首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
T loops and telomeric G-quadruplex (G4) DNA structures pose a potential threat to genome stability and must be dismantled to permit efficient telomere replication. Here we implicate the helicase RTEL1 in the removal of telomeric DNA secondary structures, which is essential for preventing telomere fragility and loss. In the absence of RTEL1, T loops are inappropriately resolved by the SLX4 nuclease complex, resulting in loss of the telomere as a circle. Depleting SLX4 or blocking DNA replication abolished telomere circles (TCs) and rescued telomere loss in RTEL1(-/-) cells but failed to suppress telomere fragility. Conversely, stabilization of telomeric G4-DNA or loss of BLM dramatically enhanced telomere fragility in RTEL1-deficient cells but had no impact on TC formation or telomere loss. We propose that RTEL1 performs two distinct functions at telomeres: it disassembles T loops and also counteracts telomeric G4-DNA structures, which together ensure the dynamics and stability of the telomere.  相似文献   

2.
Using circular dichroism spectroscopy, gel electrophoresis, and ultraviolet absorption spectroscopy, we have studied quadruplex folding of RNA/DNA analogs of the Oxytricha telomere fragment, G(4)T(4)G(4), which forms the well-known basket-type, antiparallel quadruplex. We have substituted riboguanines (g) for deoxyriboguanines (G) in the positions G1, G9, G4, and G12; these positions form the terminal tetrads of the G(4)T(4)G(4) quadruplex and adopt syn, syn, anti, and anti glycosidic geometries, respectively. We show that substitution of a single sugar was able to change the quadruplex topology. With the exception of G(4)T(4)G(3)g, which adopted an antiparallel structure, all the RNA/DNA hybrid analogs formed parallel, bimolecular quadruplexes in concentrated solution at low salt. In dilute solutions ( approximately 0.1 mM nucleoside), the RNA/DNA hybrids substituted at positions 4 or 12 adopted antiparallel quadruplexes, which were especially stable in Na(+) solutions. The hybrids substituted at positions 1 and 9 preferably formed parallel quadruplexes, which were more stable than the nonmodified G(4)T(4)G(4) quadruplex in K(+) solutions. Substitutions near the 3'end of the molecule affected folding more than substitutions near the 5'end. The ability to control quadruplex folding will allow further studies of biophysical and biological properties of the various folding topologies. (c) 2008 Wiley Periodicals, Inc. Biopolymers 89: 797-806, 2008.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.  相似文献   

3.
DNA oligonucleotides can form multi-stranded structures such as a duplex, triplex, and quadruplex, while the double helical structure is generally considered as the canonical structure of DNA oligonucleotides. Guanine-rich or cytosine-rich oligonucleotides, which are observed in telomere, centromere, and other biologically important sequences in vivo, can form four-stranded G-quadruplex and I-motif structures in vitro. In this study, we have investigated the effects of pH and cation on the structures and their stabilities of d(G4T4G4) and d(C4A4C4). The CD spectra and thermal melting curves of DNAs at various pHs demonstrated that acidic conditions induced a stable I-motif structure of d(C4A4C4), while the pH value did not affect the G-quadruplex structure and stability of d(G4T4G4). The CD spectra of the 1:1 mixture of d(G4T4G4) and d(C4A4C4) indicated that the acidic conditions inhibit the duplex formation between d(G4T4G4) and d(C4A4C4). Isothermal titration calorimetry measurements of the duplex formation at various pHs also quantitatively indicated that the acidic conditions inhibit the duplex formation. On the other hand, the CD spectra and thermal melting curves of DNAs in the absence and presence of Ca2+ indicated that Ca2+ induces a parallel G-quadruplex structure of d(G4T4G4) and then inhibits the duplex formation. These results lead to the conclusion that both the pH and coexisting cation can induce and regulate the structural polymorphisms the oligonucleotides in which they form the G-quadruplex, I-motif, and duplex depending on the conditions. Thus, the results reported here indicate pivotal roles of pH and coexisting cations in biological processes by regulating the conformational switching between the duplex and quadruplexes structures of the guanine-rich or cytosine-rich oligonucleotides in vivo.  相似文献   

