首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Arabidopsis thaliana flavoprotein AtHAL3a is related to plant growth and salt and osmotic tolerance. AtHAL3a shows sequence homology to the bacterial flavoproteins EpiD and Dfp. EpiD, Dfp, and AtHAL3a are members of the homo-oligomeric flavin-containing Cys decarboxylase (HFCD) protein family. We demonstrate that AtHAL3a catalyzes the decarboxylation of (R)-4'-phospho-N-pantothenoylcysteine to 4'-phosphopantetheine. This key step in coenzyme A biosynthesis is catalyzed in bacteria by the Dfp proteins. Exchange of His-90 of AtHAL3a for Asn led to complete inactivation of the enzyme. Dfp and AtHAL3a are characterized by a shortened substrate binding clamp compared with EpiD. Exchange of the cysteine residue of the conserved ACGD motif of this binding clamp resulted in loss of (R)-4'-phospho-N-pantothenoylcysteine decarboxylase activity. Based on the crystal structures of EpiD H67N with bound substrate peptide and of AtHAL3a, we present a model for the binding of (R)-4'-phospho-N-pantothenoylcysteine to AtHAL3a.  相似文献   

2.
The lantibiotic-synthesizing flavoprotein EpiD catalyzes the oxidative decarboxylation of peptidylcysteines to peptidyl-aminoenethiols. The sequence motif responsible for flavin coenzyme binding and enzyme activity is conserved in different proteins from all kingdoms of life. Dfp proteins of eubacteria and archaebacteria and salt tolerance proteins of yeasts and plants belong to this new family of flavoproteins. The enzymatic function of all these proteins was not known, but our experiments suggested that they catalyze a similar reaction like EpiD and/or may have similar substrates and are homododecameric flavoproteins. We demonstrate that the N-terminal domain of the Escherichia coli Dfp protein catalyzes the decarboxylation of (R)-4'-phospho-N-pantothenoylcysteine to 4'-phosphopantetheine. This reaction is essential for coenzyme A biosynthesis.  相似文献   

3.
In bacteria, coenzyme A is synthesized in five steps from d-pantothenate. The Dfp flavoprotein catalyzes the synthesis of the coenzyme A precursor 4'-phosphopantetheine from 4'-phosphopantothenate and cysteine using the cofactors CTP and flavine mononucleotide via the phosphopeptide-like compound 4'-phosphopantothenoylcysteine. The synthesis of 4'-phosphopantothenoylcysteine is catalyzed by the C-terminal CoaB domain of Dfp and occurs via the acyl-cytidylate intermediate 4'-phosphopantothenoyl-CMP in two half reactions. In this new study, the molecular characterization of the CoaB domain is continued. In addition to the recently described residue Asn210, two more active-site residues, Arg206 and Ala276, were identified and shown to be involved in the second half reaction of the (R)-4'-phospho-N-pantothenoylcysteine synthetase. The proposed intermediate of the (R)-4'-phospho-N-pantothenoylcysteine synthetase reaction, 4'-phosphopantothenoyl-CMP, was characterized by MALDI-TOF MS and it was shown that the intermediate is copurified with the mutant His-CoaB N210H/K proteins. Therefore, His-CoaB N210H and His-CoaB N210K will be of interest to elucidate the crystal structure of CoaB complexed with the reaction intermediate. Wild-type His-CoaB is not absolutely specific for cysteine and can couple derivatives of cysteine to 4'-phosphopantothenate. However, no phosphopeptide-like structure is formed with serine. Molecular characterization of the temperature-sensitive Escherichia coli dfp-1 mutant revealed that the residue adjacent to Ala276, Ala275 of the strictly conserved AAVAD(275-279) motif, is exchanged for Thr.  相似文献   

