首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Mental stress testing has been proposed as a noninvasive tool to evaluate endothelium-dependent coronary vasomotion. In patients with coronary artery disease, mental stress can induce myocardial ischemia. However, even the determinants of the physiological myocardial blood flow (MBF) response to mental stress are poorly understood. Twenty-four individuals (12 males/12 females, mean age 49 +/- 13 yr, range 31-74 yr) with a low likelihood for coronary artery disease were studied. Serum catecholamines, cardiac work, and MBF (measured quantitatively with N-13 ammonia and positron emission tomography) were assessed. During mental stress (arithmetic calculation) MBF increased significantly from 0.70 +/- 0.14 to 0.92 +/- 0.21 ml x min(-1) x g(-1) (P < 0.01). Mental stress caused significant increases (P < 0.01) in serum epinephrine (26 +/- 16 vs. 42 +/- 17 pg/ml), norepinephrine (272 +/- 139 vs. 322 +/- 136 pg/ml), and cardiac work [rate-pressure product (RPP) 8,011 +/- 1,884 vs. 10,416 +/- 2,711]. Stress-induced changes in cardiac work were correlated with changes in MBF (r = 0.72; P < 0.01). Multiple-regression analysis revealed stress-induced changes in the RPP as the only significant (P = 0.0001) predictor for the magnitude of mental stress-induced increases in MBF in healthy individuals. Data from this group of healthy individuals should prove useful to investigate coronary vasomotion in individuals at risk for or with documented coronary artery disease.  相似文献   

2.
We previously reported that even low-intensity, short-duration acute aerobic exercise decreases arterial stiffness. We aimed to test the hypothesis that the exercise-induced decrease in arterial stiffness is caused by the increased production of NO in vascular endothelium with exercise. Nine healthy men (age: approximately 22-28 yr) performed a 5-min single-leg cycling exercise (30 W) in the supine position under an intravenous infusion of NG-monomethyl-L-arginine (L-NMMA; 3 mg/kg during the initial 5 min and subsequent continuous infusion of 50 mug.kg(-1).min(-1) in saline) or vehicle (saline) in random order on separate days. The pulse wave velocity (PWV) from the femoral to posterior tibial artery was measured on both legs before and after the infusion at rest and 2 min after exercise. Under the control condition, exercised leg PWV significantly decreased after exercise (P <0.05), whereas nonexercised leg PWV did not show a significant change throughout the experiment. Under L-NMMA administration, exercised leg PWV was increased significantly by the infusion (P <0.05) but decreased significantly after the exercise (P <0.05). Nonexercised leg PWV increased with L-NMMA administration and maintained a significantly higher level during the administration compared with baseline (before the infusion, all P <0.05). The NO synthase blockade x time interaction on exercised leg PWV was not significant (P=0.706). These results suggest that increased production of NO is not a major factor in the decrease of regional arterial stiffness with low-intensity, short-duration aerobic exercise.  相似文献   

3.
Cardiovascular and sympathoadrenal responses to a reproducible mental stress test were investigated in eight healthy young men before and during intravenous infusion of the nitric oxide (NO) synthesis inhibitor N-monomethyl-L-arginine (L-NMMA). Before L-NMMA, stress responses included significant increases in heart rate, mean arterial pressure, and cardiac output (CO) and decreases in systemic and forearm vascular resistance. Arterial plasma norepinephrine (NE) increased. At rest after 30 min of infusion of L-NMMA (0.3 mg.kg(-1).min(-1) iv), mean arterial pressure increased from 98 +/- 4 to 108 +/- 3 mmHg (P <0.001) because of an increase in systemic vascular resistance from 12.9 +/- 0.5 to 18.5 +/- 0.9 units (P <0.001). CO decreased from 7.7 +/- 0.4 to 5.9 +/- 0.3 l/min (P <0.01). Arterial plasma NE decreased from 2.08 +/- 0.16 to 1.47 +/- 0.14 nmol/l. Repeated mental stress during continued infusion of L-NMMA (0.15 mg.kg(-1).min(-1)) induced qualitatively similar cardiovascular responses, but there was a marked attenuation of the increase in mean arterial blood pressure, resulting in similar "steady-state" blood pressures during mental stress without and with NO blockade. Increases in heart rate and CO were attenuated, but stress-induced decreases in systemic and forearm vascular resistance were essentially unchanged. Arterial plasma NE increased less than during the first stress test. Thus the increased arterial tone at rest during L-NMMA infusion is compensated for by attenuated increases in blood pressure during mental stress, mainly through a markedly attenuated CO response and suppressed sympathetic nerve activity.  相似文献   