4.
GGA triplet repeats are widely dispersed throughout eukaryotic genomes and are frequently located within biologically important regions such as gene regulatory regions and recombination hot spot sites. We determined the structure of d(GGA)4 (12-mer) under physiological conditions and founded the formation of an intramolecular parallel quadruplex for the first time. Later, a similar architecture to that of the intramolecular parallel quadruplex was found for a telomere DNA in the crystalline state. Here, we have determined the structure of d(GGA)8 (24-mer) under physiological conditions. Two intramolecular parallel quadruplexes comprising a G:G:G:G tetrad and a G(:A):G(:A):G(:A):G heptad are formed in d(GGA)8. These quadruplexes are packed in a tail-to-tail manner. This is the first demonstration of the intramolecular higher order packing of quadruplexes at atomic resolution. K+ ions, but not Na+ ones, are critically required for the formation of this unique structure. The elucidated structure suggests the mechanisms underlying the biological events related to the GGA triplet repeat. Furthermore, in the light of the structure, the mode of the higher order packing of the telomere DNA is discussed.  相似文献   

5.
To understand the regulation mechanism of fission yeast telomeric DNA, we analysed the structural properties of Gn: d(GnTTAC) (n=2-6) and 4Gn: d(GnTTAC)4 (n=3 and 4), and their interaction with the single-stranded telomeric DNA binding domain of telomere-binding protein Pot1 (Pot1DBD). G4, G5 and G6 formed a parallel tetraplex in contrast with no tetraplex formation by G2 and G3. Also, 4G4 adopted only an antiparallel tetraplex in spite of a mixture of parallel and antiparallel tetraplexes of 4G3. The variety of tetraplex structures was governed by the number of consecutive guanines in a single copy and the number of repeats. The antiparallel tetraplex of 4G4 became unfolded upon the interaction with Pot1DBD. The interaction with mutant Pot1DBD proteins revealed that the ability to unfold the antiparallel tetraplex was strongly correlated with the specific binding affinity for the single-stranded telomeric DNA. The result suggests that the decrease in the free single strand upon the complex formation with Pot1DBD may shift the equilibrium from the tetraplex to the single strand, which may cause the tetraplex unfolding. Considering that the antiparallel tetraplex inhibits telomerase-mediated telomere elongation, we conclude that the ability of Pot1 to unfold the antiparallel tetraplex is required for telomerase-mediated telomere regulation.  相似文献   

6.
We have used circular dichroism and UV absorption spectroscopy to characterize the formation and melting behaviour of an intramolecular DNA triple helix containing parallel T*A:T and G*G:C triplets. Our approach to induce and to stabilize a parallel triplex involves the oligonucleotide 5'-d(G4A4G4[T4]C4T4C4-[T4]G4T4G4) ([T4] represents a stretch of four thymine residues). In a 10 mM sodium cacodylate, 0.2 mM disodium EDTA (pH 7) buffer, we have shown the following significant results. (i) While in the absence of MgCl2 this oligonucleotide adopts an intramolecular hairpin duplex structure prolonged by the single strand extremity 5'-d([T4]G4T4G4), the presence of millimolar concentrations of MgCl2generates an intramolecular triplex (via double hairpin formation). (ii) In contrast to the antiparallel triplex formed by the oligonucleotide 5'-d(G4T4G4[T4]G4A4G4[T4]C4T4C4), the parallel triplex melts in a biphasic manner (a triplex to duplex transition followed by a duplex to coil transition) and is less stable than the antiparallel one. The enthalpy change associated with triplex formation (-37 kcal/mol) is approximately half that of duplex formation (-81 kcal/mol). (iii) The parallel triple helix is disrupted by increasing the concentration of KCl(>10 mM), whereas, under the same conditions, the antiparallel triplex remains stable. (iv) Netropsin, a natural DNA minor groove-binding ligand, binds to the central site A4/T4of the duplex or triplex in an equimolar stoichiometry. Its association constant K is smaller for the parallel triplex ( approximately 1 x 10(7) M-1) than for the antiparallel one ( approximately 1 x 10(8) M-1). In contrast to the antiparallel structure, netropsin binding has no apparent effect on thermal stability of the parallel triple helix.  相似文献   