4.
The NH(2)-terminal domain of the bacterial flavoprotein Dfp catalyzes the decarboxylation of (R)-4'-phospho-N-pantothenoylcysteine to 4'-phosphopantetheine, a key step in coenzyme A biosynthesis. Dfp proteins, LanD proteins (for example EpiD, which is involved in epidermin biosynthesis), and the salt tolerance protein AtHAL3a from Arabidopsis thaliana are homooligomeric flavin-containing Cys decarboxylases (HFCD protein family). The crystal structure of the peptidyl-cysteine decarboxylase EpiD complexed with a pentapeptide substrate has recently been determined. The peptide is bound by an NH(2)-terminal substrate binding helix, residue Asn(117), which contacts the cysteine residue of the substrate, and a COOH-terminal substrate recognition clamp. The conserved motif G-G/S-I-A-X-Y-K of the Dfp proteins aligns partly with the substrate binding helix of EpiD. Point mutations within this motif resulted in loss of coenzyme binding (G14S) or in significant decrease of Dfp activity (G15A, I16L, A17D, K20N, K20Q). Exchange of Asn(125) of Dfp, which corresponds to Asn(117) of EpiD, and exchange of Cys(158), which is within the proposed substrate recognition clamp of Dfp, led to inactivity of the enzyme. Molecular analysis of the conditional lethality of the Escherichia coli dfp-707 mutant revealed that the single point mutation G11D of Dfp is related to decreased amounts of soluble Dfp protein at 37 degrees C.  相似文献   

5.
Serine palmitoyltransferase (SPT, EC 2.3.1.50) is a key enzyme in sphingolipid biosynthesis and catalyzes the decarboxylative condensation of L-serine and palmitoyl coenzyme A (CoA) to 3-ketodihydrosphingosine (KDS). We found that the gram-negative obligatory aerobic bacteria Sphingomonas paucimobilis EY2395(T) have significant SPT activity, and purified SPT to homogeneity. Unlike eukaryotic enzymes, this enzyme was a water-soluble homodimeric protein. We isolated the SPT gene encoding 420 amino acid residues (M(r) 45,041) and succeeded in overproducing the SPT protein in Escherichia coli, in which the product amounted to about 10-20% of the total protein of the cell extract. Sphingomonas SPT showed about 30% homology with the enzymes of the alpha-oxamine synthase family, and amino acid residues supposed to be involved in catalysis are conserved. The purified recombinant-SPT showed the characteristic absorption spectrum derived from its coenzyme pyridoxal 5'-phosphate (PLP). The addition of the substrate, L-serine, caused spectral changes indicating the formation of the external aldimine intermediate. Sphingomonas SPT is a prototype of the eukaryotic enzyme and would be a useful model to elucidate the reaction mechanism of SPT.  相似文献   

6.
The biosynthesis of CoA from pantothenic acid (vitamin B5) is an essential universal pathway in prokaryotes and eukaryotes. The CoA biosynthetic genes in bacteria have all recently been identified, but their counterparts in humans and other eukaryotes remained mostly unknown. Using comparative genomics, we have identified human genes encoding the last four enzymatic steps in CoA biosynthesis: phosphopantothenoylcysteine synthetase (EC ), phosphopantothenoylcysteine decarboxylase (EC ), phosphopantetheine adenylyltransferase (EC ), and dephospho-CoA kinase (EC ). Biological functions of these human genes were verified using a complementation system in Escherichia coli based on transposon mutagenesis. The individual human enzymes were overexpressed in E. coli and purified, and the corresponding activities were experimentally verified. In addition, the entire pathway from phosphopantothenate to CoA was successfully reconstituted in vitro using a mixture of purified recombinant enzymes. Human recombinant bifunctional phosphopantetheine adenylyltransferase/dephospho-CoA kinase was kinetically characterized. This enzyme was previously suggested as a point of CoA biosynthesis regulation, and we have observed significant differences in mRNA levels of the corresponding human gene in normal and tumor cells by Northern blot analysis.  相似文献   

