首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of sphingomyelin (SM), one of the main lipids in the external monolayer of erythrocyte plasma membrane, on the ability of the hemolytic peptide melittin to permeabilize liposomes was investigated. The peptide induced contents efflux in large unilamellar vesicles (LUV) composed of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC)/SM (1:1 mole ratio), at lower (>1:10,000) peptide-to-lipid mole ratios than in pure POPC (>1:1000) or POPC/1-palmitoyl-2-oleoylphosphatidylglycerol (POPG) (1:1 mole ratio) (>1:300) vesicles. Analysis of the leakage data according to a kinetic model of pore formation showed a good fit for hexameric-octameric pores in SM-containing vesicles, whereas mediocre fits and lower surface aggregation constants were obtained in POPC and POPC/POPG vesicles. Disturbance of lateral separation into solid (so) and liquid-disordered (ld) phases in POPC/SM mixtures increased the peptide-dose requirements for leakage. Inclusion of cholesterol (Chol) in POPC/SM mixtures under conditions inducing lateral separation of lipids into liquid-ordered (lo) and ld phases did not alter the number of melittin peptides required to permeabilize a single vesicle, but increased surface aggregation reversibility. Partitioning into liposomes or insertion into lipid monolayers was not affected by the presence of SM, suggesting that: (i) melittin accumulated at comparable doses in membranes with different SM content, and (ii) differences in leakage were due to promotion of melittin transmembrane pores under coexistence of so-ld and lo-ld phases. Our results support the notion that SM may regulate the stability of size-defined melittin pores in natural membranes.  相似文献   

2.
Phytosterol—β-sitosterol promotes apoptosis in various cancer cells and inhibits their growth. Supplementation of cancer cells with this compound causes modifications in membrane composition, namely, substitution of cholesterol (Chol), decrease of sphingomyelin (SM) content and increase of ceramide (Cer) level. The aim of this work was to investigate the influence of partial replacement of cholesterol by plant sterol, substitution of sphingomyelin by ceramide and both these factors simultaneously on the properties of the monolayers composed of major lipids identified in breast cancer membranes, namely Chol/SM/GM3 mixtures. Brewster Angle Microcopy experiments and the analysis of the isotherms recorded during films compression and resulting parameters evidenced that β-sitosterol weakens the interactions between molecules, decreases films stability and condensation. The influence of ceramide on sterol/SM/GM3 films was reflected in strong modifications of their texture, however, the morphology of monolayer was determined by the structure of sterol present in the system. It was also found, that simultaneous replacement of 50 mol% of Chol and SM by phytosterol and Cer, respectively, induces lipids segregation, which is manifested in large diversity of phases observed in BAM images. To facilitate the analysis of the data collected for multicomponent monolayers, the properties of selected sterol/GM3, sterol/Cer, SM/GM3, Cer/GM3 binary films were also investigated. The obtained results evidenced that the studied herein modifications in the composition of Chol/SM/GM3 monolayer, reflecting compositional alterations induced by phytosterol in cancer membranes, strongly affect the organization of model system, therefore they should be considered in the studies on anticancer mechanism of β-sitosterol.  相似文献   

3.
A method for transferring a lipid monolayer from an air-water interface to an alkylated glass slide is described. Specific antibodies bind tightly to lipid haptens contained in these monolayers on the glass slides. We conclude that the polar head groups of the lipids face the aqueous phase. A monolayer containing a fluorescent lipid was used to show that the monolayer is homogeneous as observed with an epifluorescence microscope. A periodic pattern photobleaching technique was used to measure the lateral diffusion of this fluorescent lipid probe in monolayers composed of dipalmitoyl phosphatidylcholine and dimyristoyl phosphatidylcholine. Different regions of the pressure-area isotherms of the monolayers at the air-water interface can be correlated with the diffusion of the fluorescent probe molecules on the monolayer-coated glass slide. Monolayers derived from the so-called “solid-condensed” state of a monolayer at the air-water interface showed a very low probe diffusion coefficient in this monolayer when placed on a glass slide, D ≤ 10-10 cm2/s. Monolayers derived from the “liquid condensed/liquid expanded” (LC/LE) region of the monolayer isotherms at the air-water interface showed rapid diffusion (D > 10-8 cm2/s) when these same monolayers were observed on an alkylated glass slide. The monolayers attached to the glass slide appear to be homogeneous when derived from monolayers in the LC/LE region of monolayers at the air-water interface. There is no major variation of the diffusion coefficient of a fluorescent lipid probe when this diffusion is measured on a lipid monolayer on a glass slide, for monolayers derived from various regions of the LC/LE monolayers at the air-water interface. This is consistent with the view that the LC/LE region is most likely a single fluid phase. Monolayers supported on a planar glass substrate are of much potential interest for biophysical and biochemical studies of the interactions between model membranes and cellular membranes, and for physical chemical studies relating the properties of lipid monolayers to the properties of lipid bilayers.  相似文献   

