首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activating mutations in the kinase domain of the EGF receptor have been reported in non-small cell lung cancer. The majority of tumors expressing these mutants are sensitive to ATP mimetics that inhibit the EGFR tyrosine kinase. The effect of antibodies that bind to the ectodomain of the receptor is less clear. We report herein the effects and mechanisms of action of the antibody cetuximab in lung cancer cells that naturally express receptor mutations and in ErbB-null 32D hematopoietic cells transfected with mutant EGFR. Treatment with cetuximab down-regulated EGFR levels and inhibited cell growth both in vitro and in vivo. This was associated with inhibition of ligand-independent EGFR signaling. These effects were seen in 32D cells arguing the growth inhibitory action was not because of the blockade of autocrine ligand action. Both antibody-induced EGFR down-regulation and inhibition of growth required receptor dimerization as monovalent Fab fragments only eliminated receptor levels or reduced cell proliferation in the presence of antihuman IgG. Finally, cetuximab inhibited growth of H1975 lung cancer cells and xenografts, which expressed L858R/T790M EGFR and were resistant to EGFR tyrosine kinase inhibitors. These data suggest that cetuximab is an effective therapy against mutant EGFR-expressing cancer cells and thus can be considered in combination with other anti-EGFR molecules.  相似文献   

2.
Epidermal growth factor receptor (EGFR) mutant non-small cell lung cancers acquire resistance to EGFR tyrosine kinase inhibitors through multiple mechanisms including c-Met receptor pathway activation. We generated a bispecific antibody targeting EGFR and c-Met (JNJ-61186372) demonstrating anti-tumor activity in wild-type and mutant EGFR settings with c-Met pathway activation. JNJ-61186372 was engineered with low fucosylation (<10 %), resulting in enhanced antibody-dependent cell-mediated cytotoxicity and FcγRIIIa binding. In vitro and in vivo studies with the single-arm EGFR or c-Met versions of JNJ-61186372 identified that the Fc-activity of JNJ-61186372 is mediated by binding of the anti-EGFR arm and required for inhibition of EGFR-driven tumor cells. In a tumor model driven by both EGFR and c-Met, treatment with Fc-silent JNJ-61186372 or with c-Met single-arm antibody reduced tumor growth inhibition compared to treatment with JNJ-61186372, suggesting that the Fc function of JNJ-61186372 is essential for maximal tumor inhibition. Moreover in this same model, downregulation of both EGFR and c-Met receptors was observed upon treatment with Fc-competent JNJ-61186372, suggesting that the Fc interactions are necessary for down-modulation of the receptors in vivo and for efficacy. These Fc-mediated activities, in combination with inhibition of both the EGFR and c-Met signaling pathways, highlight the multiple mechanisms by which JNJ-61186372 combats therapeutic resistance in EGFR mutant patients.  相似文献   

3.
To investigate the functions of key domains of the epidermal growth factor receptor (EGFR), various EGFR-derived peptide sequences were expressed in Escherichia coli as glutathione S-transferase (GST) fusion proteins. The purified fusion proteins (GST-TK0-8) were tested as substrates for the tyrosine kinase activities of the EGFR and c-src. Both the GST-TK4 fusion protein, which contains the major C-terminal tyrosine autophosphorylation sites of the EGFR, and GST-TK7, which contains the connecting sequence between the EGFR kinase domain and the C-terminal autophosphorylation domain, were strongly phosphorylated by the EGFR and c-src. Hence the candidate tyrosine phosphorylation sites present in the connecting sequences of the EGFR, as well as the known autophosphorylation sites of the EGFR, can be phosphorylated by the two tyrosine kinases. The protein GST-TK7 was phosphorylated by c-src with a KM of 5-10 microM, which indicated a potential interaction between the connecting segment of the EGFR and the c-src kinase. The GST fusion proteins were also used to map the sites recognized by two anti-EGFR monoclonal antibodies and a polyclonal serum raised against an EGFR tyrosine kinase domain fragment. The recognition site of one monoclonal antibody was determined to be in a short sequence surrounding tyr1068, a primary site of autophosphorylation in the C-terminal domain of the receptor. The anti-peptide polyclonal serum recognized only sequences in the GST-TK7 fusion protein, and hence binds to the connecting sequence between the kinase core and the C-terminal domain. These antibodies will therefore be useful reagents for studying the function of two key structural elements of the EGFR tyrosine kinase. The GST-TK fusion proteins should have many other applications in the study of EGFR catalysis and mitogenic signalling.  相似文献   

