   

15.
The effect of triazophos (O, O-diethyl O-1-phenyl-1 H-1, 2, 4-triazol-3-yl phosphorothioate), a widely used insecticide was studied on the induction of oxidative stress and histological alterations at sub-chronic doses in male albino rats. Oral administration of triazophos at concentrations of 1.64, 3.2 and 8.2 mg/kg body wt for 30 days produced dose as well as time-dependent increase in the lipid peroxidation (determined by malondialdehyde levels) and glutathione-S-transferase (GST) activity in serum with aconcomitant decrease in ferric reducing ability of plasma (FRAP) and blood glutathione (GSH) content. Histopathological examination of liver of triazophos-treated rats showed significant and progressive degenerative changes as compared to control, which could be due to induction of oxidative stress. However, no significant histopathological changes were observed in spleen, kidney and brain at either dose of triazophos with respect to control. These results indicated that oral administration of triazophos was associated with enhanced lipid peroxidation and compromised antioxidant defence in rats in dose and time-dependent manner. Thus the present study demonstrated for the first time the role of oxidative stress as the important mechanism involved in the stimulation of hepatic histoarchitectural alterations at sub-chronic doses of triazophos in rats.  相似文献   

16.
Two haptens of the insecticide triazophos (O,O-diethyl O-[1-phenyl-1H-1,2,4-triazol-3-yl] phosphorothioate) were synthesized by introducing appropriate spacers in the O-ethyl site of the analyte molecular structure. First, thiophosphoryl chloride (PSCl(3)) reacts with methanol at low temperature to give O-ethyl dichlorothiophosphate. After reacting with 1-phenyl-3H-1,2,4-triazol, the O-ethyl dichlorothiophosphate was transformed into the intermediate O-ethyl O-(1-phenyl-1H-1,2,4-triazol-3-yl) chlorothiophosphate. Then the intermediate reacts with 4-aminobutyric acid and 6-aminobutyric acid to produce hapten I and hapten II, respectively. The molecule structures of the two haptens were identified by (1)H nuclear magnetic resonance spectrum and mass spectrum. An enzyme-linked immunosorbent assay (ELISA) based on monoclonal antibody was also developed to evaluate the two haptens. Results showed that the monoclonal antibodies with high titers were obtained after immunizing with protein conjugates of these haptens and that the immunoassay has high affinity and specificity to triazophos. These results suggested that the haptens were synthesized successfully and could be used for immunoassay for the rapid screening and sensitive determination of this insecticide.  相似文献   

17.
In the radiolysis of aqueous formate-containing solutions a chain reaction (i, ii) proceeds in the presence of N2O. CO2-. + N2O + H2O----CO2 + N2 + .OH + OH- (i) .OH + HCO2-.----CO2-. + H2O (ii) The chain length depends on the dose rate and the N2O concentration but not on the formate concentration. Typically, G(CO2) approximately 140 molecules (100 eV)-1 is found, with an equivalent amount of N2, at a dose rate of 3 X 10(-3) Gy s-1. The rate constant for the rate-determining step in this chain reaction has been calculated at k(i) = 1600 dm3 mol-1 s-1. The possible relevance of this chain reaction in radiation biological studies is briefly discussed.  相似文献   

18.
三唑磷降解菌的筛选及其降解途径研究   总被引:7,自引:0,他引:7  
从三唑磷生产厂周围的土壤中用土壤富集的方法筛选分离出一株三唑磷降解菌Klebsiella sp.,它能以三唑磷为唯一碳源、唯一氮源、唯一磷源生长同时实现对三唑磷的降解,三唑磷作为唯一氮源时的降解速度最快,是实现三唑磷降解的最佳营养方案。在三唑磷为唯一氮源时,1000 mg/L的三唑磷浓度对菌体降解无抑制作用。此降解菌首先通过水解作用实现对TAP 的降解,之后把水解产物进一步降解为无毒的无机物质。降解菌的这些降解特性表明了它用于生物降解消除三唑磷污染的巨大潜力。  相似文献   

19.
A water-soluble [18O]-labeled endoperoxide derived from N,N'-di(2,3-dihydroxypropyl)-1,4-naphthalene-dipropanamide (DHPN18O2) has been shown to act as a clean chemical source of [18O]-labeled molecular singlet oxygen. This allows the assessment of the singlet oxygen (1O2) reactivity toward biological targets such as DNA. The present work focuses on the qualitative identification of the main 1O2-oxidation products of 8-oxo-7,8-dihydro-2'-deoxyguanosine, which was achieved using high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Thus, the [18O]-labeled and unlabeled imidazolone and oxazolone, together with the diastereoisomeric spiroiminodihydantoin nucleosides, were detected as the main degradation products. In addition, a modified nucleoside that exhibits similar features as those of the oxidized guanidinohydantoin molecule was detected. Our data strongly suggest that the imidazolone and oxazolone nucleosides are generated via the rearrangement of an unstable 5-hydroperoxide intermediate. Interestingly, the combined use of appropriate tools, including isotopically labeled singlet oxygen and the high- resolution HPLC-ESI-MS/MS technique, has allowed to shed new light on the 1O2-mediated oxidation reactions of guanine DNA components.  相似文献   

20.
The oxygen control of denitrification and its emission of NO/N2O/N2 was investigated by incubation of Nycodenz-extracted soil bacteria in an incubation robot which monitors O2, NO, N2O and N2 concentrations (in He+O2 atmosphere). Two consecutive incubations were undertaken to determine (1) the regulation of denitrification by O2 and NO2(-) during respiratory O2 depletion and (2) the effects of re-exposure to O2 of cultures with fully expressed denitrification proteome. Early denitrification was only detected (as NO and N2O) at 相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号