4.
Patients with type 1 (insulin-dependent) diabetes show reduced skeletal muscle blood flow and coronary vasodilatory function despite intensive insulin therapy and good metabolic control. Administration of proinsulin C-peptide increases skeletal muscle blood flow in these patients, but a possible influence of C-peptide on myocardial vasodilatory function in type 1 diabetes has not been investigated. Ten otherwise healthy young male type 1 diabetic patients (Hb A1c 6.6%, range 5.7-7.9%) were studied on two consecutive days during normoinsulinemia and euglycemia in a double-blind, randomized, crossover design, receiving intravenous infusion of C-peptide (5 pmol.kg-1.min-1) for 120 min on one day and saline infusion on the other day. Myocardial blood flow (MBF) was measured at rest and during adenosine administration (140 microg.kg-1.min-1) both before and during the C-peptide or saline infusions by use of positron emission tomography and [15O]H2O administration. Basal MBF was not significantly different in the patients compared with an age-matched control group, but adenosine-induced myocardial vasodilation was 30% lower (P < 0.05) in the patients. During C-peptide administration, adenosine-stimulated MBF increased on average 35% more than during saline infusion (P < 0.02) and reached values similar to those for the healthy controls. Moreover, as evaluated from transthoracal echocardiographic measurements, C-peptide infusion resulted in significant increases in both left ventricular ejection fraction (+5%, P < 0.05) and stroke volume (+7%, P < 0.05). It is concluded that short-term C-peptide infusion in physiological amounts increases the hyperemic MBF and left-ventricular function in type 1 diabetic patients.  相似文献   

5.
Animal studies suggest that nitric oxide (NO) plays an important role in buffering short-term arterial pressure variability, but data from humans addressing this hypothesis are scarce. We evaluated the effects of NO synthase (NOS) inhibition on arterial blood pressure (BP) variability in eight healthy subjects in the supine position and during 60 degrees head-up tilt (HUT). Systemic NOS was blocked by intravenous infusion of N(G)-monomethyl-L-arginine (L-NMMA). Electrocardiogram and beat-by-beat BP in the finger (Finapres) were recorded continuously for 6 min, and brachial cuff BP was recorded before and after L-NMMA in each body position. BP and R-R variability and their transfer functions were quantified by power spectral analysis in the low-frequency (LF; 0.05-0.15 Hz) and high-frequency (HF; 0.15-0.35 Hz) ranges. L-NMMA infusion increased supine BP (systolic, 109 +/- 4 vs. 122 +/- 3 mmHg, P = 0.03; diastolic, 68 +/- 2 vs. 78 +/- 3 mmHg, P = 0.002), but it did not affect supine R-R interval or BP variability. Before L-NMMA, HUT decreased HF R-R variability (P = 0.03), decreased transfer function gain (LF, 12 +/- 2 vs. 5 +/- 1 ms/mmHg, P = 0.007; HF, 18 +/- 3 vs. 3 +/- 1 ms/mmHg, P = 0.002), and increased LF BP variability (P < 0.0001). After L-NMMA, HUT resulted in similar changes in BP and R-R variability compared with tilt without L-NMMA. Increased supine BP after L-NMMA with no effect on BP variability during HUT suggests that tonic release of NO is important for systemic vascular tone and thus steady-state arterial pressure, but NO does not buffer dynamic BP oscillations in humans.  相似文献   