4.
The monoclonal antibody C225 (Cetuximab) blocks binding of ligand to the epidermal growth factor receptor (EGFR). In addition, it is known that incubation with C225 induces endocytosis of the EGFR. This endocytosis has previously been shown to be increased when C225 is combined with an additional monoclonal anti-EGFR antibody. However, the effects of antibody combinations on EGFR activation, endocytosis, trafficking and degradation have been unclear. By binding a secondary antibody to the C225-EGFR complex, we here demonstrate that a combination of antibodies can efficiently internalize and degrade the EGFR. Although the combination of antibodies activated the EGFR kinase and induced ubiquitination of the EGFR, the kinase activity was not required for internalization of the EGFR. In contrast to EGF-induced EGFR down-regulation, the antibody combination efficiently degraded the EGFR without initiating downstream proliferative signaling. The antibody-induced internalization of EGFR was found not to depend on clathrin and/or dynamin, but depended on actin polymerization, suggesting induction of macropinocytosis. Macropinocytosis may cause internalization of large membrane areas, and this could explain the highly efficient internalization of the EGFR induced by combination of antibodies.  相似文献   

5.
The development of a number of different solid tumours is associated with over-expression of ErbB1, or the epidermal growth factor receptor (EGFR), and this over-expression is often correlated with poor prognosis of patients. Therefore, this receptor tyrosine kinase is considered to be an attractive target for antibody-based therapy. Indeed, antibodies to the EGFR have already proven their value for the treatment of several solid tumours, especially in combination with chemotherapeutic treatment regimens. Variable domains of camelid heavy chain-only antibodies (called Nanobodies) have superior properties compared with classical antibodies in that they are small, very stable, easy to produce in large quantities and easy to re-format into multi-valent or multi-specific proteins. Furthermore, they can specifically be selected for a desired function by phage antibody display. In this report, we describe the successful selection and the characterisation of antagonistic anti-EGFR Nanobodies. By using a functional selection strategy, Nanobodies that specifically competed for EGF binding to the EGFR were isolated from "immune" phage Nanobody repertoires. The selected antibody fragments were found to efficiently inhibit EGF binding to the EGFR without acting as receptor agonists themselves. In addition, they blocked EGF-mediated signalling and EGF-induced cell proliferation. In an in vivo murine xenograft model, the Nanobodies were effective in delaying the outgrowth of A431-derived solid tumours. This is the first report describing the successful use of untagged Nanobodies for the in vivo treatment of solid tumours. The results show that functional phage antibody selection, coupled to the rational design of Nanobodies, permits the rapid development of novel anti-cancer antibody-based therapeutics.  相似文献   

6.
Certain combinations of non-competitive anti-EGFR antibodies have been reported to produce new effects on cells compared to either antibody used separately. New and enhanced combination-activity includes increased inhibition of signaling, increased receptor internalization and degradation, reduced proliferation of tumor cell lines and induction of complement-dependent cytotoxicity (CDC) effector function. To test requirements and mechanisms to elicit enhanced combination-activity with different EGFR binding domains, we created an anti-EGFR biparatopic antibody. A biparatopic antibody interacts through two different antigen-binding sites to a single antigen. A heterodimeric antibody with one binding domain derived from the C225 antibody and one binding domain derived from the humanized 425 (hu425) antibody was built on the strand-exchange engineered domain (SEED) scaffold. This anti-EGFR biparatopic-SEED antibody was compared to parental antibodies used alone and in combination, and to the corresponding monovalent anti-EGFR-SEED antibodies used alone or in combination. We found that the anti-EGFR biparatopic-SEED had enhanced activity, similar to the combination of the two parental antibodies. Combinations of monovalent anti-EGFR-SEED antibodies did not produce enhanced effectiveness in cellular assays. Our results show that the anti-EGFR biparatopic antibody created using the SEED scaffold has enhanced combination-activity in a single molecule. Furthermore, these data suggest that the potential to cross-link the two different epitopes is an important requirement in the mechanism of enhanced combination-activity.  相似文献   