4.
Lipopolysaccharide (LPS), one of the main components of outer membranes of Gram-negative bacteria, consists of a hydrophobic lipid (lipid A) with six hydrocarbon chains and a large hydrophilic polysaccharide chain. LPS plays endotoxic roles and can stimulate macrophages and B cells. To elucidate the mechanism of the interaction of LPS with various cell membranes, it is important to investigate the interaction of wild type LPS in a buffer with lipid membranes. In this report we investigated the interaction of low concentrations of LPS in a buffer with giant unilamellar vesicles (GUVs) of dioleoylphosphatidylcholine (DOPC) membrane in the liquid-crystalline (Lα) phase and sphingomyelin (SM)/cholesterol(chol) (molar ration; 6/4) membrane in the liquid-ordered (lo) phase. We found that low concentrations (less than critical micelle concentration) of LPS in aqueous solution induced the shape changes such as the transformation from a prolate to a two-spheres-connected by a very narrow neck in the DOPC-GUVs and also in the SM/chol (6/4)-GUVs above their threshold concentrations. The analysis of the shape changes of the GUVs indicates that the monomers of LPS can insert spontaneously into the external monolayer of the lipid membranes of these GUVs from the aqueous solution. Moreover, higher concentrations of LPS induced the vesicle fission of SM/chol(6/4)-GUVs above its higher threshold concentration. The vesicle fission of GUVs is similar to those induced by single long chain amphiphiles such as lysophosphatidylcholine. On the basis of these results, we discuss the interaction of wild type LPS with lipid membranes and cell membranes. These results suggest that LPS molecules can insert spontaneously into the external monolayer of the plasma membranes composed of the Lα phase-membrane and the microdomain in the lo phase.  相似文献   

5.
The disorders in cholesterol biosynthesis pathway and various diseases manifest in the accumulation of cholesterol precursors in the human tissues and cellular membranes. In this paper the effect of desmosterol – one of cholesterol precursors – on model lipid membranes was studied. The investigations were performed for binary SM/desmo and POPC/desmo and ternary SM/POPC/desmo monolayers. Moreover, the experiments based on the gradual substitution of cholesterol by desmosterol in SM/POPC/chol = 1:1:1 system were done. The obtained results allowed one to conclude that desmosterol is of lower domains promoting and stabilizing properties and packs less tightly with the lipids in monolayers. Moreover, desmosterol probably could replace cholesterol in model membranes, but only at its low proportion in the system (2%), however, at a higher degree of cholesterol substitution a significant decrease of the monolayer stability and packing and alterations in the film morphology were detected. The results collected in this work together with those from previous experiments allowed one to analyze the effect of a double bond in the sterol side chain as well as its position in the ring system on membrane activity of the molecule and to verify Bloch hypothesis.  相似文献   