6.
The relative contributions of endothelium-dependent dilators [nitric oxide (NO), prostaglandins (PGs), and endothelium-derived hyperpolarizing factor (EDHF)] in human limbs are poorly understood. We tested the hypothesis that relative contributions of NO and PGs differ between endothelial agonists acetylcholine (ACh; 1, 2, and 4 microg.dl(-1).min(-1)) and bradykinin (BK; 6.25, 25, and 50 ng.dl(-1).min(-1)). We measured forearm blood flow (FBF) using venous occlusion plethysmography in 50 healthy volunteers (27 +/- 1 yr) in response to brachial artery infusion of ACh or BK in the absence and presence of inhibitors of NO synthase [NOS; with NG-monomethyl-L-arginine (L-NMMA)] and cyclooxygenase (COX; with ketorolac). Furthermore, we tested the idea that the NOS + COX-independent dilation (in the presence of L-NMMA + ketorolac, presumably EDHF) could be inhibited by exogenous NO administration, as reported in animal studies. FBF increased approximately 10-fold in the ACh control; L-NMMA reduced baseline FBF and ACh dilation, whereas addition of ketorolac had no further effect. Ketorolac alone did not alter ACh dilation, but addition of L-NMMA reduced ACh dilation significantly. For BK infusion, FBF increased approximately 10-fold in the control condition; L-NMMA tended to reduce BK dilation (P < 0.1), and addition of ketorolac significantly reduced BK dilation. Similar to ACh, ketorolac alone did not alter BK dilation, but addition of L-NMMA reduced BK dilation. To test the idea that NO can inhibit the NOS + COX-independent portion of dilation, we infused a dose of sodium nitroprusside (NO-clamp technique) during ACh or BK that restored the reduction in baseline blood flow due to L-NMMA. Regardless of treatment order, the NO clamp restored baseline FBF but did not reduce the NOS + COX-independent dilation to ACh or BK. We conclude that the contribution of NO and PGs differs between ACh and BK, with ACh being more dependent on NO and BK being mostly dependent on a NOS + COX-independent mechanism (EDHF) in healthy young adults. The NOS + COX-independent dilation does not appear sensitive to feedback inhibition from NO in the human forearm.  相似文献   

7.
Impaired hyperemic myocardial blood flow (MBF) in hypertrophic cardiomyopathy (HCM), despite normal epicardial coronary arteries, results in microvascular dysfunction. The aim of the present study was to determine the relative contribution of extravascular compressive forces to microvascular dysfunction in HCM. Eighteen patients with symptomatic HCM and normal coronary arteries and 10 age-matched healthy volunteers were studied with PET to quantify resting and hyperemic MBF at a subendocardial and subepicardial level. In HCM patients, MRI was performed to determine left ventricular (LV) mass index (LVMI) and volumes, echocardiography to assess diastolic perfusion time, heart catheterization to measure LV outflow tract gradient (LVOTG) and LV pressures, and serum NH(2)-terminal pro-brain natriuretic peptide (NT-proBNP) as a biochemical marker of LV wall stress. Hyperemic MBF was blunted in HCM vs. controls (2.26 +/- 0.97 vs. 2.93 +/- 0.64 ml min(-1) g(-1), P < 0.05). In contrast to controls (1.38 +/- 0.15 to 1.25 +/- 0.19, P = not significant), the endocardial-to-epicardial MBF ratio decreased significantly in HCM during hyperemia (1.20 +/- 0.11 to 0.88 +/- 0.18, P < 0.01). This pattern was similar for hypertrophied septum and lateral wall. Hyperemic MBF was inversely correlated with LVOTG, NT-proBNP, left atrial volume index, and LVMI (all P < 0.01). Multivariate regression analysis, however, revealed that only LVMI and NT-proBNP were independently related to hyperemic MBF, with greater impact at the subendocardial myocardial layer. Hyperemic MBF is more severely impaired at the subendocardial level in HCM patients. The level of impairment is related to markers of increased hemodynamic LV loading conditions and LV mass. These observations suggest that, in addition to reduced capillary density caused by hypertrophy, extravascular compressive forces contribute to microvascular dysfunction in HCM patients.  相似文献   

