首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparison of the deduced amino acid sequences of DNA-[N6-adenine]-methyltransferases has revealed several conserved regions. All of these enzymes contain a DPPY [or closely related] motif. By site-directed mutagenesis of a cloned T4 dam gene, we have altered the first proline residue in this motif [located in conserved region IV of the T4 Dam-MTase] to alanine or threonine. The mutant enzymic forms, P172A and P172T, were overproduced and purified. Kinetic studies showed that compared to the wild-type [wt] the two mutant enzymic forms had: (i) an increased [5 and 20-fold, respectively] Km for substrate, S-adenosyl-methionine [AdoMet]; (ii) a slightly reduced [2 and 4-fold lower] kcat; (iii) a strongly reduced kcat/KmAdoMet [10 and 100-fold]; and (iv) almost the same Km for substrate DNA. Equilibrium dialysis studies showed that the mutant enzymes had a reduced [4 and 9-fold lower] Ka for AdoMet. Taken together these data indicate that the P172A and P172T alterations resulted primarily in a reduced affinity for AdoMet. This suggests that the DPPY-motif is important for AdoMet-binding, and that region IV contains or is part of an AdoMet-binding site.  相似文献   

2.
We used quench flow to study how N6-methylated adenosines (m6A) affect the accuracy ratio between kcat/Km (i.e. association rate constant (ka) times probability (Pp) of product formation after enzyme-substrate complex formation) for cognate and near-cognate substrate for mRNA reading by tRNAs and peptide release factors 1 and 2 (RFs) during translation with purified Escherichia coli components. We estimated kcat/Km for Glu-tRNAGlu, EF-Tu and GTP forming ternary complex (T3) reading cognate (GAA and Gm6AA) or near-cognate (GAU and Gm6AU) codons. ka decreased 10-fold by m6A introduction in cognate and near-cognate cases alike, while Pp for peptidyl transfer remained unaltered in cognate but increased 10-fold in near-cognate case leading to 10-fold amino acid substitution error increase. We estimated kcat/Km for ester bond hydrolysis of P-site bound peptidyl-tRNA by RF2 reading cognate (UAA and Um6AA) and near-cognate (UAG and Um6AG) stop codons to decrease 6-fold or 3-fold by m6A introduction, respectively. This 6-fold effect on UAA reading was also observed in a single-molecule termination assay. Thus, m6A reduces both sense and stop codon reading accuracy by decreasing cognate significantly more than near-cognate kcat/Km, in contrast to most error inducing agents and mutations, which increase near-cognate at unaltered cognate kcat/Km.  相似文献   

3.
Aspergillus niger glucose oxidase (GOx) genes for wild-type (GenBank accession no. X16061, swiss-Prot; P13006) and M12 mutant (N2Y, K13E, T30 V, I94 V, K152R) were cloned into pPICZαA vector for expression in Pichia pastoris KM71H strain. The highest expression level of 17.5 U/mL of fermentation media was obtained in 0.5 % (v/v) methanol after 9 days of fermentation. The recombinant GOx was purified by cross-flow ultrafiltration using membranes of 30 kDa molecular cutoff and DEAE ion-exchange chromatography at pH 6.0. Purified wt GOx had k cat of 189.4 s?1 and K m of 28.26 mM while M12 GOx had k cat of 352.0 s?1 and K m of 13.33 mM for glucose at pH 5.5. Specificity constants k cat/K m of wt (6.70 mM?1 s?1) and M12 GOx (26.7 mM?1 s?1) expressed in P. pastoris KM71H were around three times higher than for the same enzymes previously expressed in Saccharomyces cerevisiae InvSc1 strain. The pH optimum and sugar specificity of M12 mutant of GOx remained similar to the wild-type form of the enzyme, while thermostability was slightly decreased. M12 GOx expressed in P. pastoris showed three times higher activity compared to the wt GOx toward redox mediators like N,N-dimethyl-nitroso-aniline used for glucose strips manufacturing. M12 mutant of GOx produced in P. pastoris KM71H could be useful for manufacturing of glucose biosensors and biofuel cells.  相似文献   