6.
The effect of sphingomyelin (SM), one of the main lipids in the external monolayer of erythrocyte plasma membrane, on the ability of the hemolytic peptide melittin to permeabilize liposomes was investigated. The peptide induced contents efflux in large unilamellar vesicles (LUV) composed of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC)/SM (1:1 mole ratio), at lower (>1:10,000) peptide-to-lipid mole ratios than in pure POPC (>1:1000) or POPC/1-palmitoyl-2-oleoylphosphatidylglycerol (POPG) (1:1 mole ratio) (>1:300) vesicles. Analysis of the leakage data according to a kinetic model of pore formation showed a good fit for hexameric-octameric pores in SM-containing vesicles, whereas mediocre fits and lower surface aggregation constants were obtained in POPC and POPC/POPG vesicles. Disturbance of lateral separation into solid (s(o)) and liquid-disordered (l(d)) phases in POPC/SM mixtures increased the peptide-dose requirements for leakage. Inclusion of cholesterol (Chol) in POPC/SM mixtures under conditions inducing lateral separation of lipids into liquid-ordered (l(o)) and l(d) phases did not alter the number of melittin peptides required to permeabilize a single vesicle, but increased surface aggregation reversibility. Partitioning into liposomes or insertion into lipid monolayers was not affected by the presence of SM, suggesting that: (i) melittin accumulated at comparable doses in membranes with different SM content, and (ii) differences in leakage were due to promotion of melittin transmembrane pores under coexistence of s(o)-l(d) and l(o)-l(d) phases. Our results support the notion that SM may regulate the stability of size-defined melittin pores in natural membranes.  相似文献   

7.
The surface activity and interaction with lipid monolayers and bilayers of the antitumour ether lipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (edelfosine) have been studied. Edelfosine is a surface-active soluble amphiphile, with critical micellar concentrations at 3.5 microM and 19 microM in water. When the air-water interface is occupied by a phospholipid, edelfosine becomes inserted in the phospholipid monolayer, increasing surface pressure. This increase is dose-dependent, and reaches a plateau at ca. 2 microM edelfosine bulk concentration. The ether lipid can become inserted in phospholipid monolayers with initial surface pressures of up to 33 mN/m, which ensures its capacity to become inserted into cell membranes. Upon interaction with phospholipid vesicles, edelfosine exhibits a weak detergent activity, causing release of vesicle contents to a low extent (<5%), and a small proportion of lipid solubilization. The weak detergent properties of edelfosine can be related to its very low critical micellar concentrations. Its high affinity for lipid monolayers combined with low lytic properties support the use of edelfosine as a clinical drug. The surface-active properties of edelfosine are similar to those of other "single-chain" lipids, e.g. lysophosphatidylcholine, palmitoylcarnitine, or N-acetylsphingosine.  相似文献   

8.
The Green Fluorescent Protein (GFP) is a useful marker to trace the expression of cellular proteins. However, little is known about changes in protein interaction properties after fusion to GFP. In this study, we present evidence for a binding affinity of chimeric cadmium-binding green fluorescent proteins to lipid membrane. This affinity has been observed in both cellular membranes and artificial lipid monolayers and bilayers. At the cellular level, the presence of Cd-binding peptide promoted the association of the chimeric GFP onto the lipid membrane, which declined the fluorescence emission of the engineered cells. Binding affinity to lipid membranes was further investigated using artificial lipid bilayers and monolayers. Small amounts of the chimeric GFP were found to incorporate into the lipid vesicles due to the high surface pressure of bilayer lipids. At low interfacial pressure of the lipid monolayer, incorporation of the chimeric Cd-binding GFP onto the lipid monolayer was revealed. From the measured lipid isotherms, we conclude that Cd-binding GFP mediates an increase in membrane fluidity and an expansion of the surface area of the lipid film. This evidence was strongly supported by epifluorescence microscopy, showing that the chimeric Cd-binding GFP preferentially binds to fluid-phase areas and defect parts of the lipid monolayer. All these findings demonstrate the hydrophobicity of the GFP constructs is mainly influenced by the fusion partner. Thus, the example of a metal-binding unit used here shines new light on the biophysical properties of GFP constructs.This revised version was published online in June 2005 with a corrected cover date.  相似文献   

