首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Molecular imaging was used to study the biodistribution, pharmacokinetics, and activity of naked small interfering RNAs (siRNAs). siRNAs with riboses chemically modified in the 2' position were compared with unmodified siRNA. In vitro, replacement of the 2'-hydroxyl (2'OH) group of certain nucleotides in an siRNA sequence by a fluorine atom (2'F) on both antisense (AS) and sense (S) strands [2'F(AS/S)], or by a methoxy group (2'OMe) on the S strand [2'OH(AS)/2'OMe(S)], was compatible with RNA interference. Different siRNAs [2'F(AS/S), 2'OH(AS)/2'OMe(S), and 2'OH(AS/S)] were labeled with fluorine-18 (conjugation with [(18)F]FPyBrA), and comparative dynamic and quantitative imaging was performed with positron emission tomography. After intravenous injections of [(18)F]siRNAs in rodents, total radioactivity was rapidly eliminated by the kidneys and the liver. Tissue distribution of the different siRNAs were similar, and their bioavailability (as judged from blood persistence and stability) increased in the order 2'OH(AS/S) = 2'OH(AS)/2'OMe(S) < 2'F(AS/S). However, in our in vivo model, the 2'F(AS/S) siRNA, despite its higher bioavailability, was not able to induce a higher interference effect with respect to the 2'OH(AS/S) siRNA. Molecular imaging approaches, applied in the present work to both natural and chemically modified siRNAs, can contribute to the development of these macromolecules as therapeutic agents.  相似文献   

4.
Synthesis of 3-O-acetyl-2-benzyloxycarbonylamino-2-deoxy-4,6-O-ethylidene- alpha-(7 alpha) and-beta-D-glucopyranose (7 beta) and their 3-O-chloroacetyl analogues (11 alpha and 11 beta) are described. Condensation (BF3-etherate, ethyl acetate, -20 degrees) of 7 alpha with 4'-O-benzyloxycarbonyl-4'-O-demethyl-4-epipodophyllotoxin (8) afforded mainly the beta-glycoside 9 beta (alpha, beta-ratio 1:9). Condensation of 11 alpha beta with 8 or the 4'-O-chloroacetyl analogue 13 gave mainly the 4-O-(2-benzyloxycarbonylamino-3-O-chloroacetyl-2-deoxy-4,6-O-ethyl idene-beta-D- glucopyranosyl)-epipodophyllotoxin 12 beta or 15 beta. Glycosidation of podophyllotoxin (14) with 11 alpha beta (during which the aglycon epimerized at C-4 under the action of BF3-etherate) afforded alpha- (16 alpha) and beta-glycoside (16 beta) in the ratio 1:5. Removal of the chloroacetyl groups from 12 beta, its alpha analogue 12 alpha, and 15 beta gave the 4-O-(2-benzyloxycarbonylamino-2-deoxy-4,6-O-ethylidene-alpha-(17 alpha) and -beta-D-glucopyranosyl)-4'-O-demethyl-epipodophyllotoxins (17 beta and 20 beta), respectively. Hydrogenolysis of the benzyloxycarbonyl groups then gave 4-O-(2-amino-2-deoxy-4,6-O-ethylidene-alpha- (18 alpha) and -beta-D-glucopyranosyl)-4'-O-demethyl-4-epipodophyllotoxin (18 beta). Reductive alkylation of 18 beta and 18 alpha afforded the 2"-deoxy-2"-dimethylamino-etoposide 3 and its alpha analogue 19 alpha.  相似文献   