8.
The classical model of coronary physiology implies the presence of maximal microcirculatory vasodilation during myocardial ischemia. However, Doppler monitoring of coronary blood flow (CBF) documented severe microcirculatory vasoconstriction during pacing-induced ischemia in patients with coronary artery disease. This study investigates the mechanisms that underlie this paradoxical behavior in nine patients with stable angina and single-vessel coronary disease who were candidates for stenting. While transstenotic pressures were continuously monitored, input CBF (in ml/min) to the poststenotic myocardium was measured by Doppler catheter and angiographic cross-sectional area. Simultaneously, specific myocardial blood flow (MBF, in ml.min(-1).g(-1)) was measured by 133Xe washout. Perfused tissue mass was calculated as CBF/MBF. Measurements were obtained at baseline, during pacing-induced ischemia, and after stenting. CBF and distal coronary pressure values were also measured during pacing with intracoronary adenosine administration. During pacing, CBF decreased to 64 +/- 24% of baseline and increased to 265 +/- 100% of ischemic flow after adenosine administration. In contrast, pacing increased MBF to 184 +/- 66% of baseline, measured as a function of the increased rate-pressure product (r = 0.69; P < 0.05). Thus, during pacing, perfused myocardial mass drastically decreased from 30 +/- 23 to 12 +/- 11 g (P < 0.01). Distal coronary pressure remained stable during pacing but decreased after adenosine administration. Stenting increased perfused myocardial mass to 39 +/- 23 g (P < 0.05 vs. baseline) as a function of the increase in distal coronary pressure (r = 0.71; P < 0.02). In conclusion, the vasoconstrictor response to pacing-induced ischemia is heterogeneously distributed and excludes a tissue fraction from perfusion. Within perfused tissue, the metabolic demand still controls the vasomotor tone.  相似文献   

9.
Endurance training improves endothelium-dependent vasodilation, yet it does not increase basal blood flow in the legs. We determined the effects of a 3-mo aerobic exercise intervention on basal leg blood flow and alpha-adrenergic vasoconstriction and nitric oxide (NO) release in seven apparently healthy middle-aged and older adults (60 +/- 3 yr). Basal femoral artery blood flow (via Doppler ultrasound) (pretraining: 354 +/- 29; posttraining: 335 +/- 34 ml/min) and vascular conductance did not change significantly with the exercise training. Before the exercise intervention, femoral artery blood flow increased 32 +/- 16% with systemic alpha-adrenergic blockade (with phentolamine) (P < 0.05), and the addition of nitric oxide synthase (NOS) inhibition using N(G)-monomethyl-L-arginine (L-NMMA) did not affect femoral artery blood flow. After training was completed, femoral artery blood flow increased 47 +/- 7% with alpha-adrenergic blockade (P < 0.01) and then decreased 18 +/- 7% with the subsequent administration of L-NMMA (P < 0.05). Leg vascular conductance showed a greater alpha-adrenergic blockade-induced vasodilation (+1.7 +/- 0.5 to +3.0 +/- 0.5 units, P < 0.05) as well as NOS inhibition-induced vasoconstriction (-0.8 +/- 0.4 to -2.7 +/- 0.7 units, P < 0.05) after the exercise intervention. Resting plasma norepinephrine concentration significantly increased after the training. These results suggest that regular aerobic exercise training enhances NO bioavailability in middle-aged and older adults and that basal limb blood flow does not change with exercise training because of the contrasting influences of sympathetic nervous system activity and endothelium-derived vasodilation on the vasculature.  相似文献   

10.
The aim of this study was to determine whether inhibition of nitric oxide synthase (NOS) alters dynamic cerebral autoregulation in humans. Beat-to-beat blood pressure (BP) and cerebral blood flow (CBF) velocity (transcranial Doppler) were measured in eight healthy subjects in the supine position and during 60 degrees head-up tilt (HUT). NOS was inhibited by intravenous NG-monomethyl-L-arginine (L-NMMA) infusion. Dynamic cerebral autoregulation was quantified by transfer function analysis of beat-to-beat changes in BP and CBF velocity. Pressor effects of L-NMMA on cerebral hemodynamics were compared with those of phenylephrine infusion. In the supine position, L-NMMA increased mean BP from 83+/-3 to 94+/-3 mmHg (P < 0.01). However, CBF velocity remained unchanged. Consequently, cerebrovascular resistance index (CVRI) increased by 15% (P < 0.05). BP and CBF velocity variability and transfer function gain at the low frequencies of 0.07-0.20 Hz did not change with L-NMMA infusion. Similar changes in mean BP, CBF velocity, and CVRI were observed after phenylephrine infusion, suggesting that increase in CVRI after L-NMMA was mediated myogenically by increase in arterial pressure rather than a direct effect of cerebrovascular NOS inhibition. During baseline tilt without L-NMMA, steady-state BP increased and CBF velocity decreased. BP and CBF velocity variability at low frequencies increased in parallel by 277% and 217%, respectively (P < 0.05). However, transfer function gain remained unchanged. During tilt with L-NMMA, changes in steady-state hemodynamics and BP and CBF velocity variability as well as transfer gain and phase were similar to those without L-NMMA. These data suggest that inhibition of tonic production of NO does not appear to alter dynamic cerebral autoregulation in humans.  相似文献   