4.
We report for the first time an analysis of the ATPase activity of human DNA topoisomerase (topo) IIβ. We show that topo IIβ is a DNA-dependent ATPase that appears to fit Michaelis–Menten kinetics. The ATPase activity is stimulated 44-fold by DNA. The kcat for ATP hydrolysis by human DNA topo IIβ in the presence of DNA is 2.25 s–1. We have characterised a topo IIβ derivative which carries a mutation in the ATPase domain (S165R). S165R reduced the kcat for ATP hydrolysis by 7-fold, to 0.32 s–1, while not significantly altering the apparent Km. The specificity constant for the interaction between ATP and topo IIβ (kcat/Kmapp) showed a 90% reduction for βS165R. The DNA binding affinity and ATP-independent DNA cleavage activity of the enzyme are unaffected by this mutation. However, the strand passage activity is reduced by 80%, presumably due to reduced ATP hydrolysis. The mutant enzyme is unable to complement ts yeast topo II in vivo. We have used computer modelling to predict the arrangement of key residues at the ATPase active site of topo IIβ. Ser165 is predicted to lie very close to the bound nucleotide, and the S165R mutation could thus influence both ATP binding and ADP dissociation.  相似文献   

5.
Carboxyl esterases (CE) exhibit various reaction specificities despite of their overall structural similarity. In present study we have exploited functional metagenomics, saturation mutagenesis and experimental protein evolution to explore residues that have a significant role in substrate discrimination. We used an enzyme, designated 3A6, derived from the earthworm gut metagenome that exhibits CE and feruloyl esterase (FAE) activities with p-nitrophenyl and cinnamate esters, respectively, with a [(kcat/Km)]CE/[(kcat/Km)]FAE factor of 17. Modelling-guided saturation mutagenesis at specific hotspots (Lys281, Asp282, Asn316 and Lys317) situated close to the catalytic core (Ser143/Asp273/His305) and a deletion of a 34-AA–long peptide fragment yielded mutants with the highest CE activity, while cinnamate ester bond hydrolysis was effectively abolished. Although, single to triple mutants with both improved activities (up to 180-fold in kcat/Km values) and enzymes with inverted specificity ((kcat/Km)CE/(kcat/Km)FAE ratio of ∼0.4) were identified, no CE inactive variant was found. Screening of a large error-prone PCR-generated library yielded by far less mutants for substrate discrimination. We also found that no significant changes in CE activation energy occurs after any mutation (7.3 to −5.6 J mol−1), whereas a direct correlation between loss/gain of FAE function and activation energies (from 33.05 to −13.7 J mol−1) was found. Results suggest that the FAE activity in 3A6 may have evolved via introduction of a limited number of ‘hot spot’ mutations in a common CE ancestor, which may retain the original hydrolytic activity due to lower restrictive energy barriers but conveys a dynamic energetically favourable switch of a second hydrolytic reaction.  相似文献   

6.
To ascertain the functional role of cysteine residue in 3-deoxy-d-arabino-heptulosonate-7-phosphate (DAHP) synthase from Corynebacterium glutamicum, site-directed mutagenesis was performed to change each of the three residues to serine. Plasmids were constructed for high-level overproduction and one-step purification of histidine-tagged DAHP synthase. Analysis of the purified wild-type and mutant enzymes by SDS-polyacrylamide gel electrophoresis showed an apparent protein band with a molecular mass of approximately 45 kDa. Cys145Ser mutant retained about 16% of the enzyme activity, while DAHP synthase activity was abolished in Cys67Ser mutant. Kinetic analysis of Cys145Ser mutant with PEP as a substrate revealed a marked increase in K m with significant change in k cat , resulting in a 13.6-fold decrease in k cat /K m PEP. Cys334 was found to be nonessential for catalytic activity, although it is highly conserved in DAHP synthases. From these studies, Cys67 appears important for synthase activity, while Cys145 plays a crucial role in the catalytic efficiency through affecting the mode of substrate binding. Received: 10 October 2000 / Accepted: 17 November 2000  相似文献   

7.
Protein tyrosine phosphatase (PTP) targeted, peptide based chemical probes are valuable tools for studying this important family of enzymes, despite the inherent difficulty of developing peptides targeted towards an individual PTP. Here, we have taken a rational approach to designing a SHP-2 targeted, fluorogenic peptide substrate based on information about the potential biological substrates of SHP-2. The fluorogenic, phosphotyrosine mimetic phosphocoumaryl aminopropionic acid (pCAP) provides a facile readout for monitoring PTP activity. By optimizing the amino acids surrounding the pCAP residue, we obtained a substrate with the sequence Ac-DDPI-pCAP-DVLD-NH2 and optimized kinetic parameters (kcat = 0.059 ± 0.008 s−1, Km = 220 ± 50 µM, kcat/Km of 270 M−1s−1). In comparison, the phosphorylated coumarin moiety alone is an exceedingly poor substrate for SHP-2, with a kcat value of 0.0038 ± 0.0003 s−1, a Km value of 1100 ± 100 µM and a kcat/Km of 3 M−1s−1. Furthermore, this optimized peptide has selectivity for SHP-2 over HePTP, MEG1 and PTPµ. The data presented here demonstrate that PTP-targeted peptide substrates can be obtained by optimizing the sequence of a pCAP containing peptide.  相似文献   