7.
8.
9.
The polyguanine-rich DNA sequences commonly found at telomeres and in rDNA arrays have been shown to assemble into structures known as G quadruplexes, or G4 DNA, stabilized by base-stacked G quartets, an arrangement of four hydrogen-bonded guanines. G4 DNA structures are resistant to the many helicases and nucleases that process intermediates arising in the course of DNA replication and repair. The lagging strand DNA replication protein, Dna2, has demonstrated a unique localization to telomeres and a role in de novo telomere biogenesis, prompting us to study the activities of Dna2 on G4 DNA-containing substrates. We find that yeast Dna2 binds with 25-fold higher affinity to G4 DNA formed from yeast telomere repeats than to single-stranded DNA of the same sequence. Human Dna2 also binds G4 DNAs. The helicase activities of both yeast and human Dna2 are effective in unwinding G4 DNAs. On the other hand, the nuclease activities of both yeast and human Dna2 are attenuated by the formation of G4 DNA, with the extent of inhibition depending on the topology of the G4 structure. This inhibition can be overcome by replication protein A. Replication protein A is known to stimulate the 5'- to 3'-nuclease activity of Dna2; however, we go on to show that this same protein inhibits the 3'- to 5'-exo/endonuclease activity of Dna2. These observations are discussed in terms of possible roles for Dna2 in resolving G4 secondary structures that arise during Okazaki fragment processing and telomere lengthening.  相似文献   

10.
To understand the regulation mechanism of fission yeast telomeric DNA, we analyzed the structural properties of 4Gn: d(G(n)TTAC)(4) (n = 3, 4) and their interaction with the single-stranded telomeric DNA binding domain of telomere-binding protein Pot1 (Pot1DBD). 4G4 adopted only an antiparallel tetraplex in spite of a mixture of parallel and antiparallel tetraplexes of 4G3. The antiparallel tetraplex of 4G4 became unfolded upon the interaction with Pot1DBD. Considering that the antiparallel tetraplex inhibits telomerase-mediated telomere elongation, we conclude that the ability of Pot1 to unfold the antiparallel tetraplex is required for telomerase-mediated telomere regulation.  相似文献   

11.
Efficient and faithful replication of telomeric DNA is critical for maintaining genome integrity. The G‐quadruplex (G4) structure arising in the repetitive TTAGGG sequence is thought to stall replication forks, impairing efficient telomere replication and leading to telomere instabilities. However, pathways modulating telomeric G4 are poorly understood, and it is unclear whether defects in these pathways contribute to genome instabilities in vivo. Here, we report that mammalian DNA2 helicase/nuclease recognizes and cleaves telomeric G4 in vitro. Consistent with DNA2's role in removing G4, DNA2 deficiency in mouse cells leads to telomere replication defects, elevating the levels of fragile telomeres (FTs) and sister telomere associations (STAs). Such telomere defects are enhanced by stabilizers of G4. Moreover, DNA2 deficiency induces telomere DNA damage and chromosome segregation errors, resulting in tetraploidy and aneuploidy. Consequently, DNA2‐deficient mice develop aneuploidy‐associated cancers containing dysfunctional telomeres. Collectively, our genetic, cytological, and biochemical results suggest that mammalian DNA2 reduces replication stress at telomeres, thereby preserving genome stability and suppressing cancer development, and that this may involve, at least in part, nucleolytic processing of telomeric G4.  相似文献   

12.
1H-NMR, CD, and UV spectroscopy have been used to investigate the structure of PNA/DNA chimeras forming quadruplex structures. In particular, we synthesized 5'TGGG3'-t (1) and 5'TGG3'-gt (2), where lower and upper case letters indicate PNA and DNA residues, respectively. CD spectrum and all NMR data of (1) are typical of quadruplexes involving four parallel strands. UV melting profile of (1) indicates that its thermal stability is quite similar to that observed for the reference structure [d(TGGGT)]4. 1H-NMR spectrum for 5'TGG3'-gt (2) shows that this oligonucleotide is not able to fold into a single, well-defined species.  相似文献   