5.
The data presented here describe new findings related to the bioconversion of adenosine to 9-beta-D-arabinofuranosyladenine (ara-A) by Streptomyces antibioticus by in vivo investigations and with a partially purified enzyme. First, in double label in vivo experiments with [2'-18O]- and [U-14C]adenosine, the 18O:14C ratio of the ara-A isolated does not change appreciably, indicating a stereospecific inversion of the C-2' hydroxyl of adenosine to ara-A with retention of the 18O at C-2'. In experiments with [3'-18O]- and [U-14C]-adenosine, [U-14C]ara-A was isolated; however, the 18O at C-3' is below detection. The adenosine isolated from the RNA from both double label experiments has essentially the same ratio of 18O:14C. Second, an enzyme has been isolated and partially purified from extracts of S. antibioticus that catalyzes the conversion of adenosine, but not AMP, ADP, ATP, inosine, guanosine, or D-ribose, to ara-A. In a single label enzyme-catalyzed experiment with [U-14C]adenosine, there was a 9.9% conversion to [U-14C]ara-A; with [2'-3H]-adenosine, there was a 8.9% release of the C-2' tritium from [2'-3H]adenosine which was recovered as 3H2O. Third, the release of 3H as 3H2O from [2'-3H]adenosine was confirmed by incubations of the enzyme with 3H2O and adenosine. Ninety percent of the tritium incorporated into the D-arabinose of the isolated ara-A was in C-2 and 8% was in C-3. The enzyme-catalyzed conversion of adenosine to ara-A occurs without added cofactors, displays saturation kinetics, a pH optimum of 6.8, a Km of 8 X 10(-4) M, and an inhibition by heavy metal cations. The enzyme also catalyzes the stereospecific inversion of the C-2' hydroxyl of the nucleoside antibiotic, tubercidin to form 7-beta-D-arabinofuranosyl-4-aminopyrrolo[2,3-d]pyrimidine. The nucleoside antibiotic, sangivamycin, in which the C-5 hydrogen is replaced with a carboxamide group, is not a substrate. On the basis of the single and double label experiments in vivo and the in vitro enzyme-catalyzed experiments, two mechanisms involving either a 3'-ketonucleoside intermediate or a radical cation are proposed to explain the observed data.  相似文献   

6.
To understand the parameters required for designing potent and specific antisense C-5 propynyl-pyrimidine-2'-deoxyphosphorothioate-modified oligonucleotides (C-5 propyne ONs), we have utilized a HeLa line that stably expresses luciferase under tight control of a tetracycline-responsive promoter. Using this sensitive and regulatable cell-based system we have identified five distinct antisense ONs targeting luciferase and have investigated the role that ON length, target mismatches, compound stability and intracellular RNA levels play in affecting antisense potency. We demonstrate that C-5 propyne ONs as short as 11 bases retained 66% of the potency demonstrated by the parent 15 base compound, that a one base internal mismatch between the antisense ON and the luciferase target reduced the potency of the antisense ON by 43% and two or more mismatches completely inactivated the antisense ON and that C-5 propyne ONs have a biologically active half-life in tissue culture of 35 h. In addition, by regulating the intracellular levels of the luciferase mRNA over 20-fold, we show that the potency of C-5 propyne ONs is unaffected by changes in the expression level of the target RNA. These data suggest that low and high copy messages can be targeted with equivalent potency using C-5 propyne ONs.  相似文献   

7.
Different arabinosides and ribosides, viz. Ara-DDA or 9(1-beta-D-arabinofuranosyl) 1,3-dideazaadenine (6), Ara-NDDP or 9(1-beta-D-arabinofuranosyl) 4-nitro-1,3-dideazapurine (7), Ara-DKP or 1(1-beta-D-arabinofuranosyl) diketopiperazine (8), Ribo-DDA or 9(1-beta-D-ribofuranosyl) 1,3-dideazaadenine (9) and Ribo-NDDP or 9(1-beta-D-ribofuranosyl) 4-nitro-1,3-dideazapurine (10) have been synthesized as probable antiviral agents. The arabinosides have been synthesized using the catalyst TDA-1 that causes stereospecific formation of beta-nucleosides while a one-pot synthesis procedure was adopted for the synthesis of the ribonucleosides where beta-anomers were obtained in higher yields. All the five nucleoside analogs have been screened for antiviral property against HIV-1 (IIIB), HSV-1 and 2, parainfluenza-3, reovirus-1 and many others. It was observed that arabinosides had greater inhibitory action than ribosides. The compound 7 or Ara-NDDP has shown maximum inhibition of HIV-1 replication than the rest of the molecules with an IC50 of 79.4 microg/mL.  相似文献   