7.
Epidermal growth factor receptor (EGFR) signaling in cancer   总被引:33,自引:0,他引:33  
The epidermal growth factor receptor (EGFR) belongs to the ErbB family of receptor tyrosine kinases (RTK). These trans-membrane proteins are activated following binding with peptide growth factors of the EGF-family of proteins. Evidence suggests that the EGFR is involved in the pathogenesis and progression of different carcinoma types. The EGFR and EGF-like peptides are often over-expressed in human carcinomas, and in vivo and in vitro studies have shown that these proteins are able to induce cell transformation. Amplification of the EGFR gene and mutations of the EGFR tyrosine kinase domain have been recently demonstrated to occur in carcinoma patients. Interestingly, both these genetic alterations of the EGFR are correlated with high probability to respond to anti-EGFR agents. However, ErbB proteins and their ligands form a complex system in which the interactions occurring between receptors and ligands affect the type and the duration of the intracellular signals that derive from receptor activation. In fact, proteins of the ErbB family form either homo- or hetero-dimers following ligand binding, each dimer showing different affinity for ligands and different signaling properties. In this regard, evidence suggests that cooperation of multiple ErbB receptors and cognate ligands is necessary to induce cell transformation. In particular, the growth and the survival of carcinoma cells appear to be sustained by a network of receptors/ligands of the ErbB family. This phenomenon is also important for therapeutic approaches, since the response to anti-EGFR agents might depend on the total level of expression of ErbB receptors and ligands in tumor cells.  相似文献   

8.
Multiple cellular pathways influence the growth and metastatic potential of tumors. This creates heterogeneity, redundancy, and the potential for tumors to bypass signaling pathway blockade, resulting in primary or acquired resistance. Combining therapies that inhibit different signaling pathways has the potential to be more effective than inhibition of a single pathway and to overcome tumor resistance. Vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) inhibitors have become key therapies in several tumor types. Close relationships between these factors exist: VEGF signaling is up-regulated by EGFR expression and, conversely, VEGF up-regulation independent of EGFR signaling seems to contribute to resistance to EGFR inhibition. Therefore, inhibition of both pathways could improve antitumor efficacy and overcome resistance to EGFR inhibition. Preclinical studies have shown that VEGF and EGFR inhibitors can have additive effects and that combined inhibition is effective in EGFR inhibitor-resistant cell lines. Clinical trials have also produced promising data: combining the anti-VEGF monoclonal antibody bevacizumab with the anti-EGFR antibody cetuximab or the EGFR tyrosine kinase inhibitor erlotinib increases benefit compared with either of these anti-EGFR agents alone or combined with chemotherapy. The potential of this novel approach to anticancer therapy will be elucidated by large, ongoing clinical trials.  相似文献   

9.
The epidermal growth factor receptor (EGFR) is a member of the ErbB family of receptor tyrosine kinases. EGFR is activated upon binding to e.g. epidermal growth factor (EGF), leading to cell survival, proliferation and migration. EGFR overactivation is associated with tumor progression. We have previously shown that low dose UVB illumination of cancer cells overexpressing EGFR prior to adding EGF halted the EGFR signaling pathway. We here show that UVB illumination of the extracellular domain of EGFR (sEGFR) induces protein conformational changes, disulphide bridge breakage and formation of tryptophan and tyrosine photoproducts such as dityrosine, N-formylkynurenine and kynurenine. Fluorescence spectroscopy, circular dichroism and thermal studies confirm the occurrence of conformational changes. An immunoassay has confirmed that UVB light induces structural changes in the EGF binding site. A monoclonal antibody which competes with EGF for binding sEGFR was used. We report clear evidence that UVB light induces structural changes in EGFR that impairs the correct binding of an EGFR specific antibody that competes with EGF for binding EGFR, confirming that the 3D structure of the EGFR binding domain suffered conformational changes upon UV illumination. The irradiance used is in the same order of magnitude as the integrated intensity in the solar UVB range. The new photonic technology disables a key receptor and is most likely applicable to the treatment of various types of cancer, alone or in combination with other therapies.  相似文献   