7.
Phosphopantetheine adenylyltransferase (PPAT) catalyzes the penultimate step in coenzyme A (CoA) biosynthesis: the reversible adenylation of 4'-phosphopantetheine yielding 3'-dephospho-CoA and pyrophosphate. Wild-type PPAT from Escherichia coli was purified to homogeneity. N-terminal sequence analysis revealed that the enzyme is encoded by a gene designated kdtB, purported to encode a protein involved in lipopolysaccharide core biosynthesis. The gene, here renamed coaD, is found in a wide range of microorganisms, indicating that it plays a key role in the synthesis of 3'-dephospho-CoA. Overexpression of coaD yielded highly purified recombinant PPAT, which is a homohexamer of 108 kDa. Not less than 50% of the purified enzyme was found to be associated with CoA, and a method was developed for its removal. A steady state kinetic analysis of the reverse reaction revealed that the mechanism of PPAT involves a ternary complex of enzyme and substrates. Since purified PPAT lacks dephospho-CoA kinase activity, the two final steps of CoA biosynthesis in E. coli must be catalyzed by separate enzymes.  相似文献   

8.
Acyl carrier protein (ACP) synthase (AcpS) catalyzes the transfer of the 4'-phosphopantetheine moiety from coenzyme A (CoA) onto a serine residue of apo-ACP, resulting in the conversion of apo-ACP to the functional holo-ACP. The holo form of bacterial ACP plays an essential role in mediating the transfer of acyl fatty acid intermediates during the biosynthesis of fatty acids and phospholipids. AcpS is therefore an attractive target for therapeutic intervention. In this study, we have purified and characterized the AcpS enzymes from Escherichia coli, Streptococcus pneumoniae, and Mycoplasma pneumoniae, which exemplify gram-negative, gram-positive, and atypical bacteria, respectively. Our gel filtration column chromatography and cross-linking studies demonstrate that the AcpS enzyme from M. pneumoniae, like E. coli enzyme, exhibits a homodimeric structure, but the enzyme from S. pneumoniae exhibits a trimeric structure. Our biochemical studies show that the AcpS enzymes from M. pneumoniae and S. pneumoniae can utilize both short- and long-chain acyl CoA derivatives but prefer long-chain CoA derivatives as substrates. On the other hand, the AcpS enzyme from E. coli can utilize short-chain CoA derivatives but not the long-chain CoA derivatives tested. Finally, our biochemical studies show that M. pneumoniae AcpS is kinetically a very sluggish enzyme compared with those from E. coli and S. pneumoniae. Together, the results of these studies show that the AcpS enzymes from different bacterial species exhibit different native structures and substrate specificities with regard to the utilization of CoA and its derivatives. These findings suggest that AcpS from different microorganisms plays a different role in cellular physiology.  相似文献   

9.
Shokes JE  Duin EC  Bauer C  Jaun B  Hedderich R  Koch J  Scott RA 《FEBS letters》2005,579(7):1741-1744
Heterodisulfide reductase (HDR) catalyzes the formation of coenzyme M (CoM-SH) and coenzyme B (CoB-SH) by the reversible reduction of the heterodisulfide, CoM-S-S-CoB. This reaction recycles the two thiol coenzymes involved in the final step of microbial methanogenesis. Electron paramagnetic resonance (EPR) and variable-temperature magnetic circular dichroism spectroscopic experiments on oxidized HDR incubated with CoM-SH revealed a S=1/2 [4Fe-4S]3) cluster, the EPR spectrum of which is broadened in the presence of CoM-33SH [Duin, E.C., Madadi-Kahkesh, S., Hedderich, R., Clay, M.D. and Johnson, M.K. (2002) Heterodisulfide reductase from Methanothermobacter marburgensis contains an active-site [4Fe-4S] cluster that is directly involved in mediating heterodisulfide reduction. FEBS Lett. 512, 263-268; Duin, E.C., Bauer, C., Jaun, B. and Hedderich, R. (2003) Coenzyme M binds to a [4Fe-4S] cluster in the active site of heterodisulfide reductase as deduced from EPR studies with the [33S]coenzyme M-treated enzyme. FEBS Lett. 538, 81-84]. These results provide indirect evidence that the disulfide binds to the iron-sulfur cluster during reduction. We report here direct structural evidence for this interaction from Se X-ray absorption spectroscopic investigation of HDR treated with the selenium analog of coenzyme M (CoM-SeH). Se K edge extended X-ray absorption fine structure confirms a direct interaction of the Se in CoM-SeH-treated HDR with an Fe atom of the Fe-S cluster at an Fe-Se distance of 2.4A.  相似文献   