8.
In continuation of our studies with stabilized immune modulatory RNA (SIMRA) compounds, we have synthesized novel SIMRA compounds incorporating arabinonucleotides to study their effects on TLR7 and TLR8 activation. The SIMRA compounds containing ara-G, ara-C, ara-U or ara-A substitutions activated TLR8 in HEK293 cells. Interestingly, the SIMRA compound containing ara-C also activated TLR7 and stimulated immune responses in vivo in mice. In human PBMC and pDC assays, SIMRA compounds containing arabinonucleotides induced Th1-type cytokine profiles. These results suggest that SIMRA compounds containing arabinonucleotides act as agonists of TLR7 and TLR8.  相似文献   

9.
10.
The current study elucidated the role of a long non‐coding RNA (lncRNA), FOXD2‐AS1, in the pathogenesis of hepatocellular carcinoma (HCC) and the regulatory mechanism underlying FOXD2‐AS1/miR‐150‐5p/transmembrane protein 9 (TMEM9) signalling in HCC. Microarray analysis was used for preliminary screening of candidate lncRNAs in HCC tissues. qRT‐PCR and Western blot analyses were used to detect the expression of FOXD2‐AS1. Cell proliferation assays, luciferase assay and RNA immunoprecipitation were performed to examine the mechanism by which FOXD2‐AS1 mediates sorafenib resistance in HCC cells. FOXD2‐AS1 and TMEM9 were significantly decreased and miR‐150‐5p was increased in SR‐HepG2 and SR‐HUH7 cells compared with control parental cells. Overexpression of FOXD2‐AS1 increased TMEM9 expression and overcame the resistance of SR‐HepG2 and SR‐HUH7 cells. Conversely, knockdown of FOXD2‐AS1 decreased TMEM9 expression and increased the sensitivity of HepG2 and Huh7 cells to sorafenib. Our data also demonstrated that FOXD2‐AS1 functioned as a sponge for miR‐150‐5p to modulate TMEM9 expression. Taken together, our findings revealed that FOXD2‐AS1 is an important regulator of TMEM9 and contributed to sorafenib resistance. Thus, FOXD2‐AS1 may serve as a therapeutic target against sorafenib resistance in HCC.  相似文献   

11.
The binding of AABP4'F and ABP4'F residues to rat liver and kidney DNA in vivo was studied at different periods of time after administration of N-[G-3H]hydroxy-AABP4'F at dose levels of 5 and 25 mg/kg body weight. DNA preparations from both organs were hydrolyzed enzymatically at pH 8--9 with mixtures of DNAase, snake venom phosphodiesterase and alkaline phosphatase from Escherichia coli. The enzymatic digests were analysed by Sephadex LH-20 chromatography using synthetic N-([G-14C] deoxyguanosin-8-yl)-AABP4'F as marker. Elution with 30% ethanol gave three major peaks of tritium activity. The first peak consisted largely of N-(deoxyguanosin-8-yl)-ABP4'F decomposition products, which were not further characterized. The second product has similar chromatographical and chemical properties as 3-(deoxyguanosin-N2-yl)-AAF; and was also persistent in liver as well as in kidneys. The third peak of tritium activity co-chromatographed with the marker compound N-([G-14C] deoxyguanosin-8-yl)-AABP4'F. Kinetic studies revealed that the latter product was removed rapidly from liver and kidney DNA at equal rates (t1/2 = 2 days). Approximately 80% of the total radioactivity bound to DNA consisted of deacetylated material, which was removed at a much slower rate (t1/2 = 10 days) in both organs. An initial rapid removal of all products in kidney during the first 7 days (t1/2 = 3.3 days) at dose levels of 25 mg/kg is probably due to toxic effects on the kidneys, because this phenomenon was not observed at dose levels of 5 mg/kg. The synthetic ester N-OSO3K-AABP4'F was at least twice as reactive towards L-methionine and guanosine as compared to the corresponding AABP derivative, but had 40% of the reactivity of N-acetoxy-AAF under similar conditions. The new compounds 3-methylmercapto-4-acetylamino-4'-fluorobiphenyl and N-(deoxyguanosin-8-yl)-4-acetylamino-4'-fluorobiphenyl have been characterized by means of their NMR and mass spectra. Attempts to devise an unambiguous synthesis for 3-(deoxyguanosin-N2-yl)arylamides have been unsuccessful.  相似文献   