8.
The solvent kinetic isotope effects (SKIE) on the yeast α-glucosidase-catalyzed hydrolysis of p-nitrophenyl and methyl-d-glucopyranoside were measured at 25 °C. With p-nitrophenyl-d-glucopyranoside (pNPG), the dependence of kcat/Km on pH (pD) revealed an unusually large (for glycohydrolases) solvent isotope effect on the pL-independent second-order rate constant, DOD(kcat/Km), of 1.9 (±0.3). The two pKas characterizing the pH profile were increased in D2O. The shift in pKa2 of 0.6 units is typical of acids of comparable acidity (pKa=6.5), but the increase in pKa1 (=5.7) of 0.1 unit in going from H2O to D2O is unusually small. The initial velocities show substrate inhibition (Kis/Km~200) with a small solvent isotope effect on the inhibition constant [DODKis=1.1 (±0.2)]. The solvent equilibrium isotope effects on the Kis for the competitive inhibitors d-glucose and α-methyl d-glucoside are somewhat higher [DODKi=1.5 (±0.1)]. Methyl glucoside is much less reactive than pNPG, with kcat 230 times lower and kcat/Km 5×104 times lower. The solvent isotope effect on kcat for this substrate [=1.11 (±0. 02)] is lower than that for pNPG [=1.67 (±0.07)], consistent with more extensive proton transfer in the transition state for the deglucosylation step than for the glucosylation step.  相似文献   

9.
Isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate to α-ketoglutarate with NAD(P) as a cofactor in the tricarboxylic acid cycle. As a housekeeping protein in Helicobacter pylori, IDH was considered as a possible candidate for serological diagnostics and detection. Here, we identified a new icd gene encoding IDH from H. pylori strain SS1. The recombinant H. pylori isocitrate dehydrogenase (HpIDH) was cloned, expressed, and purified in E. coli system. The enzymatic characterization of HpIDH demonstrates its activity with k cat of 87 s?1, K m of 124 μM and k cat/K m of 7 × 105 M?1s?1 toward isocitrate, k cat of 80 s?1, K m of 176 μM and k cat/K m of 4.5 × 105 M?1s?1 toward NADP. The optimum pH of the enzyme activity is around 9.0, and the optimum temperature is around 50 °C. This current work is expected to help better understand the features of HpIDH and provide useful information for H. pylori serological diagnostics and detection.  相似文献   

10.
Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and RuBisCO-like protein (RLP) catalyze similar enolase-type reactions. Both enzymes have a conserved non-catalytic Lys122 or Arg122 on the β-strand E lying in the interface between the N- and C-terminal domains. We used site-directed mutagenesis to analyze the function of Lys122 in the form II Rhodospirillum rubrum RuBisCO (RrRuBisCO) and Bacillus subtilis RLP (BsRLP). The K122R mutant of RrRuBisCO had a 40% decrease in kcat for carboxylase activity, a 2-fold increase in Km for CO2, and a 1.9-fold increase in Km for ribulose-1,5-bisphosphate. K122M and K122E mutants of RrRuBisCO were almost inactive. None of the substitutions affected the thermal stability of RrRuBisCO. The K122R mutant of BsRLP had a 32% decrease in kcat and lower thermal stability than the wild-type enzyme. The K122M and K122E mutants of BsRLP failed to form a catalytic dimer. Our results suggest that the lysine residue is essential for function in both enzymes, although in each case, its role is likely distinct.  相似文献   