10.
In bacteria, coenzyme A is synthesized in five steps from pantothenate. The flavoprotein Dfp catalyzes the synthesis of the coenzyme A precursor 4'-phosphopantetheine in the presence of 4'-phosphopantothenate, cysteine, CTP, and Mg(2+) (Strauss, E., Kinsland, C., Ge, Y., McLafferty, F. W., and Begley, T. P. (2001) J. Biol. Chem. 276, 13513-13516). It has been shown that the NH(2)-terminal domain of Dfp has 4'-phosphopantothenoylcysteine decarboxylase activity (Kupke, T., Uebele, M., Schmid, D., Jung, G., Blaesse, M., and Steinbacher, S. (2000) J. Biol. Chem. 275, 31838-31846). Here I demonstrate that the COOH-terminal CoaB domain of Dfp catalyzes the synthesis of 4'-phosphopantothenoylcysteine. The exchange of conserved amino acid residues within the CoaB domain revealed that the synthesis of 4'-phosphopantothenoylcysteine occurs in two half-reactions. Using the mutant protein His-CoaB N210D the putative acyl-cytidylate intermediate of 4'-phosphopantothenate was detectable. The same intermediate was detectable for the wild-type CoaB enzyme if cysteine was omitted in the reaction mixture. Exchange of the conserved Lys(289) residue, which is part of the strictly conserved (289)KXKK(292) motif of the CoaB domain, resulted in complete loss of activity with neither the acyl-cytidylate intermediate nor 4'-phosphopantothenoylcysteine being detectable. Gel filtration experiments indicated that CoaB forms dimers. Residues that are important for dimerization are conserved in CoaB proteins from eubacteria, Archaea, and eukaryotes.  相似文献   

11.
Acyl carrier protein synthase (AcpS) is an essential enzyme in the biosynthesis of fatty acids in all bacteria. AcpS catalyzes the transfer of 4'-phosphopantetheine from coenzyme A (CoA) to apo-ACP, thus converting apo-ACP to holo-ACP that serves as an acyl carrier for the biosynthesis of fatty acids and lipids. To further understand the physiological role of AcpS, we identified, cloned, and expressed the acpS and acpP genes of Streptococcus pneumoniae and purified both products to homogeneity. Both acpS and acpP form operons with the genes whose functions are required for other cellular metabolism. The acpS gene complements an Escherichia coli mutant defective in the production of AcpS and appears to be essential for the growth of S. pneumoniae. Gel filtration and cross-linking analyses establish that purified AcpS exists as a homotrimer. AcpS activity was significantly stimulated by apo-ACP at concentrations over 10 microm and slightly inhibited at concentrations of 5-10 microm. Double reciprocal analysis of initial velocities of AcpS at various concentrations of CoA or apo-ACP indicated a random or compulsory ordered bi bi type of reaction mechanism. Further analysis of the inhibition kinetics of the product (3',5'-ADP) suggested that it is competitive with respect to CoA but mixed (competitive and noncompetitive) with respect to apo-ACP. Finally, apo-ACP bound tightly to AcpS in the absence of CoA, but CoA failed to do so in the absence of apo-ACP. Together, these results suggest that AcpS may be allosterically regulated by apo-ACP and probably proceeds by an ordered reaction mechanism with the first formation of the AcpS-apo-ACP complex and the subsequent transfer of 4'-phosphopantetheine to the apo-ACP of the complex.  相似文献   