13.
To date, various G-quadruplex structures have been reported in the human genome. There are numerous studies focusing on quadruplex-forming sequences in general, but few studies have focused on two or more quadruplexes in the same molecule, which are most commonly found in telomeric DNA and other tandem repeats, e.g., insulin-linked polymorphic region (ILPR). Although the human telomere consists of a number of repeats, higher-order G-quadruplex structures are discussed less often because of the complexity of the structures. In this study, sequences consisting of 4-12 repeats of d(G(4)TGT), d(G(3)T(2)A), and/or d(G(4)T(2)A) have been studied by circular dichroism, ultraviolet spectroscopy, and temperature-gradient gel electrophoresis. These sequences serve as a model for the arrangement of quadruplexes in the telomere and ILPR in solution. Our major findings are as follows. (i) The number of G-rich repeats has a great influence on G-quadruplex stability. (ii) The evidence of quadruplex-quadruplex interaction is confirmed. (iii) For the first time, we directly observed the melting behavior of different conformers in a single experiment. Our results agree with other calorimetric and spectroscopic data and data obtained by single-molecule studies, atomic force microscopy, and mechanical unfolding by optical tweezers. We propose that the end of telomeres can be formed by only a few tandem quadruplexes (fewer than three). Our findings improve our understanding of the mechanism of G-quadruplex formation in long repeats in G-rich-regulating parts of genes and telomere ends.  相似文献   

14.
Telomeric DNA and C-myc22 are DNA G-quadruplex (G4)-forming sequences associated with tumorigenesis. Ligands that can facilitate the formation and increase the stabilization of G4 can halt tumor cell proliferation and have been regarded as potential anti-cancer drugs. In the present study, we have investigated the interaction of 11 natural alkaloids with G4 formed by telomeric DNA and C-myc22 sequences. Our results indicated that sanguinarine (San), palmatine (Pal), and berberine (Beb) of the first series (S1) can induce the formation of G4 as well as increase the stabilization ability. Daurisoline (S2-1), O-methyldauricine (S2-2), O-diacetyldaurisoline (S2-3), daurinoline (S2-4), dauricinoline (S2-5), N,N'-dimethyldauricine iodide (S2-6), and N,N'-dimethyldaurisoline iodide (S2-7) of the second series (S2) showed similar stabilization ability. We found that unsaturated ring C, N(+) positively charged centers, and conjugated aromatic rings are key factors to increase the stabilization ability of S1, and we gave some advice on structure modification to S2 through structure-activity study. Besides, we found San and Pal to be cell cycle blocker in G(1). San was speculated to bind to G4 through intercalation or end stacking.  相似文献   

15.
Herein, we described the synthesis of two l-phenylalanines α-derivatized with a terminal alkyne moiety whose structures differed by phenyl ring halogen substitution (two o-Cl in 1 vs. one p-Br in 2) and investigated their effect on biological macromolecules and living cells. We explored their interaction with quadruplex DNA (G4 DNA), using tel26 and c-myc as models, and bovine serum albumin (BSA). By CD spectroscopy, we found that 1 caused minor tel26 secondary structure changes, leading also to a slight thermal stabilization of this hybrid antiparallel/parallel G4 structure, while the c-myc parallel topology remained essentially unchanged upon 1 binding. Other CD evidences showed the ability of 1 to bind BSA, while molecular docking studies suggested that the same molecule could be housed into the hydrophobic cavity between sub-domains IIA, IIB, and IIIA of the protein. Furthermore, preliminary aggregation studies, based on concentration-dependent spectroscopic experiments, suggested the ability of 1 to aggregate forming noncovalent polymeric systems in aqueous solution. Differently from 1, the bromine-modified compound was able to bind Cu(II) ion, likely with the formation of a CuL2 complex, as found by UV spectroscopy. Finally, cell tests excluded any cytotoxic effect of both compounds toward normal cells, but showed slight antiproliferative effects of 2 on PC3 cancerous cells at 24 h, and of 1 on both T98G and MDA-MB-231 cancer cells at 48 h.  相似文献   