12.
Methyl 5-deoxy-5-iodo-2,3-O-isopropylidene-beta-D-ribofuranoside (3) was obtained in three steps from D-ribose. Exchange of the isopropylidene group for benzoate groups and acetolysis gave 1-O-acetyl-2,3-di-O-benzoyl-5-deoxy-5-iodo-D-ribofuranose which was coupled with 6-benzamidochloromercuripurine by the titanium tetrachloride method to afford the blocked nucleoside. Treatment with 1,5-diazabicyclo[5.4.0]undec-5-ene in N,N-dimethylformamide and removal of the blocking groups have 9-(5-deoxy-beta-D-erythro-pent-4-enofuranosyl)adenine (9). A similar route starting from methyl 5-deoxy-5-iodo-2,3-O-isopropylidene-alpha-D-lyxofuranoside (14) afforded the enantiomeric nucleoside, 9-(5-deoxy-beta-L-erythro-pent-4-enofuranosyl)adenine (20). Methyl 2,3-O-isopropylidene-alpha-D-mannofuranoside was treated with sodium periodate and then with sodium borohydride to give methyl 2,3-O-isopropylidene-alpha-D-lyxofuranoside (11). Acid hydrolysis afforded D-lyxose. Tosylation of 11 gave methyl 2,3-O-isopropylidene-5-O-p-tolylsulfonyl-alpha dp-lyxofuranoside (12) which was converted into 14 with sodium iodide in acetone. Reduction of 12 gave methyl 5-deoxy-2,3-O-isopropylidene-alpha-D-lyxofuranoside which was hydrolyzed to give 5-deoxy-D-lyxose.  相似文献   

13.
A series of 2-halogen and 7-alkyl substituted analogues of 9-deazaadenosine and 2'-deoxy-9-deazaadenosine was synthesized by new efficient methodology involving transformation of corresponding 9-deazaguanosine and 2'-deoxyguanosine, which in turn were synthesized by direct C-glycosylation of 1-benzyl-9-deazaguanine with 1-O-acetyl-2,3,5-tri-O-benzoyl-D-ribofuranose and methyl 2-deoxy-3,5-di-O-(p-toluoyl)-D-ribofuranoside, respectively. Deoxychlorination of C6 and diazotization/chloroor fluoro-dediazoniation of the sugar-protected 9-deazaguanosine, followed by selective ammonolysis at C6 and deprotection of the sugar moiety, gave 2-chloro- and 2-fluoro-9-deazaadenosine (6 and 9). Substitution of the 7-position of the dihalogen-intermediate with alkyl groups, followed by ammonolysis and deprotection, provided 2-chloro-7-alkyl-9-deazaadenosines (13a-e) and 2-fluoro-7-benzyl-9-deazaadenosine (13f). Catalytic hydrogenation of 13a-e gave 7-alkyl-9-deazaadenosines 14a-e. Similarly, 2-chloro-2'-deoxy-9-deazaadenosine (21), 2-chloro-2'-deoxy-7-methyl-9-deazaadenosine (25), 2'-deoxy-9-deazaadenosine (22), and 2'-deoxy-7-methyl-9-deazaadenosine (26) were prepared from sugar-protected 2'-deoxy-9-deazaguanosine. Among these compounds, 7-benzyl-9-deazaadenosine (14b) showed the most potent cytotoxic activity, with IC50 values of 0.07, 0.1, 0.2 and 1.5 microM, while both 7-methyl-9-deazaadenosine (14a) and 2-fluoro-9-deazaadenosine (9) also demonstrated significant cytotoxic activity with IC50 values of 0.4, 0.7, 0.3, and 1.5 microM, and 1.5, 0.9, 0.3, and 5 microM against L 1210 leukemia, P388 leukemia, CCRF-CEM lymphoblastic leukemia, and B16F10 melanoma cells, respectively.  相似文献   