9.
Under pathological conditions, cholesterol oxidation products (oxysterols) appear in enhanced concentration in blood and cerebrospinal fluid, which leads to cytotoxic effect, especially in central nervous system. However, the mode of action of oxysterols on the membrane level has not been fully resolved. In this paper we have investigated the interaction between 7α- hydroxycholesterol, 7α-OH (one of the most abundant oxysterol in human body) and two major membrane lipids: sphingomyelin, SM (basic component of lipid rafts and nerve membrane) and 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine, POPC (main phospholipid of mammalian cell membranes). 7α-OH/SM mixtures may mimic pathologically changed lipid raft (ordered phase, LO) while the SM/POPC system can model its surrounding (liquid-disordered phase, Lα). For our study, the Langmuir monolayer technique (based on registration of the surface pressure/area, π/A isotherms), complemented with surface visualization technique (Brewster angle microscopy, BAM) and theoretical calculations, have been employed. The observed affinity of 7α-OH to SM, which appears to be stronger than in cholesterol/SM system, indicates that cholesterol might be partially replaced in lipid rafts by its oxidized derivative. Its incorporation significantly increases rigidity of the system in relation to normal (cholesterol-containing) raft, which can disturb its proper functioning. On the other hand, the poor effect of this oxysterol on the raft's environment was observed.  相似文献   

10.
ACTH-lipid interactions were investigated by: (1) lipid-monolayer studies using several zwitterionic and anionic phospholipids and gangliosides, (2) permeability experiments by following the swelling rate of liposomes in isotonic glycerol solutions by light scattering, using liposomes of synthetic lipids and liposomes made of lipids extracted from light synaptic plasma membranes, and (3) by steady-state fluorescence anisotropy measurements on liposomes derived from light synaptic plasma membranes employing 1,6-diphenyl-1,3,5-hexatriene as fluorescent probe. (1) The monolayer experiments demonstrated an interaction with gangliosides GT1, GM1, dioleoylphosphatidic acid and phosphatidylserine, but little or no interaction with phosphatidylcholine or sphingomyelin. The interaction with monolayers of GT1 or phosphatidic acid decreased for ACTH1-13-NH2 and ACTH1-10. (2) The liposome experiments showed that 2·10?5 M ACTH1–24 increased the glycerol permeability by 20% and decreased the activation energy only when liposomes derived from light synaptic plasma membranes were used. Treatment of the liposomes with neuraminidase abolished the ACTH-induced permeability increase. (3) Steady-state fluorescence depolarization measurements revealed that ACTH1–24, ACTH1-16-NH2 and ACTH1–10 did not change the fluidity of liposomes derived from light synaptic plasma membranes as sensed by diphenylhexatriene. It is concluded that ACTH1–24 can bind to negatively charged lipids and can form an amphipathic helix aligned parallel to the membrane surface involving the N-terminal residues 1 to 12, possibly to 16. Polysialogangliosides will favorably meet the condition of a high local surface charge density under physiological circumstances. It is suggested that ACTH-ganglioside interactions will participate in ACTH-receptor interactions.  相似文献   

11.

Background

Many drug development and toxicology studies are performed using cells grown in monolayers in well-plates and flasks, despite the fact that these are widely held to be different to cells found in the native environment. 3D, tissue engineered, organotypical tissue culture systems have been developed to be more representative of the native tissue environment than standard monolayer cultures. Whilst the biochemical differences between cells grown in 2D and 3D culture have been explored, the changes on the electrophysiological properties of the cells have not.

Methods

We compared the electrophysiological properties of primary normal oral keratinocytes (nOK) and cancerous abnormal oral keratinocytes (aOK), cultured in standard monolayer and reconstituted 3D organotypical tissue cultures. The electrophysiological properties of populations of the cells were analysed using dielectrophoresis. The intracellular conductivity of aOK was significantly increased when grown in organotypical cultures compared to counterpart cells grown in monolayer cultures.

Results

3D cultured aOK showed almost identical intracellular conductivity to nOK also grown in organotypical cultures, but significantly different to aOK grown in monolayers. The effective membrane capacitance of aOK grown in 3D was found to be significantly higher than nOK, but there was no significant difference between the electrophysiological properties of nOK grown in 2D and 3D cultures.