10.
PURPOSE: The epidermal growth factor receptor (EGFR) autocrine pathway plays an important role in cancer cell growth. Vascular endothelial growth factor A (VEGF-A) is a key regulator of tumor-induced endothelial cell proliferation and vascular permeability. ZD6474 is an orally available, small molecule inhibitor of VEGF receptor-2 (VEGFR-2), EGFR and RET tyrosine kinase activity. We investigated the activity of ZD6474 in combination with cetuximab, an anti-EGFR blocking monoclonal antibody, to determine the anti-tumor activity of EGFR blockade through the combined use of two agents targeting the receptor at different molecular sites in cancer cells and of VEGFR-2 blockade in endothelial cells. EXPERIMENTAL DESIGN: The anti-tumor activity in vitro and in vivo of ZD6474 and/or cetuximab was tested in human cancer cell lines with a functional EGFR autocrine pathway. RESULTS: The combination of ZD6474 and cetuximab determined synergistic growth inhibition in all cancer cell lines tested as assessed by the Chou and Talalay method. In nude mice bearing established human colon carcinoma (GEO) or lung adenocarcinoma (A549) xenografts and treated with ZD6474 and/or cetuximab for 4 weeks, a reversible tumor growth inhibition was caused by each drug. In contrast, a more significant tumor growth delay resulted from the combination of the two agents with an approximately 100-110 days increase in mice median overall survival as compared to single agent treatment. CONCLUSIONS: This study provides a rationale for evaluating in a clinical setting the double blockade of EGFR in combination with inhibition of VEGFR-2 signaling as cancer therapy.  相似文献   

11.
The epidermal growth factor receptor (EGFR) is frequently dysregulated in human malignancies and a validated target for cancer therapy. Two monoclonal anti-EGFR antibodies (cetuximab and panitumumab) are approved for clinical use. However, the percentage of patients responding to treatment is low and many patients experiencing an initial response eventually relapse. Thus, the need for more efficacious treatments remains. Previous studies have reported that mixtures of antibodies targeting multiple distinct epitopes are more effective than single mAbs at inhibiting growth of human cancer cells in vitro and in vivo. The current work describes the rational approach that led to discovery and selection of a novel anti-EGFR antibody mixture Sym004, which is currently in Phase 2 clinical testing. Twenty-four selected anti-EGFR antibodies were systematically tested in dual and triple mixtures for their ability to inhibit cancer cells in vitro and tumor growth in vivo. The results show that targeting EGFR dependent cancer cells with mixtures of antibodies is superior at inhibiting their growth both in vitro and in vivo. In particular, antibody mixtures targeting non-overlapping epitopes on domain III are efficient and indeed Sym004 is composed of two monoclonal antibodies targeting this domain. The superior growth inhibitory activity of mixtures correlated with their ability to induce efficient EGFR degradation.Key words: EGFR, antibody synergy, functional screening, epitope binning, antibody combinations  相似文献   