14.
Leung, Hazel Barner (University of Pennsylvania School of Medicine, Philadelphia), Alice McGovern Doering, and Seymour S. Cohen. Effect of 9-beta-d-arabinofuranosyladenine on polymer synthesis in a polyauxotrophic strain of Escherichia coli. J. Bacteriol. 92:558-564. 1966.-Adenine-requiring mutants have been obtained from Escherichia coli strain 15 TAU, which also needs thymine, arginine, and uracil for growth. Some of these are killed by 9-beta-d-arabinofuranosyladenine (ara-A) in the absence of exogenous adenine; a particular mutant of this type, designated TAUAd, has been used in our studies. The lethality of ara-A, d-arabinosylhypoxanthine, and the 1-n-oxide of ara-A has been compared; ara-A is equally toxic in the presence or absence of thymine. Although the absence of uracil reduces ara-A toxicity, the lack of arginine almost eliminates lethality. It was found that ara-A completely inhibits deoxyribonucleic acid synthesis without markedly affecting ribonucleic acid (RNA) synthesis. Some inhibition of protein synthesis can be detected. However, the interpretation of these results is complicated because (i) exogenous adenine must be excluded, (ii) endogenous adenine is made available from RNA turnover, and (iii) ara-A is being rapidly converted to only slightly less toxic arabinosylhypoxanthine by the adenosine deaminase of E. coli. A suitable inhibitor for the bacterial deaminase has not yet been found.  相似文献   

15.
运用逆转录-多聚酶联反应(RT-PCR)、鞘内注射和反义技术,研究脊髓水平一氧化氮(NO)对大鼠吗啡戒断反应和脊髓及脑干NMDA1A受体mRNA(NMDA1AR mRNA)表达的影响。结果表明,鞘内注射NOS反义寡核苷酸能明显减轻吗啡戒断反应,且脑型NOS(nNOS)反义寡苷酸的作用强于内皮型NOS(eNOS)反义寡核苷酸,吗啡依赖大鼠脊髓和脑干NMDA1AR mRNA表达增加,纳洛酮催促戒断,使其进一步增加;鞘内注射nNOS反义寡核苷酸,能明显抑制吗啡戒断大鼠脊髓和脑干NMDA1AR mRNA表达的增加;eNOS反义寡核苷酸也可抑制吗戒断大鼠脊髓NMDA1AR mRNA表达的增加,但作用弱于nNOS反义寡核苷酸,对脑干NMDA1AR mRNA表达无明显影响,上述结果提示:脊髓水平NO参与介导吗啡戒断反庆和NMDA受体表达的调控。  相似文献   

16.
To be effective in vivo, antisense oligonucleotides (AS ON) should be nuclease resistant, form stable ON/RNA duplexes and support ribonuclease H mediated heteroduplex cleavage, all with negligible non-specific effects on cell function. We report herein that AS ONs containing a 2'-deoxy-2'-fluoro-beta-D-arabinonucleic acid (2'F-ANA) sugar modification not only meet these criteria, but have the added advantage of maintaining high intracellular concentrations for prolonged periods of time which appears to promote longer term gene silencing. To demonstrate this, we targeted the c-MYB protooncogene's mRNA in human leukemia cells with fully phosphorothioated 2'F-ANA-DNA chimeras (PS-2'FANA-DNA) and compared their gene silencing efficiency with AS ON containing unmodified nucleosides (PS-DNA). When delivered by nucleofection, chemically modified ON of both types effected a >90% knockdown of c-MYB mRNA and protein expression, but the PS-2'F-ANA-DNA were able to accomplish this at 20% of the dose of the PS-DNA, and in contrast to the PS-AS DNA, their silencing effect was still present after 4 days after a single administration. Therefore, our data demonstrate that PS-2'F-ANA-DNA chimeras are efficient gene silencing molecules, and suggest that they could have significant therapeutic potential.  相似文献   

17.
Gene suppression via U1 small nuclear RNA interference (U1i) is considered to be one of the most attractive approaches, and takes the place of general antisense, RNA interference (RNAi), and anti-micro RNA machineries. Since the U1i can be induced by short oligonucleotides (ONs), namely U1 adaptors consisting of a ‘target domain’ and a ‘U1 domain’, we prepared adaptor ONs using 2′-modified-4′-thionucleosides developed by our group, and evaluated their U1i activity. As a result, the desired gene suppression via U1i was observed in ONs prepared as a combination of 2′-fluoro-4′-thionucleoside and 2′-fluoronucleoside units as well as only 2′-fluoronucleoside units, while those prepared as combination of 2′-OMe nucleoside/2′-OMe-4′-thionucleoside and 2′-fluoronucleoside units did not show significant activity. Measurement of Tm values indicated that a higher hybridization ability of adaptor ONs with complementary RNA is one of the important factors to show potent U1i activity.  相似文献   