General significance

This work suggests that factors such as cell shape and cytoplasmic trafficking between cells play an important role in their electrophysiology, and highlights the need to use in vitro models more representative of native tissue when studying cell electrophysiological properties.  相似文献   

12.
We previously showed that erythrocyte and brain spectrins bind phospholipid vesicles and monolayers prepared from phosphatidylethanolamine and phosphatidylserine and their mixtures with phosphatidylcholine (Review: A.F. Sikorski, B. Hanus-Lorenz, A. Jezierski, A. R. Dluzewski, Interaction of membrane skeletal proteins with membrane lipid domain, Acta Biochim. Polon. 47 (2000) 565). Here, we show how changes in the fluidity of the phospholipid monolayer affect spectrin-phospholipid interaction. The presence of up to 10%-20% cholesterol in the PE/PC monolayer facilitates the penetration of the monolayer by both types of spectrin. For monolayers constructed from mixtures of PI/PC and cholesterol, the effect of spectrins was characterised by the presence of two maxima (at 5 and 30% cholesterol) of surface pressure for erythroid spectrin, and a single maximum (at 20% cholesterol) for brain spectrin. The binding assay results indicated a small but easily detectable decrease in the affinity of erythrocyte spectrin for FAT-liposomes prepared from a PE/PC mixture containing cholesterol, and a 2- to 5-fold increase in maximal binding capacity (Bmax) depending on the cholesterol content. On the other hand, the results from experiments with a monolayer constructed from homogenous synthetic phospholipids indicated an increase in Δπ change with the increase in the fatty acyl chain length of the phospholipids used to prepare the monolayer. This was confirmed by the results of a pelleting experiment. Adding spectrins into the subphase of raft-like monolayers constructed from DOPC, SM and cholesterol (1/1/1) induced an increase in surface pressure. The Δπ change values were, however, much smaller than those observed in the case of a natural PE/PC (6/4) monolayer. An increased binding capacity for spectrins of liposomes prepared from a “raft-like” mixture of lipids could also be concluded from the pelleting assay. In conclusion, we suggest that the effect of membrane lipid fluidity on spectrin-phospholipid interactions is not simple but depends on how it is regulated, i.e., by cholesterol content or by the chemical structure of the membrane lipids.  相似文献   

13.
Little is known about the heterogenous organization of lipids in biological membranes. Sphingomyelin (SM) is a major plasma membrane lipid that forms lipid domains together with cholesterol and glycolipids. Using SM-specific toxin, lysenin, we showed that in cultured epithelial cells the accessibility of the toxin to SM is different between apical and basolateral membranes. Apical membranes are highly enriched with glycolipids. The inhibitory role of glycolipids in the binding of lysenin to SM was confirmed by comparing the glycolipid-deficient mutant melanoma cell line with its parent cell. Model membrane experiments indicated that glycolipid altered the local density of SM so that the affinity of the lipid for lysenin was decreased. Our results indicate that lysenin recognizes the heterogenous organization of SM in biomembranes and that the organization of SM differs between different cell types and between different membrane domains within the same cell. Isothermal titration calorimetry suggests that lysenin binding to SM is presumably the result of a SM-lysenin complex formation of specific stoichiometry, thus supporting the idea of the existence of small condensed lipid complexes consisting of just a few lipid molecules in living cells.  相似文献   

14.
Summary The growth and differentiation of an established renal epithelial cell line, LLC-PK1, on membrane bound mussel adhesive protein (MAP), collagen, and extracellular matrix (ECM) in serum-containing medium was studied. Cell attachment and growth on uncoated- vs. protein-coated cellulose nitrate and acetate membranes did not differ significantly, and confluence was achieved on all membranes. However, cells remained in a single monolayer only when plated on collagen or ECM. LLC-PK1 monolayers grown on ECM-coated membranes displayed the highest transepitheliald-glucose transport (333 ± 22 ng·cm−2·min−1) whereas cells plated on collagen-coated membranes displayed the lowest (94 ± 23 ng·cm−2·min−1). Glucose flux values increased with age of the culture, reaching a plateau at 28 d postseeding. These results indicate that the underlying substratum and cell age can affect differentiation of renal epithelial cells in vitro.  相似文献   