11.
The action of pancreatic α-amylase (EC 3.2.1.1) on various starches has been studied in order to achieve better understanding of how starch structural properties influence enzyme kinetic parameters. Such studies are important in seeking explanations for the wide differences reported in postprandial glycaemic and insulinaemic indices associated with different starchy foodstuffs. Using starches from a number of different sources, in both native and gelatinised forms, as substrates for porcine α-amylase, we showed by enzyme kinetic studies that adsorption of amylase to starch is of kinetic importance in the reaction mechanism, so that the relationship between reaction velocity and enzyme concentration [E0] is logarithmic and described by the Freundlich equation. Estimations of catalytic efficiencies were derived from measurements of kcat/Km performed with constant enzyme concentration so that comparisons between different starches were not complicated by the logarithmic relationship between E0 and reaction velocity. Such studies reveal that native starches from normal and waxy rice are slightly better substrates than those from wheat and potato. After gelatinisation at 100°C, kcat/Km values increased by 13-fold (waxy rice) to 239-fold (potato). Phosphate present in potato starch may aid the swelling process during heating of suspensions; this seems to produce a very favourable substrate for the enzyme. Investigation of pre-heat treatment effects on wheat starch shows that the relationship between treatment and kcat/Km is not a simple one. The value of kcat/Km rises to reach a maximum at a pre-treatment temperature of 75°C and then falls sharply if the treatment is conducted at higher temperatures. It is known that amylose is leached from starch granules during heating and dissolves. On cooling, the dissolved starch is likely to retrograde and become resistant to amylolysis. Thus the catalytic efficiency tends to fall. In addition, we find that the catalytic efficiency on the different starches varies inversely with their solubility and we interpret this finding on the assumption that the greater the solubility, the greater is the likelihood of retrogradation. We conclude that although α-amylase is present in high activity in digestive fluid, the enzymic hydrolysis of starch may be a limiting factor in carbohydrate digestion because of factors related to the physico-chemical properties of starchy foods.  相似文献   

12.
Calmodulin (CaM)-dependent eukaryotic elongation factor 2 kinase (eEF-2K) impedes protein synthesis through phosphorylation of eukaryotic elongation factor 2 (eEF-2). It is subject to complex regulation by multiple upstream signaling pathways, through poorly described mechanisms. Precise integration of these signals is critical for eEF-2K to appropriately regulate protein translation rates. Here, an allosteric mechanism comprising two sequential conformations is described for eEF-2K activation. First, Ca2+/CaM binds eEF-2K with high affinity (Kd(CaM)app = 24 ± 5 nm) to enhance its ability to autophosphorylate Thr-348 in the regulatory loop (R-loop) by > 104-fold (kauto = 2.6 ± 0.3 s−1). Subsequent binding of phospho-Thr-348 to a conserved basic pocket in the kinase domain potentially drives a conformational transition of the R-loop, which is essential for efficient substrate phosphorylation. Ca2+/CaM binding activates autophosphorylated eEF-2K by allosterically enhancing kcatapp for peptide substrate phosphorylation by 103-fold. Thr-348 autophosphorylation results in a 25-fold increase in the specificity constant (kcatapp/Km(Pep-S)app), with equal contributions from kcatapp and Km(Pep-S)app, suggesting that peptide substrate binding is partly impeded in the unphosphorylated enzyme. In cells, Thr-348 autophosphorylation appears to control the catalytic output of active eEF-2K, contributing more than 5-fold to its ability to promote eEF-2 phosphorylation. Fundamentally, eEF-2K activation appears to be analogous to an amplifier, where output volume may be controlled by either toggling the power switch (switching on the kinase) or altering the volume control (modulating stability of the active R-loop conformation). Because upstream signaling events have the potential to modulate either allosteric step, this mechanism allows for exquisite control of eEF-2K output.  相似文献   

13.
Deacetoxy/deacetylcephalosporin C synthase (acDAOC/DACS) from Acremonium chrysogenum is a bifunctional enzyme that catalyzes both the ring-expansion of penicillin N to deacetoxycephalosporin C and the hydroxylation of the latter to deacetylcephalosporin C. The R308 residue located in close proximity to the C-terminus of acDAOC/DACS was mutated to the other 19 amino acids. In the resulting mutant pool, R308L, R308I, R308T and R308V showed significant improvement in their ability to convert penicillin analogs, thus confirming the role of R308 in controlling substrate selectivity, the four amino acids all possess short aliphatic sidechains that may improve hydrophobic interactions with the substrates. The mutant R308I showed the highest reactivity for penicillin G, with 3-fold increase in kcat/Km ratio and 7-fold increase in relative activity.  相似文献   