12.
Malonyl coenzyme A (CoA)-acyl carrier protein (ACP) transacylase (MCAT) is an essential enzyme in the biosynthesis of fatty acids in all bacteria, including Mycobacterium tuberculosis. MCAT catalyzes the transacylation of malonate from malonyl-CoA to activated holo-ACP, to generate malonyl-ACP, which is an elongation substrate in fatty acid biosynthesis. To clarify the roles of the mycobacterial acyl carrier protein (AcpM) and MCAT in fatty acid and mycolic acid biosynthesis, we have cloned, expressed, and purified acpM and mtfabD (malonyl-CoA:AcpM transacylase) from M. tuberculosis. According to the culture conditions used, AcpM was produced in Escherichia coli in two or three different forms: apo-AcpM, holo-AcpM, and palmitoylated-AcpM, as revealed by electrospray mass spectrometry. The mtfabD gene encoding a putative MCAT was used to complement a thermosensitive E. coli fabD mutant. Expression and purification of mtFabD resulted in an active enzyme displaying strong MCAT activity in vitro. Enzymatic studies using different ACP substrates established that holo-AcpM constitutes the preferred substrate for mtFabD. In order to provide further insight into the structure-function relationship of mtFabD, different mutant proteins were generated. All mutations (Q9A, R116A, H194A, Q243A, S91T, and S91A) completely abrogated MCAT activity in vitro, thus underlining the importance of these residues in transacylation. The generation and characterization of the AcpM forms and mtFabD opens the way for further studies relating to fatty acid and mycolic acid biosynthesis to be explored in M. tuberculosis. Since a specific type of FabD is found in mycobacterial species, it represents an attractive new drug target waiting to be exploited.  相似文献   

13.
The (R)-specific enoyl coenzyme A hydratase ((R)-hydratase) from Aeromonas caviae catalyzes the addition of a water molecule to trans-2-enoyl coenzyme A (CoA), with a chain-length of 4-6 carbons, to produce the corresponding (R)-3-hydroxyacyl-CoA. It forms a dimer of identical subunits with a molecular weight of about 14,000 and is involved in polyhydroxyalkanoate (PHA) biosynthesis. The crystal structure of the enzyme has been determined at 1.5-A resolution. The structure of the monomer consists of a five-stranded antiparallel beta-sheet and a central alpha-helix, folded into a so-called "hot dog" fold, with an overhanging segment. This overhang contains the conserved residues including the hydratase 2 motif residues. In dimeric form, two beta-sheets are associated to form an extended 10-stranded beta-sheet, and the overhangs obscure the putative active sites at the subunit interface. The active site is located deep within the substrate-binding tunnel, where Asp(31) and His(36) form a catalytic dyad. These residues are catalytically important as confirmed by site-directed mutagenesis and are possibly responsible for the activation of a water molecule and the protonation of a substrate molecule, respectively. Residues such as Leu(65) and Val(130) are situated at the bottom of the substrate-binding tunnel, defining the preference of the enzyme for the chain length of the substrate. These results provide target residues for protein engineering, which will enhance the significance of this enzyme in the production of novel PHA polymers. In addition, this study provides the first structural information of the (R)-hydratase family and may facilitate further functional studies for members of the family.  相似文献   