15.
The surface activity and interaction with lipid monolayers and bilayers of the antitumour ether lipid 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (edelfosine) have been studied. Edelfosine is a surface-active soluble amphiphile, with critical micellar concentrations at 3.5 μM and 19 μM in water. When the air-water interface is occupied by a phospholipid, edelfosine becomes inserted in the phospholipid monolayer, increasing surface pressure. This increase is dose-dependent, and reaches a plateau at ca. 2 μM edelfosine bulk concentration. The ether lipid can become inserted in phospholipid monolayers with initial surface pressures of up to 33 mN/m, which ensures its capacity to become inserted into cell membranes. Upon interaction with phospholipid vesicles, edelfosine exhibits a weak detergent activity, causing release of vesicle contents to a low extent (< 5%), and a small proportion of lipid solubilization. The weak detergent properties of edelfosine can be related to its very low critical micellar concentrations. Its high affinity for lipid monolayers combined with low lytic properties support the use of edelfosine as a clinical drug. The surface-active properties of edelfosine are similar to those of other “single-chain” lipids, e.g. lysophosphatidylcholine, palmitoylcarnitine, or N-acetylsphingosine.  相似文献   

16.
Most in vitro studies use 2-dimensional (2D) monolayer cultures, where cells are forced to adjust to unnatural substrates that differ significantly from the natural 3-dimensional (3D) extracellular matrix that surrounds cells in living organisms. Our analysis demonstrates significant differences in the cholesterol and sphingomyelin content, structural organization and cholesterol susceptibility to oxidation of plasma membranes isolated from cells cultured in 3D cultures compared with conventional 2D cultures. Differences occurred in the asymmetry of cholesterol molecules and the physico-chemical properties of the 2 separate leaflets of plasma membranes in 2D and 3D cultured fibroblasts. Transmembrane distribution of other membrane phospholipids was not different, implying that the cholesterol asymmetry could not be attributed to alterations in the scramblase transport system. Differences were also established in the chemical activity of cholesterol, assessed by its susceptibility to cholesterol oxidase in conventional and “matrix” cell cultures. The influence of plasma membrane sphingomyelin and phospholipid content on cholesterol susceptibility to oxidation in 2D and 3D cells was investigated with exogenous sphingomyelinase (SMase) and phospholipase C (PLC) treatment. Sphingomyelin was more effective than membrane phospholipids in protecting cholesterol from oxidation. We presume that the higher cholesterol/sphingomyelin molar ratio is the reason for the higher rate of cholesterol oxidation in plasma membranes of 3D cells.  相似文献   

17.
Expression of the P-glycoprotein (Pgp) is proved to be one of the main reasons for the development of the multidrug resistance (MDR) phenotype by cancer cells. The effect of Pgp on the properties of lipid monolayers was studied using membrane fractions of sensitive and Pgp over-expressing multidrug resistance cancer cells containing 11, 24 or 32% of Pgp relative to the total content of membrane proteins. The effect of the Pgp membrane concentration on the properties of monolayers prepared from the membrane fractions was analyzed by the Langmuir-Blodgett method. The subphase composition was found to play a critical role in the stability of monolayers at any Pgp concentration. The optimal subphase comprised 10 mM tris-HCl buffer, pH 6.5, which made it possible to create very stable monolayer films with the pressure of collapse of about 30-40 mN/m. Monolayers prepared from membrane fractions of sensitive cells and cells containing the maximum (32%) amount of Pgp were found to be much more stable compared with fractions comprising 11 or 24% of Pgp. The analysis of monolayer compression dynamics revealed three distinct stages: (1) the self-organization of lipid molecules, which is characterized by an abrupt change of surface potential; (2) the compression of Pgp molecules at the constant potential of monolayers; and (3) the compression of lipid molecules, which is characterized by a quasilinear increase of both pressure and surface potential. It was shown that the specific surface areas of monolayers formed from sensitive and Pgp-enriched membranes containing 11 or 24% of Pgp are very similar, whereas the surface area of the monolayer formed from membranes containing 32% of Pgp is nearly 1.5-fold greater. This fact may reflect the effect of the threshold rearrangement of the structure of lipid molecules or cooperative modifications of lipid-Pgp interactions induced by the increase in the Pgp content from 24 to 32%. The effect of verapamil, a well-known Pgp modulator, on the properties of monolayers was studied. It was show that verapamil is able to induce changes of the surface of Pgp-containing monolayers, and these modifications are maximal at the Pgp:verapamil 1:1 molar ratio. The data present the first experimental evidence for the possible intervention of Pgp modulator into the processes of lipid-lipid or lipid-Pgp cooperative interactions within Pgp-enriched membranes.  相似文献   