11.
The effect of coronary artery bypass grafting (CABG) on absolute myocardial blood flow (MBF) has not been investigated previously. MBF (ml. min(-1). g(-1)) was measured at rest and during hyperemia (0.56 mg/kg iv dipyridamole) using H(2)(15)O and positron emission tomography in eight patients with three-vessel disease before surgery and 1 and 6 mo after full revascularization. Baseline MBF was 0.87 +/- 0.12 preoperatively and 1.04 +/- 0.14 and 0.95 +/- 0.13 at 1 and 6 mo after CABG, respectively (P < 0.05, 6 mo vs. preoperatively). Hyperemic MBF was 1.36 +/- 0.28 preoperatively and increased to 1.98 +/- 0.50 and 2.45 +/- 0.64 at 1 and 6 mo after CABG, respectively (P < 0.01, 6 mo vs. preoperatively). Coronary vasodilator reserve (hyperemic/baseline MBF) increased from 1.59 +/- 0.40 preoperatively to 1.93 +/- 0.13 and 2.57 +/- 0.49 at 1 and 6 mo, respectively (P < 0.05, 6 mo vs. preoperatively). Minimal (dipyridamole) coronary resistance (mmHg. min. g(-1). ml(-1)) fell progressively from 59.37 +/- 14.56 before surgery to a nadir of 35. 76 +/- 10.12 at 6 mo after CABG (P < 0.01 vs. preoperatively). The results of the present study confirm that CABG improves coronary vasodilator reserve progressively as a result of reduction in minimal coronary resistance. These data suggest persistent microvascular dysfunction that recovers slowly after surgery.  相似文献   

12.
To determine whether endothelial function is altered by chronic surgical sympathectomy, we infused ACh, isoproterenol, nitroprusside (NTP), and the nitric oxide synthase inhibitor NG-mono-methyl-L-arginine (L-NMMA) into the brachial arteries of nine patients 5-64 mo after thoracic sympathectomy for hyperhidrosis. Age- and gender-matched controls were also studied. Forearm blood flow (FBF) was measured by venous occlusion plethysmography. Lower body negative pressure was used to assess reflex vasoconstrictor responses. Tyramine, which acts locally and causes norepinephrine release from sympathetic nerves, was also administered via the brachial artery. FBF at rest was 2.5 +/- 0.4 ml x dl-1 x min-1 in the patients and 2.5 +/- 0.3 ml x dl-1 x min-1 in the controls (P = 0.95). The normal vasoconstrictor responses to lower body negative pressure were abolished in the patients. By contrast, tyramine produced dose-dependent vasoconstriction in the patients that was identical to that of controls. The dose-response curves to ACh were similar in patients and controls, with maximum values of 19.3 +/- 4.4 vs. 25.5 +/- 2.8 ml x dl-1 x min-1, respectively. L-NMMA reduced baseline FBF similarly and reduced the maximal FBF response to ACh in both groups (patients 8.9 +/- 3.5 vs. controls 9.7 +/- 2.5 ml x dl-1 x min-1). The vasodilation to isoproterenol was similar and blunted to the same extent in both groups by L-NMMA. The responses to NTP in patients and controls were similar and not affected by L-NMMA. We conclude that, in humans, chronic surgical sympathectomy does not cause major disruptions in vascular function in the forearm. The normal vasoconstrictor responses to tyramine indicate that there were viable sympathetic nerves in the forearm that were not engaged by LBNP.  相似文献   