14.
F430 is the nickel containing tetrapyrrole cofactor of S-methyl coenzyme M methylreductase, the enzyme that catalyzes the final step of methane production by methanogenic bacteria: the reduction of S-methyl coenzyme M (H3CSCH2CH2SO3-) to methane and coenzyme M (HSCH2CH2SO3-). The protein-free F430 obtained from the cytosol of Methanobacterium thermoautotrophicum, strain delta H, exists predominantly in two isomeric forms that differ in relative stereochemical disposition of acid side chains at the 12 and 13 positions of the macrocycle periphery (Pfaltz, A., Livingston, D. A., Jaun, B., Diekert, G., Thauer, R. K., and Eschenmoser, A. (1985) Helv. Chim. Acta 68, 1338-1358). A simple one-step chromatographic procedure for the large-scale separation of these isomers is described. X-ray absorption spectroscopic studies show that F430 (i.e. the native isomer) is 6-coordinate with long nickel-ligand bonds (approximately 2.1 A), suggesting an approximately planar macrocycle. In contrast, the 12,13-diepimer exhibits a 4-coordinate, square-planar structure with short nickel-nitrogen bonds (approximately 1.9 A), suggesting a ruffled macrocycle. Previous reports, based on other x-ray absorption spectroscopic data, of static disorder in F430 Ni-N distances are shown to be incorrect due to sample heterogeneity. The optical spectrum of F430 (whether purified from the protein-free cytosol or extracted at high ionic strength from the holoenzyme) differs significantly from that of the 12,13-diepimer. The optical spectral differences are correlated with the alterations in coordination number and geometry of the central nickel ion in the two F430 isomers.  相似文献   

15.
The determination of the crystal structure of human phosphopantothenoylcysteine synthetase completes our knowledge of the enzyme structures involved in all steps of coenzyme A biosynthesis. This structure provides insight into the differences between bacterial and mammalian forms of the enzyme and may guide the structure-based development of novel antibacterial compounds.  相似文献   

16.
Li Z  Huang Y  Ge J  Fan H  Zhou X  Li S  Bartlam M  Wang H  Rao Z 《Journal of molecular biology》2007,371(4):1075-1083
The malonyl coenzyme A (CoA)-acyl carrier protein (ACP) transacylase (MCAT) plays a key role in cell wall biosynthesis in Mycobacterium tuberculosis and other bacteria. The M. tuberculosis MCAT (MtMCAT) is encoded by the FabD gene and catalyzes the transacylation of malonate from malonyl-CoA to holo-ACP. Malonyl-ACP is the substrate in fatty acid biosynthesis and is a by-product of the transacylation reaction. This ability for fatty acid biosynthesis enables M. tuberculosis to survive in hostile environments, and thus understanding the mechanism of biosynthesis is important for the design of new anti-tuberculosis drugs. The 2.3 A crystal structure of MtMCAT reported here shows that its catalytic mechanism differs from those of ScMCAT and EcMCAT, whose structures have previously been determined. In MtMCAT, the C(beta)-O(gamma) bond of Ser91 turns upwards, resulting in a different orientation and thus an overall change of the active pocket compared to other known MCAT enzymes. We identify three new nucleophilic attack chains from the MtMCAT structure: His90-Ser91, Asn155-Wat6-Ser91 and Asn155-His90-Ser91. Enzyme activity assays show that His90A, Asn155A and His90A-Asn155A mutants all have substantially reduced MCAT activity, indicating that M. tuberculosis MCAT supports a unique means of proton transfer. Furthermore, His194 cannot form part of a His-Ser catalytic dyad and only stabilizes the substrate. This new discovery should provide a deeper insight into the catalytic mechanisms of MCATs.  相似文献   