16.
Ataxia telangiectasia mutated (ATM), a PI-3 kinase essential for maintaining genomic stability, has been shown to regulate TRF1, a negative mediator of telomerase-dependent telomere extension. However, little is known about ATM-mediated TRF1 phosphorylation site(s) in vivo. Here, we report that ATM phosphorylates S367 of TRF1 and that this phosphorylation renders TRF1 free of chromatin. We show that phosphorylated (pS367)TRF1 forms distinct non-telomeric subnuclear foci and that these foci occur predominantly in S and G2 phases, implying that their formation is cell cycle regulated. We show that phosphorylated (pS367)TRF1-containing foci are sensitive to proteasome inhibition. We find that a phosphomimic mutation of S367D abrogates TRF1 binding to telomeric DNA and renders TRF1 susceptible to protein degradation. In addition, we demonstrate that overexpressed TRF1-S367D accumulates in the subnuclear domains containing phosphorylated (pS367)TRF1 and that these subnuclear domains overlap with nuclear proteasome centers. Taken together, these results suggest that phosphorylated (pS367)TRF1-containing foci may represent nuclear sites for TRF1 proteolysis. Furthermore, we show that TRF1 carrying the S367D mutation is unable to inhibit telomerase-dependent telomere lengthening or to suppress the formation of telomere doublets and telomere loss in TRF1-depleted cells, suggesting that S367 phosphorylation by ATM is important for the regulation of telomere length and stability.  相似文献   

17.
18.
19.
Mita H  Ohyama T  Tanaka Y  Yamamoto Y 《Biochemistry》2006,45(22):6765-6772
A water-soluble cationic porphyrin, 5,10,15,20-tetrakis(N-methylpyridinium-4-yl)-21H,23H-porphyrin (TmPyP4), has been studied extensively because of its unique physicochemical properties that lead to interactions with nucleic acids, as well as its therapeutic application. Formation of a complex between TmPyP4 and parallel G-quadruplex DNA formed from a single repeat sequence of the human telomere, d(TTAGGG), has been characterized in an effort to elucidate the mode of molecular recognition between TmPyP4 and the DNA. The study demonstrated that TmPyP4 intercalates into the A3pG4 step of [d(TTAGGG)]4 with an association constant of 6.2 x 10(6) M(-1) and a stoichiometric ratio of 1:1. The binding of TmPyP4 to the A3pG4 step of [d(TTAGGG)]4 was found to be stabilized by the pi-pi stacking interaction of the porphyrin ring of TmPyP4 with the G4 quartet as well as the A3 bases of the G-quadruplex DNA. These findings provide novel insights for the design of porphyrin derivatives that bind to DNA with high affinity and specificity.  相似文献   

20.
Functional telomeres are required to maintain the replicative ability of cancer cells and represent putative targets for G-quadruplex (G4) ligands. Here, we show that the pentacyclic acridinium salt RHPS4, one of the most effective and selective G4 ligands, triggers damages in cells traversing S phase by interfering with telomere replication. Indeed, we found that RHPS4 markedly reduced BrdU incorporation at telomeres and altered the dynamic association of the telomeric proteins TRF1, TRF2 and POT1, leading to chromosome aberrations such as telomere fusions and telomere doublets. Analysis of the molecular damage pathway revealed that RHPS4 induced an ATR-dependent ATM signaling that plays a functional role in the cellular response to RHPS4 treatment. We propose that RHPS4, by stabilizing G4 DNA at telomeres, impairs fork progression and/or telomere processing resulting in telomere dysfunction and activation of a replication stress response pathway. The detailed understanding of the molecular mode of action of this class of compounds makes them attractive tools to understand telomere biology and provides the basis for a rational use of G4 ligands for the therapy of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号