13.
The heterogeneity across the left ventricular wall is characterized by higher rates of oxygen consumption, systolic thickening fraction, myocardial perfusion, and lower energetic state in the subendocardial layers (ENDO). During dobutamine stimulation-induced demand ischemia, the transmural distribution of energy demand and metabolic markers of ischemia are not known. In this study, hemodynamics, transmural high-energy phosphate (HEP), 2-deoxyglucose-6-phosphate (2-DGP) levels, and myocardial blood flow (MBF) were determined under basal conditions, during dobutamine infusion (DOB: 20 microg x kg(-1) x min(-1) iv), and during coronary stenosis + DOB + 2-deoxyglucose (2-DG) infusion. DOB increased rate pressure products (RPP) and MBF significantly without affecting the subendocardial-to-subepicardial blood flow ratio (ENDO/EPI) or HEP levels. During coronary stenosis + DOB + 2-DG infusion, RPP, ischemic zone (IZ) MBF, and ENDO/EPI decreased significantly. The IZ ratio of creatine phosphate-to-ATP decreased significantly [2.30 +/- 0.14, 2.06 +/- 0.13, and 2.04 +/- 0.11 to 1.77 +/- 0.12, 1.70 +/- 0.11, and 1.72 +/- 0.12 for EPI, midmyocardial (MID), and ENDO, respectively], and 2-DGP accumulated in all layers, as evidenced by the 2-DGP/PCr (0.55 +/- 0.12, 0.52 +/- 0.10, and 0.37 +/- 0.08 for EPI, MID, and ENDO, respectively; P < 0.05, EPI > ENDO). In the IZ the wet weight-to-dry weight ratio was significantly increased compared with the normal zone (5.9 +/- 0.5 vs. 4.4 +/- 0.4; P < 0.05). Thus, in the stenotic perfused bed, during dobutamine-induced high cardiac work state, despite higher blood flow, the subepicardial layers showed the greater metabolic changes characterized by a shift toward higher carbohydrate metabolism, suggesting that a homeostatic response to high-cardiac work state is characterized by more glucose utilization in energy metabolism.  相似文献   

14.
The purpose of the present in vivo study was to determine the role of nitric oxide (NO) in the regulation of glucose metabolism in response to endotoxin by blocking NO synthesis with N(G)-monomethyl-L-arginine (L-NMMA). In five dogs, the appearance and disappearance rates of glucose (by infusion of [6,6-(2)H(2)]glucose), plasma glucose concentration, and plasma hormone concentrations were measured on five different occasions: saline infusion, endotoxin alone (E coli, 1.0 microg/kg i.v.), and endotoxin administration plus three different doses of primed, continuous infusion of L-NMMA. Endotoxin increased rate of appearance of glucose from 13.7 +/- 1.6 to 23.6 +/- 3.3 micromol x kg(-1) x min(-1) (P < 0.05), rate of disappearance of glucose from 13.9 +/- 1.1 to 24.8 +/- 3.1 micromol x kg(-1) x min(-1) (P < 0.001), plasma lactate from 0.5 +/- 0.1 to 1.7 +/- 0.1 mmol/l (P < 0.01), and counterregulatory hormone concentrations. L-NMMA did not affect the rise in rate of appearance and disappearance of glucose, plasma lactate, or the counterregulatory hormone response to endoxin. Plasma glucose levels were not affected by endotoxin with or without L-NMMA. In conclusion, in vivo inhibition of NO synthesis by high doses of L-NMMA does not affect glucose metabolism in response to endotoxin, indicating that NO is not a major mediator of glucose metabolism during endotoxemia in dogs.  相似文献   

15.

Background

Caffeine is one of the most widely consumed pharmacologically active substances. Its acute effect on myocardial blood flow is widely unknown. Our aim was to assess the acute effect of caffeine in a dose corresponding to two cups of coffee on myocardial blood flow (MBF) in coronary artery disease (CAD).

Methodology/Principal Findings

MBF was measured with 15O-labelled H2O and Positron Emission Tomography (PET) at rest and after supine bicycle exercise in controls (n = 15, mean age 58±13 years) and in CAD patients (n = 15, mean age 61±9 years). In the latter, regional MBF was assessed in segments subtended by stenotic and remote coronary arteries. All measurements were repeated fifty minutes after oral caffeine ingestion (200 mg). Myocardial perfusion reserve (MPR) was calculated as ratio of MBF during bicycle stress divided by MBF at rest. Resting MBF was not affected by caffeine in both groups. Exercise-induced MBF response decreased significantly after caffeine in controls (2.26±0.56 vs. 2.02±0.56, P<0.005), remote (2.40±0.70 vs. 1.78±0.46, P<0.001) and in stenotic segments (1.90±0.41 vs. 1.38±0.30, P<0.001). Caffeine decreased MPR significantly by 14% in controls (P<0.05 vs. baseline). In CAD patients MPR decreased by 18% (P<0.05 vs. baseline) in remote and by 25% in stenotic segments (P<0.01 vs. baseline).