17.
A hog liver enzyme that catalyzes the reversible conversion of 3-acetylenic fatty acyl thioester to (+)-2,3-dienoyl fatty acyl thioester has been purified to homogeneity. The enzyme is not inhibited by the allenic product that it generates. The same homogenous enzyme catalyzes the conversions of 3-cis- or 3-trans-acyl Coenzyme A derivatives to 2-trans-acyl-CoA derivatives. Four forms of the isomerase differing in charge (pI = 6.57, 6.83, 7.01, and 7.27) have been separated by isoelectric focusing. Ultracentrifugation and sodium dodecyl sulfate-gel electrophoresis indicate that each of these enzyme forms is dimeric and composed of two 45,000-dalton subunits. With 3-acetylenic substrates, all enzyme forms exhibit broad specificity for chain length (C6 to C12) and for the thioester moiety (N-acetylcysteamine (NAC), pantetheine, or CoA). The 3-cis and 3-trans olefinic substrates are active only in the form of their coenzyme A derivatives; their NAC thioesters inhibit competitively. Mechanistic studies favor an isomerization pathway by way of carbanion intermediates. The acetylene-allene isomerase described here and the reported crotonase-catalyzed hydration of allenic thioesters (Branchini, B.R., Miesowicz, F.M., and Bloch, K. (1977) Bioorg. Chem. 6, 49-52) may be responsible for the degradation of naturally occurring acetylenic and allenic acids.  相似文献   

18.
A new assay for 3-hydroxy-3-methylglutaryl CoA reductase (mevalonate:NADP oxidoreductase [acylating CoA], EC 1.1.1.34) is based upon the measurement of released coenzyme A (SH) during the reduction of 3-hydroxy-3-methylglutaryl CoA to mevalonate. Coenzyme A was measured in the presence of dithiothreitol, required for activity, by reaction with 5,5'-dithiobis(2-nitrobenzoic acid). Sodium arsenite forms a complex with the dithiol, but not with monothiols. Thus, reduced coenzyme A reacts instantaneously with the reagent and dithiothreitol reacts slowly. The absorbance due to the coenzyme A-5,5'-dithiobis(2-nitrobenzoic acid) reaction is determined by extrapolating the linear (dithiol) absorbance-time curve to the time of addition of the reagent. After subtraction of control absorbance (deletion of NADPH), the concentration of CoA-SH is calculated from epsilon(max) = 1.36 x 10(4) at 412 nm. The method of protein removal and reduction of sulfhydryl groups on the enzyme are critical. This method provides an immediate assay. Recovery of reduced coenzyme A was 98.7%. The assay is applicable for microsomes or purified enzyme and has an effective range of 0.5-50 nmoles of coenzyme A. It was applied to kinetic measurement of the pigeon liver microsomal enzyme reaction. The apparent K(m) value for 3-hydroxy-3-methylglutaryl CoA was 1.75 x 10(-5) M, and for NADPH the value was 6.81 x 10(-4) M. This method was compared with the dual-label method at high and low levels of activity. The data were not statistically different.  相似文献   

19.
Acetyl coenzyme A (CoA) biosynthesis in spinach chloroplasts has been investigated by following the incorporation of bicarbonate and acetate into fatty acids under a variety of conditions. Both substrates were readily incorporated into fatty acids in a light-dependent manner by intact photosynthesising chloroplasts, but when the concentrations of these substrates were adjusted to those found in vivo, i.e. 200 M acetate, 10 M bicarbonate, then acetate was found to supply carbon atoms for fatty acids biosynthesis via acetyl CoA at forty times the rate of bicarbonate. It is proposed that extra-chloroplastic free acetate is the pricipal substrate for chloroplasts acetyl CoA biosynthesis in spinach.Abbreviations ACP acyl carrierprotein - CoASH coenzyme A  相似文献   

20.
Acetyl–coenzyme A (CoA) carboxylase catalyzes the first step in the biosynthesis of fatty acids in bacteria and eukaryota. This enzyme is the target of drug design for treatment of human metabolic diseases and of herbicides acting specifically on the eukaryotic form of the enzyme in grasses. Acetyl–CoA carboxylase activity screening in drug and herbicide design depends mostly on a time-consuming enzyme assay that is based on the incorporation of radiolabeled bicarbonate into the product malonyl–CoA. Here we describe a new simple, continuous, and quick photometric assay avoiding radioactive substrate. It couples the carboxylation of acetyl–CoA to the nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reduction of malonyl–CoA, which is catalyzed by recombinant malonyl–CoA reductase of Chloroflexus aurantiacus. This assay can be adapted for high-throughput screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号