12.
《MABS-AUSTIN》2013,5(6):584-595
The epidermal growth factor receptor (EGFR) is frequently dysregulated in human malignancies and a validated target for cancer therapy. Two monoclonal anti-EGFR antibodies (cetuximab and panitumumab) are approved for clinical use. However, the percentage of patients responding to treatment is low and many patients experiencing an initial response eventually relapse. Thus, the need for more efficacious treatments remains. Previous studies have reported that mixtures of antibodies targeting multiple distinct epitopes are more effective than single mAbs at inhibiting growth of human cancer cells in vitro and in vivo. The current work describes the rational approach that led to discovery and selection of a novel anti-EGFR antibody mixture Sym004, which is currently in Phase 2 clinical testing. Twenty-four selected anti-EGFR antibodies were systematically tested in dual and triple mixtures for their ability to inhibit cancer cells in vitro and tumor growth in vivo. The results show that targeting EGFR dependent cancer cells with mixtures of antibodies is superior at inhibiting their growth both in vitro and in vivo. In particular, antibody mixtures targeting non-overlapping epitopes on domain III are efficient and indeed Sym004 is composed of two monoclonal antibodies targeting this domain. The superior growth inhibitory activity of mixtures correlated with their ability to induce efficient EGFR degradation.  相似文献   

13.
Dimerization of epidermal growth factor receptor (EGFR) leads to the activation of its tyrosine kinase. To elucidate whether dimerization is responsible for activation of the intracellular tyrosine kinase domain or just plays a role in the stabilization of the active form, the activated status of wild-type EGFR moiety in the heterodimer with kinase activity-deficient mutant receptors was investigated. The kinase activity of the wild-type EGFR was partially activated by EGF in the heterodimer with intracellular domain deletion (sEGFR) or ATP binding-deficient mutant (K721A) EGFRs, while the wild-type EGFR in the heterodimer of wild-type and phosphate transfer activity-deficient mutant receptor D813N could be fully activated. After treatment with EGF, the ATP binding affinity and the V(max) of the wild-type EGFR increased. In the presence of sEGFR, a similar increase in the affinity for ATP was observed, but V(max) did not change. A two-step activation mechanism for EGFR was proposed: upon binding of EGF, the affinity for ATP increased and then, as a result of interaction between the neighboring tyrosine kinase domain, V(max) increased.  相似文献   

14.
The somatic mutations in ATP binding cleft of the tyrosine kinase binding domain of EGFR are known to occur in 15–40% of non-small cell lung cancer (NSCLC) patients. Although first and second generation anti-EGFR inhibitors are widely used to treat these patients, their therapeutic efficacy is modest and often results in adverse effects or drug resistance. Therefore, there is a need to develop novel as well as safe anti-EGFR drugs. The rapid emergence of computational drug designing provided a great opportunity to both discover and predict the efficacy of novel EGFR inhibitors from plant sources. In the present study, we designed several chemical analogues of edible curcumin (CUCM) compound and assessed their drug likeliness, ADME and toxicity properties using a diverse range of advanced computational methods. We also have examined the structural plasticity and binding characteristics of EGFR wild-type and mutant forms (S769L and K846R) against ligand molecules like Gefitinib, native CUCM, and different CUCM analogues. Through multidimensional experimental approaches, we conclude that CUCM-36 ((1E,4Z,6E)-1-(3,4-Diphenoxyphenyl)-5-hydroxy-7-(4-hydroxy-3-phenoxyphenyl)-1,4,6-heptatrien-3-one) is the best anti-EGFR compound with high drug-likeness, ADME properties, and low toxicity properties. CUCM-36 compound has demonstrated better affinity towards both wild-type (ΔG is ?8.5?kcal/Mol) and mutant forms (V769L & K846R; ΔG for both is >?9.20?kcal/Mol) compared to natural CUCM and Gefitinib inhibitor. This study advises the future laboratory assays to develop CUCM-36 as a novel drug compound for treating EGFR positive non-small cell lung cancer patients.  相似文献   