Conclusions

We conclude that caffeine impairs exercise-induced hyperaemic MBF response in patients with CAD to a greater degree than age-matched controls.  相似文献   

16.
In eight healthy male volunteers (cardiologists; age 36 +/- 5 yr), bicycle spiroergometry, Doppler echocardiography, and quantitative coronary angiography with intracoronary Doppler measurements before and after completion of a physical endurance exercise program of >5 mo duration were performed. Maximum oxygen uptake increased from 46 +/- 6 to 54 +/- 5 ml x kg(-1) x min(-1) (P = 0.04), maximum ergometric workload changed from 3.8 +/- 0.3 to 4.4 +/- 0.3 W/kg (P = 0.001), and left ventricular mass index increased from 82 +/- 18 to 108 +/- 29 g/m(2) (P = 0.001). The right, left main, and left anterior descending coronary artery cross-sectional area increased significantly in response to exercise. Before versus at the end of the exercise program, flow-induced left anterior descending coronary artery cross-sectional area was 10.1 +/- 3.5 and 11.0 +/- 3.9 mm(2), respectively (P = 0.03), nitroglycerin-induced left coronary calibers increased significantly, and coronary flow velocity reserve changed from 3.8 +/- 0.8 to 4.5 +/- 0.7 (P = 0.001). Left coronary artery correlated significantly with ventricular mass and maximum oxygen uptake, and coronary flow velocity reserve was significantly associated with maximum workload.  相似文献   

17.
Low density lipoprotein molecular weight (LDL MW) correlates positively with coronary artery disease in cholesterol-fed nonhuman primates. To evaluate this in human beings with coronary artery disease (CAD) we measured LDL MW in 93 volunteers undergoing coronary angiography (47 controls and 46 CAD patients). LDL MW of CAD patients was less than that of controls (patients, 2.79 +/- 0.17 g/mumol; controls, 2.93 +/- 0.19 g/mumol; P less than 0.001). However, LDL MW decreased as plasma triglyceride increased and concentrations of triglyceride were greater in CAD patients than in controls. Since decreased LDL MW is likely to result, in part, from increased plasma triglyceride concentrations, we attempted to determine the effect of triglyceride on the relation of LDL MW to CAD in this study. After covariance adjustment for triglyceride, there was no LDL MW difference between CAD patients and controls. Because LDL heterogeneity has been identified in other studies and was apparent on inspection of agarose column profiles of LDL of these volunteers, we sought differences in the profiles that might distinguish coronary disease cases from controls. No differences could be found. In addition, we used density gradient ultracentrifugation to characterize LDL in more detail in a subset of volunteers who had a wide range of plasma triglyceride concentrations (50 mg/dl to 900 mg/dl). LDL mean hydrated density was inversely related to LDL MW and increased as triglyceride increased. The increase in peak density was reflected in an increase in percent of total protein in LDL found to have d greater than 1.045 g/ml and a decrease in protein in LDL of d 1.035-1.040 g/ml. These interrelationships were not apparently influenced by coronary artery status.  相似文献   

18.

Introduction

Microcirculation dysfunction is a typical feature of systemic sclerosis (SSc) and represents the earliest abnormality of primary myocardial involvement. We assessed coronary microcirculation status by combining two functional tests in SSc patients and estimating its impact on disease outcome.

Methods

Forty-one SSc patients, asymptomatic for coronary artery disease, were tested for coronary flow velocity reserve (CFR) by transthoracic-echo-Doppler with adenosine infusion (A-TTE) and for left ventricular wall motion abnormalities (WMA) by dobutamine stress echocardiography (DSE). Myocardial multi-detector computed tomography (MDCT) enabled the presence of epicardial stenosis, which could interfere with the accuracy of the tests, to be excluded. Patient survival rate was assessed over a 6.7- ± 3.5-year follow-up.