18.
Phospholipids are key components of biological membranes and their lipolysis with phospholipase A2 (PLA2) enzymes occurs in different cellular pH environments. Since no studies are available on the effect of pH on PLA2-modified phospholipid membranes, we performed 50-ns atomistic molecular dynamics simulations at three different pH conditions (pH 9.0, 7.5, and 5.5) using a fully PLA2-hydrolyzed phosphatidylcholine (PC) bilayer which consists solely of lysophosphatidylcholine and free fatty acid molecules. We found that a decrease in pH results in lateral squeezing of the membrane, i.e. in decreased surface area per headgroup. Thus, at the decreased pH, the lipid hydrocarbon chains had larger SCD order parameter values, and also enhanced membrane thickness, as seen in the electron density profiles across the membrane. From the lateral pressure profiles, we found that the values of spontaneous curvature of the two opposing monolayers became negative when the pH was decreased. At low pH, protonation of the free fatty acid headgroups reduces their mutual repulsion and accounts for the pH dependence of all the above-mentioned properties. The altered structural characteristics may significantly affect the overall surface properties of biomembranes in cellular vesicles, lipid droplets, and plasma lipoproteins, play an important role in membrane fission and fusion, and modify interactions between membrane lipids and the proteins embedded within them.  相似文献   

19.
HIV-1 assembly occurs at the plasma membrane, with the Gag polyprotein playing a crucial role. Gag association with the membrane is directed by the matrix domain (MA), which is myristoylated and has a highly basic region that interacts with anionic lipids. Several pieces of evidence suggest that the presence of phosphatidylinositol-(4,5)-bisphosphate (PIP2) highly influences this binding. Furthermore, MA also interacts with nucleic acids, which is proposed to be important for the specificity of GAG for PIP2-containing membranes. It is hypothesized that RNA has a chaperone function by interacting with the MA domain, preventing Gag from associating with unspecific lipid interfaces. Here, we study the interaction of MA with monolayer and bilayer membrane systems, focusing on the specificity for PIP2 and on the possible effects of a Gag N-terminal peptide on impairing the binding for either RNA or membrane. We found that RNA decreases the kinetics of the protein association with lipid monolayers but has no effect on the selectivity for PIP2. Interestingly, for bilayer systems, this selectivity increases in presence of both the peptide and RNA, even for highly negatively charged compositions, where MA alone does not discriminate between membranes with or without PIP2. Therefore, we propose that the specificity of MA for PIP2-containing membranes might be related to the electrostatic properties of both membrane and protein local environments, rather than a simple difference in molecular affinities. This scenario provides a new understanding of the regulation mechanism, with a macromolecular view, rather than considering molecular interactions within a ligand-receptor model.  相似文献   

20.
Collapse of homogeneous lipid monolayers is known to proceed via wrinkling/buckling, followed by folding into bilayers in water. For heterogeneous monolayers with phase coexistence, the mechanism of collapse remains unclear. Here, we investigated collapse of lipid monolayers with coexisting liquid-liquid and liquid-solid domains using molecular dynamics simulations. The MARTINI coarse-grained model was employed to simulate monolayers of ∼80 nm in lateral dimension for 10–25 μs. The monolayer minimum surface tension decreased in the presence of solid domains, especially if they percolated. Liquid-ordered domains facilitated monolayer collapse due to the spontaneous curvature induced at a high cholesterol concentration. Upon collapse, bilayer folds formed in the liquid (disordered) phase; curved domains shifted the nucleation sites toward the phase boundary. The liquid (disordered) phase was preferentially transferred into bilayers, in agreement with the squeeze-out hypothesis. As a result, the composition and phase distribution were altered in the monolayer in equilibrium with bilayers compared to a flat monolayer at the same surface tension. The composition and phase behavior of the bilayers depended on the degree of monolayer compression. The monolayer-bilayer connection region was enriched in unsaturated lipids. Percolation of solid domains slowed down monolayer collapse by several orders of magnitude. These results are important for understanding the mechanism of two-to-three-dimensional transformations in heterogeneous thin films and the role of lateral organization in biological membranes. The study is directly relevant for the function of lung surfactant, and can explain the role of nanodomains in its surface activity and inhibition by an increased cholesterol concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号