首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Protein sequence alignments are more reliable the shorter the evolutionary distance. Here, we align distantly related proteins using many closely spaced intermediate sequences as stepping stones. Such transitive alignments can be generated between any two proteins in a connected set, whether they are direct or indirect sequence neighbors in the underlying library of pairwise alignments. We have implemented a greedy algorithm, MaxFlow, using a novel consistency score to estimate the relative likelihood of alternative paths of transitive alignment. In contrast to traditional profile models of amino acid preferences, MaxFlow models the probability that two positions are structurally equivalent and retains high information content across large distances in sequence space. Thus, MaxFlow is able to identify sparse and narrow active-site sequence signatures which are embedded in high-entropy sequence segments in the structure based multiple alignment of large diverse enzyme superfamilies. In a challenging benchmark based on the urease superfamily, MaxFlow yields better reliability and double coverage compared to available sequence alignment software. This promises to increase information returns from functional and structural genomics, where reliable sequence alignment is a bottleneck to transferring the functional or structural characterization of model proteins to entire protein superfamilies.  相似文献   

2.
Sequence alignment programs such as BLAST and PSI-BLAST are used routinely in pairwise, profile-based, or intermediate-sequence-search (ISS) methods to detect remote homologies for the purposes of fold assignment and comparative modeling. Yet, the sequence alignment quality of these methods at low sequence identity is not known. We have used the CE structure alignment program (Shindyalov and Bourne, Prot Eng 1998;11:739) to derive sequence alignments for all superfamily and family-level related proteins in the SCOP domain database. CE aligns structures and their sequences based on distances within each protein, rather than on interprotein distances. We compared BLAST, PSI-BLAST, CLUSTALW, and ISS alignments with the CE structural alignments. We found that global alignments with CLUSTALW were very poor at low sequence identity (<25%), as judged by the CE alignments. We used PSI-BLAST to search the nonredundant sequence database (nr) with every sequence in SCOP using up to four iterations. The resulting matrix was used to search a database of SCOP sequences. PSI-BLAST is only slightly better than BLAST in alignment accuracy on a per-residue basis, but PSI-BLAST matrix alignments are much longer than BLAST's, and so align correctly a larger fraction of the total number of aligned residues in the structure alignments. Any two SCOP sequences in the same superfamily that shared a hit or hits in the nr PSI-BLAST searches were identified as linked by the shared intermediate sequence. We examined the quality of the longest SCOP-query/ SCOP-hit alignment via an intermediate sequence, and found that ISS produced longer alignments than PSI-BLAST searches alone, of nearly comparable per-residue quality. At 10-15% sequence identity, BLAST correctly aligns 28%, PSI-BLAST 40%, and ISS 46% of residues according to the structure alignments. We also compared CE structure alignments with FSSP structure alignments generated by the DALI program. In contrast to the sequence methods, CE and structure alignments from the FSSP database identically align 75% of residue pairs at the 10-15% level of sequence identity, indicating that there is substantial room for improvement in these sequence alignment methods. BLAST produced alignments for 8% of the 10,665 nonimmunoglobulin SCOP superfamily sequence pairs (nearly all <25% sequence identity), PSI-BLAST matched 17% and the double-PSI-BLAST ISS method aligned 38% with E-values <10.0. The results indicate that intermediate sequences may be useful not only in fold assignment but also in achieving more complete sequence alignments for comparative modeling.  相似文献   

3.
Members of a superfamily of proteins could result from divergent evolution of homologues with insignificant similarity in the amino acid sequences. A superfamily relationship is detected commonly after the three-dimensional structures of the proteins are determined using X-ray analysis or NMR. The SUPFAM database described here relates two homologous protein families in a multiple sequence alignment database of either known or unknown structure. The present release (1.1), which is the first version of the SUPFAM database, has been derived by analysing Pfam, which is one of the commonly used databases of multiple sequence alignments of homologous proteins. The first step in establishing SUPFAM is to relate Pfam families with the families in PALI, which is an alignment database of homologous proteins of known structure that is derived largely from SCOP. The second step involves relating Pfam families which could not be associated reliably with a protein superfamily of known structure. The profile matching procedure, IMPALA, has been used in these steps. The first step resulted in identification of 1280 Pfam families (out of 2697, i.e. 47%) which are related, either by close homologous connection to a SCOP family or by distant relationship to a SCOP family, potentially forming new superfamily connections. Using the profiles of 1417 Pfam families with apparently no structural information, an all-against-all comparison involving a sequence-profile match using IMPALA resulted in clustering of 67 homologous protein families of Pfam into 28 potential new superfamilies. Expansion of groups of related proteins of yet unknown structural information, as proposed in SUPFAM, should help in identifying ‘priority proteins’ for structure determination in structural genomics initiatives to expand the coverage of structural information in the protein sequence space. For example, we could assign 858 distinct Pfam domains in 2203 of the gene products in the genome of Mycobacterium tubercolosis. Fifty-one of these Pfam families of unknown structure could be clustered into 17 potentially new superfamilies forming good targets for structural genomics. SUPFAM database can be accessed at http://pauling.mbu.iisc.ernet.in/~supfam.  相似文献   