Results

Nineteen out of 41 (46%) SSc patients had a reduced CFR (≤2.5) and in 16/41 (39%) a WMA was observed during DSE. Furthermore, 13/41 (32%) patients showed pathological CFR and WMA. An inverse correlation between wall motion score index (WMSI) during DSE and CFR value (r = -0.57, P <0.0001) was observed; in addition, CFR was significantly reduced (2.21 ± 0.38) in patients with WMA as compared to those without (2.94 ± 0.60) (P <0.0001). In 12 patients with abnormal DSE, MDCT was used to exclude macrovasculopathy. During a 6.7- ± 3.5-year follow-up seven patients with abnormal coronary functional tests died of disease-related causes, compared to only one patient with normal tests.

Conclusions

A-TTE and DSE tests are useful tools to detect non-invasively pre-clinical microcirculation abnormalities in SSc patients; moreover, abnormal CFR and WMA might be related to a worse disease outcome suggesting a prognostic value of these tests, similar to other myocardial diseases.  相似文献   

19.
DNA polymorphisms at the endothelium constitutive nitric oxide synthase gene (NOS3) have been linked to the risk of developing coronary artery disease (CAD). In vitro, a polymorphism in the 5' region of the NOS3 gene (-786 T/C) influences promoter activity. This polymorphism has been associated with coronary spasms among Japanese. The genetic variation at the angiotensin-converting enzyme (ACE) is associated with plasma ACE activities and has also been linked with susceptibility to cardiovascular disease. Our objective was to determine if DNA polymorphisms in the NOS3 and ACE genes were associated with early CAD. We analyzed the -786 T/C polymorphism in the 5' flanking region and the 27-bp repeat polymorphism in NOS3 intron 4, as well as the ACE-I/D polymorphism. A total of 170 male smokers (CAD patients) younger than 50 years and 300 male smokers (healthy controls) were genotyped. Frequencies were compared by the chi(2) test, and odds ratios (ORs) and their 95% confidence intervals (CI) were also calculated. Only the -786 T/C polymorphism in the 5' flanking region of the NOS3 gene was significantly associated with early CAD in our population. The frequency of the CC genotype was significantly increased (P = 0.039) in patients compared to controls (OR = 1.67; 95% CI = 1.01, 2.72). We found a synergistic effect between the NOS3-CC and the ACE-DD genotypes in the risk of developing early CAD. The frequency of CC + DD was significantly increased among patients (P = 0.002). Thus, those with a NOS3-CC and an ACE-DD genotype would have a significantly increased risk of suffering an early episode of coronary artery disease (OR = 2.82; 95% CI = 1.40, 5.70). Although based on a limited number of patients, our work suggests that individuals who are NOS3-CC + ACE-DD are at a higher risk for early CAD, probably as a consequence of increased endothelial dysfunction.  相似文献   

20.
A reduced coronary flow reserve (CFR) has been demonstrated in diabetes, but the underlying mechanisms are unknown. We assessed thermodilution-derived CFR after 5-min intravenous adenosine infusion through a pressure-temperature sensor-tipped wire in 30 coronary arteries without significant lumen reduction in 30 patients: 13 with and 17 without a history of diabetes. We determined CFR as the ratio of basal and hyperemic mean transit times (T(mn)); fractional flow reserve (FFR) as the ratio of distal and proximal pressures at maximal hyperemia to exclude local macrovascular disease; and an index of microvascular resistance (IMR) as the distal coronary pressure at maximal hyperemia divided by the inverse of the hyperemic T(mn). We also assessed insulin resistance by the homeostasis model assessment (HOMA) index. FFR was normal in all investigated arteries. CFR was significantly lower in diabetic vs. nondiabetic patients [median (interquartile range): 2.2 (1.4-3.2) vs. 4.1 (2.7-4.4); P = 0.02]. Basal T(mn) was lower in diabetic vs. nondiabetic subjects [median (interquartile range): 0.53 (0.25-0.71) vs. 0.64 (0.50-1.17); P = 0.04], while hyperemic T(mn) and IMR were similar. We found significant correlations at linear regression analysis between logCFR and the HOMA index (r(2) = 0.35; P = 0.0005) and between basal T(mn) and the HOMA index (r(2) = 0.44; P < 0.0001). In conclusion, compared with nondiabetic subjects, CFR is lower in patients with diabetes and epicardial coronary arteries free of severe stenosis, because of increased basal coronary flow, while hyperemic coronary flow is similar. Basal coronary flow relates to insulin resistance, suggesting a key role of cellular metabolism in the regulation of coronary blood flow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号