18.
Irradiation of a solution of 2-acetoxy-3,4,6-tri-O-acetyl-D-glucal (1) in 1:200 acetone-2-propanol with a high-pressure mercury-lamp gave 4,5,6,8-tetra-O-acetyl-3,7-anhydro-1-deoxy-2-C-methyl-D-glycero-D-gulo-octitol (2) (51.2%), -D-glycero-D-ido-octitol (3) (16.2%), and-D-glycero-D- galacto-octitol (4) (21.0%). The irradiation of 1 in 1:1 acetone-2-propanol gave 5,6,8-tri-O-acetyl-3,7-anhydro-1-deoxy-4-C-(1-hydroxy-1-methylethyl)-2-C-methyl-D-glycero-D-(gluco or manno, etc.)-octitol 2,4,41-orthoacetate (17%) and a 2:1:1 mixture of 2, 3, and 4 (64%). Moreover, the irradiation of 1 in 1:9 acetone-tert-butyl alcohol gave 2 (15%), 3 (9%), 4 (7%), and (4S)-4,5,6,8-tetra-O-acetyl-2,4:3,7-dianhydro-1-deoxy-2-C-methyl-D-gluco-octos-4-ulose (14%).  相似文献   

19.
N6-Benzyladenosine is a competitive inhibitor of adenosine deaminase from L-1210 cells in axenic culture as well as a potent antiproliferative agent in vitro and in vivo. Potentiation of the growth inhibitory activity of 9-beta-D-arabinosyladenine (ara-A) was observed in the L-1210 system with maximum synergism with a mixture of 16 micron ara-A and 10 micron benzyladenosine. Kinetic studies with L-1210 cell lysates showed values for Km of 0.25 mM ara-A and Ki of 0.23 mM benzyladenosine. It is suggested that ara-A and benzyladenosine in suitable combination may be expected to demonstrate enhanced clinical chemotherapeutic effectiveness.  相似文献   

20.
Uhrig ML  Varela O 《Carbohydrate research》2002,337(21-23):2069-2076
Michael addition of common thiols to the enone system of (2S)-2-benzyloxy-2H-pyran-3(6H)-one (1) afforded the corresponding 3-deoxy-4-thiopentopyranosid-2-ulose derivatives (2-4). The reaction was highly diastereoselective, and the addition was governed by the quasiaxially disposed 2-benzyloxy substituent of the starting pyranone. As expected from the enantiomeric excess of 1 (ee > 86%) the corresponding thiouloses 2-4 exhibited the same optical purity. However, the enantiomerically pure thioulose 5 was obtained by reaction of 1 with the chiral thiol, N-(tert-butoxycarbonyl)-L-cysteine methyl ester. The thio derivative 7 was also synthesized by reaction of 6 (enantiomer of 1) with the same chiral thiol. Alternatively, 4-thiopent-2-uloses 9-12 were prepared in high optical purity by 1,4-addition of thiols to (2S)-[(S)-2'-octyloxy]dihydropyranone 8. Similarly, reaction of 13 (enantiomer of 8) with benzenemethanethiol afforded 14 (enantiomer of 10). This way, the stereocontrol exerted by the anomeric center on the starting dihydropyranone led to 4-thiopentuloses of the D and L series. Sodium borohydride reduction of the carbonyl function of uloses 10 and 12 gave the corresponding 3-deoxy-4-thiopentopyranosid-2-uloses (16-19). The diastereomers having the beta-D-threo configuration (16, 18) slightly predominated over the beta-D-erythro (17, 19) analogues. However, the reduction of the enantiomeric pyranones 10 and 14 with K-Selectride was highly diastereofacial selective in favor of the beta-D- and beta-L-threo isomers 16 and 20, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号