15.
Elevated expression and activity of the epidermal growth factor receptor (EGFR)/protein kinase B (Akt) signaling pathway is associated with development, progression and treatment resistance of head and neck cancer (HNC). Several studies have demonstrated that microRNA-7 (miR-7) regulates EGFR expression and Akt activity in a range of cancer cell types via its specific interaction with the EGFR mRNA 3′-untranslated region (3′-UTR). In the present study, we found that miR-7 regulated EGFR expression and Akt activity in HNC cell lines, and that this was associated with reduced growth in vitro and in vivo of cells (HN5) that were sensitive to the EGFR tyrosine kinase inhibitor (TKI) erlotinib (Tarceva). miR-7 acted synergistically with erlotinib to inhibit growth of erlotinib-resistant FaDu cells, an effect associated with increased inhibition of Akt activity. Microarray analysis of HN5 and FaDu cell lines transfected with miR-7 identified a common set of downregulated miR-7 target genes, providing insight into the tumor suppressor function of miR-7. Furthermore, we identified several target miR-7 mRNAs with a putative role in the sensitization of FaDu cells to erlotinib. Together, these data support the coordinate regulation of Akt signaling by miR-7 in HNC cells and suggest the therapeutic potential of miR-7 alone or in combination with EGFR TKIs in this disease.  相似文献   

16.
目的:融合表达表皮生长因子受体(EGFR)胞外功能区,为制备针对该分子的特异性抗体提供可用的靶标抗原。方法:通过PCR扩增EGFR胞外区基因,将其克隆入真核表达载体pABhFc中,重组质粒瞬时转染HEK293T细胞,进行EGFR的瞬时分泌表达,纯化获得电泳纯级的分泌蛋白,并通过ELISA、Western印迹、Biacore3000系统对融合蛋白进行鉴定。结果:经测序证实扩增得到了正确的EGFR胞外区基因序列,SDS-PAGE初步确认获得了单、双体的EGFR胞外区,ELISA检测证实双体融合蛋白hFc-EGFR可与商业化的EGF特异性结合,Western印迹检测证实单体融合蛋白His-EGFR可与商业化抗体特异性结合;经Biacore3000蛋白分子相互作用系统测定,双体融合蛋白hFc-EGFR与商业化抗体爱必妥的亲和力达0.5 nmol/L。结论:利用哺乳动物细胞HEK293T分泌表达系统获得了结构正确的单、双体2种类型的EGFR胞外区融合蛋白纯品,将用于抗EGFR特异性抗体的筛选。  相似文献   

17.
Cdc42-associated tyrosine kinase 1 (ACK1) is a specific down-stream effector of Cdc42, a Rho family small G-protein. Previous studies have shown that ACK1 interacts with clathrin heavy chain and is involved in clathrin-coated vesicle endocytosis. Here we report that ACK1 interacted with epidermal growth factor receptor (EGFR) upon EGF stimulation via a region at carboxy terminus that is highly homologous to Gene-33/Mig-6/RALT. The interaction of ACK1 with EGFR was dependent on the kinase activity or tyrosine phosphorylation of EGFR. Immunofluorescent staining using anti-EGFR and GFP-ACK1 indicates that ACK1 was colocalized with EGFR on EEA-1 positive vesicles upon EGF stimulation. Suppression of the expression of ACK1 by ACK-RNAi inhibited ligand-induced degradation of EGFR upon EGF stimulation, suggesting that ACK1 plays an important role in regulation of EGFR degradation in cells. Furthermore, we identified ACK1 as an ubiquitin-binding protein. Through an ubiquitin-association (Uba) domain at the carboxy terminus, ACK1 binds to both poly- and mono-ubiquitin. Overexpression of the Uba domain-deletion mutant of ACK1 blocked the ligand-dependent degradation of EGFR, suggesting that ACK1 regulates EGFR degradation via its Uba domain. Taken together, our studies suggest that ACK1 senses signal of EGF and regulates ligand-induced degradation of EGFR.  相似文献   