14.
Rhodanese is a component of the mitochondrial H2S oxidation pathway. Rhodanese catalyzes the transfer of sulfane sulfur from glutathione persulfide (GSSH) to sulfite generating thiosulfate and from thiosulfate to cyanide generating thiocyanate. Two polymorphic variations have been identified in the rhodanese coding sequence in the French Caucasian population. The first, 306A→C, has an allelic frequency of 1% and results in an E102D substitution in the encoded protein. The second polymorphism, 853C→G, has an allelic frequency of 5% and leads to a P285A substitution. In this study, we have examined differences in the stability between wild-type rhodanese and the E102D and P285A variants and in the kinetics of the sulfur transfer reactions. The Asp-102 and Ala-285 variants are more stable than wild-type rhodanese and exhibit kcat/Km,CN values that are 17- and 1.6-fold higher, respectively. All three rhodanese forms preferentially catalyze sulfur transfer from GSSH to sulfite, generating thiosulfate and glutathione. The kcat/Km,sulfite values for the variants in the sulfur transfer reaction from GSSH to sulfite were 1.6- (Asp-102) and 4-fold (Ala-285) lower than for wild-type rhodanese, whereas the kcat/Km,GSSH values were similar for all three enzymes. Thiosulfate-dependent H2S production in murine liver lysate is low, consistent with a role for rhodanese in sulfide oxidation. Our studies show that polymorphic variations that are distant from the active site differentially modulate the sulfurtransferase activity of human rhodanese to cyanide versus sulfite and might be important in differences in susceptibility to diseases where rhodanese dysfunction has been implicated, e.g. inflammatory bowel diseases.  相似文献   

15.
Glycoside hydrolase family 31 α-glucosidases (31AGs) show various specificities for maltooligosaccharides according to chain length. Aspergillus niger α-glucosidase (ANG) is specific for short-chain substrates with the highest kcat/Km for maltotriose, while sugar beet α-glucosidase (SBG) prefers long-chain substrates and soluble starch. Multiple sequence alignment of 31AGs indicated a high degree of diversity at the long loop (N-loop), which forms one wall of the active pocket. Mutations of Phe236 in the N-loop of SBG (F236A/S) decreased kcat/Km values for substrates longer than maltose. Providing a phenylalanine residue at a similar position in ANG (T228F) altered the kcat/Km values for maltooligosaccharides compared with wild-type ANG, i.e., the mutant enzyme showed the highest kcat/Km value for maltotetraose. Subsite affinity analysis indicated that modification of subsite affinities at + 2 and + 3 caused alterations of substrate specificity in the mutant enzymes. These results indicated that the aromatic residue in the N-loop contributes to determining the chain-length specificity of 31AGs.  相似文献   

16.
The 2.2 Å X-ray crystal structure of Candida tenuis xylose reductase (AKR2B5) bound with NADP+ reveals that Phe-114 contributes to the substrate binding pocket of the enzyme. In the related human aldose reductase (AKR1B1), this phenylalanine is replaced by a tryptophan. The side chain of Trp was previously implicated in forming a hydrogen bond with bound substrate or inhibitor. The apparent Michaelis constant of AKR2B5 for xylose (Km≈90 mM) is 60 times that of AKR1B1, perhaps because critical enzyme–substrate interactions of Trp are not available to Phe-114. We, therefore, prepared a Phe-114→Trp mutant (F114W) of AKR2B5, to mimic the aldose reductase relationship in xylose reductase. Detailed analysis of the kinetic consequences in purified F114W revealed that the Km values for xylose and xylitol at pH 7.0 and 25°C were increased 5.1- and 4.4-fold, respectively, in the mutant compared with the wild-type. Turnover numbers (kcat) of F114W for xylose reduction and xylitol oxidation were half those of the wild-type. Apparent dissociation constants of NADH (KiNADH=44 µM) and NAD+ (KiNAD+=177 µM) were increased 1.6- and 1.4-fold in comparison with values of KiNADH and KiNAD+ for the wild-type, respectively. Catalytic efficiencies (kcat/Km) for NADH-dependent reduction of different aldehydes were between 3.1- and 31.5-fold lower than the corresponding kcat/Km values of the wild-type. Therefore, replacement of Phe-114 with Trp weakens rather than strengthens apparent substrate binding by AKR2B5, suggesting that xylose reductase exploits residue 114 in a different manner from aldose reductase.  相似文献   

17.
Site-directed mutagenesis was used to enhance the catalytic activity of pyranose 2-oxidase (P2Ox) from Trametes multicolor with different substrates. To this end, threonine at position 169 was replaced by glycine, alanine and serine, respectively. Using oxygen as electron acceptor the mutant T169G was equally active with d-glucose and d-galactose, whereas wild-type recombinant P2Ox only showed 5.2% relative activity with the latter substrate. When d-galactose was used as electron donor in saturating concentrations, T169G showed a 4.5-fold increase in its catalytic efficiency kcat/KM for the alternative electron acceptor 1,4-benzoquinone and a nine-fold increased kcat/KM value with the ferricenium ion compared with wt recP2Ox. Variant T169S showed an increase in its catalytic efficiency both with 1,4-benzoquinone (3.7 times) as well as with the ferricenium ion (1.4 times) when d-glucose was the substrate.  相似文献   

18.
The deacetoxycephalosporin C synthase from Streptomyces clavuligerus was directly modified for enhancement of penicillin G expansion into phenylacetyl-7-aminodeacetoxycephalosporanic acid, an important intermediate in the industrial manufacture of cephalosporin antibiotics. Nine new mutants, mutants M73T, T91A, A106T, C155Y, Y184H, M188V, M188I, H244Q, and L277Q with 1.4- to 5.7-fold increases in the kcat/Km ratio, were obtained by screening 6,364 clones after error-prone PCR-based random mutagenesis. Subsequently, DNA shuffling was carried out to screen possible combinations of substitutions, including previous point mutations. One quaternary mutant, the C155Y/Y184H/V275I/C281Y mutant, which had a kcat/Km ratio that was 41-fold higher was found after 10,572 clones were assayed. The distinct mutants obtained using different mutagenesis methods demonstrated the complementarity of the techniques. Interestingly, most of the mutated residues that result in enhanced activities are located within or near the unique small barrel subdomain, suggesting that manipulation of this subdomain may be a constructive strategy for improvement of penicillin expansion. Several mutations had very distinct effects on expansion of penicillins N and G, perhaps due to different penicillin-interacting modes within the enzyme. Thus, the present study provided not only promising enzymes for cephalosporin biosynthesis but also a large number of mutants, which provided new insights into the structure-function relationship of the protein that should lead to further rational engineering.  相似文献   

19.
The role of the unique fully conserved tryptophan in metallopeptidase family M49 (dipeptidyl peptidase III family) was investigated by site-directed mutagenesis on human dipeptidyl peptidase III (DPP III) where Trp300 was subjected to two substitutions (W300F and W300L). The mutant enzymes showed thermal stability equal to the wild-type DPP III. Conservative substitution of the Trp300 with phenylalanine decreased enzyme activity 2-4 fold, but did not significantly change the Km values for two dipeptidyl 2-naphthylamide substrates. However, the Km for the W300L mutant was elevated 5-fold and the kcat value was reduced 16-fold with Arg-Arg-2-naphthylamide. Both substitutions had a negative effect on the binding of two competitive inhibitors designed to interact with S1 and S2 subsites.These results indicate the importance of the aromatic nature of W300 in DPP III ligand binding and catalysis, and contribution of this residue in maintaining the functional integrity of this enzyme’s S2 subsite.  相似文献   

20.
The genes (xylA) encoding xylose isomerase (XI) from two Lactococcus lactis subsp. lactis strains, 210 (Xyl) and IO-1 (Xyl+), were cloned, and the activities of their expressed proteins in recombinant strains of Escherichia coli were investigated. The nucleotide and amino acid sequence homologies between the xylA genes were 98.4 and 98.6%, respectively, and only six amino acid residues differed between the two XIs. The purified IO-1 XI was soluble with Km and kcat being 2.25 mM and 184/s, respectively, while the 210 XI was insoluble and inactive. Site-directed mutagenesis on 210 xylA showed that a triple mutant possessing R202M/Y218D/V275A mutations regained XI activity and was soluble. The Km and kcat of this mutant were 4.15 mM and 141/s, respectively. One of the IO-1 XI mutants, S388T, was insoluble and showed negligible activity similar to that of 210 XI. The introduction of a K407E mutation to the IO-1 S388T XI mutant restored its activity and solubility. The dissolution of XI activity in L. lactis subsp. lactis involves a series of mutations that collectively eliminate enzyme activity by reducing the solubility of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号