18.
Pancreatic cancer is characterized by aggressive local invasion and early metastasis formation. Active migration of the pancreatic cancer cells is essential for these processes. We have shown previously that the pancreatic cancer cells lines CFPAC1 and IMIM-PC2 show high migratory activity, and we have investigated herein the reason for this observation. Cell migration was assessed using a three-dimensional, collagen-based assay and computer-assisted cell tracking. The expression of receptor tyrosine kinases was determined by flow-cytometry and cytokine release was measured by an enzyme-linked immunoassay. Receptor function was blocked by antibodies or pharmacological enzyme inhibitors. Both cells lines express the epidermal growth factor receptor (EGFR) as well as its family-member ErbB2 and the platelet-derived growth factor receptor (PDGFR)α, whereas only weak expression was detected for ErbB3 and no expression of PDGFRβ. Pharmacological inhibition of the EGFR or ErbB2 significantly reduced the migratory activity in both cell lines, as did an anti-EGFR antibody. Interestingly, combination of the latter with an anti-PDGFR antibody led to an even more pronounced reduction. Both cell lines release detectable amounts of EGF. Thus, the high migratory activity of the investigated pancreatic cancer cell lines is due to autocrine EGFR activation and possibly of other receptor tyrosine kinases.  相似文献   

19.
In recent years, the epidermal growth factor receptor (EGFR) has been recognized as a central player and regulator of cancer cell proliferation, apoptosis and angiogenesis and, therefore, as a potentially relevant therapeutic target. Several strategies for EGFR targeting have been developed, the most succesful being represented by monoclonal antibodies, that directly interfere with ligand-receptor binding and small molecule tyrosine kinase inhibitors, that interfere with activation/phosphorylation of EGFR. These agents have been authorized in advanced chemorefractory cancers, including colorectal cancer, non-small-cell lung cancer and head and neck cancer. However, evidence of resistance to these drugs has been described and extensive studies have been performed to investigate whether resistance to EGFR-targeted therapy is primary or secondary. Cellular levels of EGFR do not always correlate with response to the EGFR inhibitors. Indeed, in spite of the over expression and efficient inhibition of EGFR, resistance to EGFR inhibitors may occur. Moreover, given the genetic instability of cancer cells, genetic modifications could enable them to acquire a resistant phenotype to anti-EGFR therapies. Taken together, these findings support the importance of understanding the molecular mechanisms affecting cancer cell sensitivity or resistance to such inhibitors. This review will focus on the most relevant mechanisms contributing to the acquisition of sensitivity/resistance to EGFR inhibitors.  相似文献   

20.
We have studied whether activation of epidermal growth factor receptor (EGFR) is involved in stretch-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation and protein synthesis in cultured rat vascular smooth muscle cells (VSMC). Cyclic stretch (1 Hz) induced a rapid (within 5 min) phosphorylation of ERK1/2, an effect that was time and strength dependent and inhibited by an EGFR kinase inhibitor (AG-1478) but not by a platelet-derived growth factor receptor kinase inhibitor (AG-1296). The stretch rapidly (within 2 min) induced tyrosine phosphorylation of several proteins, among which 180-kDa protein was shown to be EGFR as revealed by blockade with AG-1478 as well as immunoprecipitation with anti-EGFR antibody coupled with immunoblotting with anti-phosphotyrosine antibody. The stretch rapidly (within 2 min) induced association of tyrosine-phosphorylated EGFR with adaptor proteins (Shc/Grb2) as revealed by coprecipitation with glutathione-S-transferase-Grb2 fusion protein coupled with immunoblotting with anti-phosphotyrosine, anti-EGFR, and anti-Shc antibodies. Transfection of a dominant-negative mutant of H-Ras also inhibited stretch-induced ERK1/2 activation. Treatment with a stretch-activated ion channel blocker (Gd(3+)) and an intracellular Ca(2+) antagonist (TMB-8) inhibited stretch-induced phosphorylation of EGFR and ERK1/2. Treatment with AG-1478 and a mitogen-activated protein kinase kinase inhibitor (PD-98059), but not AG-1296, blocked [(3)H]leucine uptake stimulated by a high level of stretch. These data suggest that ERK1/2 activation by mechanical stretch requires Ca(2+)-sensitive EGFR activation mainly via stretch-activated ion channels, thereby leading to VSMC growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号