4.
Lin HN  Notredame C  Chang JM  Sung TY  Hsu WL 《PloS one》2011,6(12):e27872
Most sequence alignment tools can successfully align protein sequences with higher levels of sequence identity. The accuracy of corresponding structure alignment, however, decreases rapidly when considering distantly related sequences (<20% identity). In this range of identity, alignments optimized so as to maximize sequence similarity are often inaccurate from a structural point of view. Over the last two decades, most multiple protein aligners have been optimized for their capacity to reproduce structure-based alignments while using sequence information. Methods currently available differ essentially in the similarity measurement between aligned residues using substitution matrices, Fourier transform, sophisticated profile-profile functions, or consistency-based approaches, more recently.In this paper, we present a flexible similarity measure for residue pairs to improve the quality of protein sequence alignment. Our approach, called SymAlign, relies on the identification of conserved words found across a sizeable fraction of the considered dataset, and supported by evolutionary analysis. These words are then used to define a position specific substitution matrix that better reflects the biological significance of local similarity. The experiment results show that the SymAlign scoring scheme can be incorporated within T-Coffee to improve sequence alignment accuracy. We also demonstrate that SymAlign is less sensitive to the presence of structurally non-similar proteins. In the analysis of the relationship between sequence identity and structure similarity, SymAlign can better differentiate structurally similar proteins from non- similar proteins. We show that protein sequence alignments can be significantly improved using a similarity estimation based on weighted n-grams. In our analysis of the alignments thus produced, sequence conservation becomes a better indicator of structural similarity. SymAlign also provides alignment visualization that can display sub-optimal alignments on dot-matrices. The visualization makes it easy to identify well-supported alternative alignments that may not have been identified by dynamic programming. SymAlign is available at http://bio-cluster.iis.sinica.edu.tw/SymAlign/.  相似文献   

5.
Recent progress in structure determination techniques has led to a significant growth in the number of known membrane protein structures, and the first structural genomics projects focusing on membrane proteins have been initiated, warranting an investigation of appropriate bioinformatics strategies for optimal structural target selection for these molecules. What determines a membrane protein fold? How many membrane structures need to be solved to provide sufficient structural coverage of the membrane protein sequence space? We present the CAMPS database (Computational Analysis of the Membrane Protein Space) containing almost 45,000 proteins with three or more predicted transmembrane helices (TMH) from 120 bacterial species. This large set of membrane proteins was subjected to single‐linkage clustering using only sequence alignments covering at least 40% of the TMH present in a given family. This process yielded 266 sequence clusters with at least 15 members, roughly corresponding to membrane structural folds, sufficiently structurally homogeneous in terms of the variation of TMH number between individual sequences. These clusters were further subdivided into functionally homogeneous subclusters according to the COG (Clusters of Orthologous Groups) system as well as more stringently defined families sharing at least 30% identity. The CAMPS sequence clusters are thus designed to reflect three main levels of interest for structural genomics: fold, function, and modeling distance. We present a library of Hidden Markov Models (HMM) derived from sequence alignments of TMH at these three levels of sequence similarity. Given that 24 out of 266 clusters corresponding to membrane folds already have associated known structures, we estimate that 242 additional new structures, one for each remaining cluster, would provide structural coverage at the fold level of roughly 70% of prokaryotic membrane proteins belonging to the currently most populated families. Proteins 2006. © 2006 Wiley‐Liss, Inc.  相似文献   

6.
Twilight zone of protein sequence alignments   总被引:38,自引:0,他引:38  
Sequence alignments unambiguously distinguish between protein pairs of similar and non-similar structure when the pairwise sequence identity is high (>40% for long alignments). The signal gets blurred in the twilight zone of 20-35% sequence identity. Here, more than a million sequence alignments were analysed between protein pairs of known structures to re-define a line distinguishing between true and false positives for low levels of similarity. Four results stood out. (i) The transition from the safe zone of sequence alignment into the twilight zone is described by an explosion of false negatives. More than 95% of all pairs detected in the twilight zone had different structures. More precisely, above a cut-off roughly corresponding to 30% sequence identity, 90% of the pairs were homologous; below 25% less than 10% were. (ii) Whether or not sequence homology implied structural identity depended crucially on the alignment length. For example, if 10 residues were similar in an alignment of length 16 (>60%), structural similarity could not be inferred. (iii) The 'more similar than identical' rule (discarding all pairs for which percentage similarity was lower than percentage identity) reduced false positives significantly. (iv) Using intermediate sequences for finding links between more distant families was almost as successful: pairs were predicted to be homologous when the respective sequence families had proteins in common. All findings are applicable to automatic database searches.  相似文献   

7.
In this study, we investigate the extent to which techniques for homology modeling that were developed for water-soluble proteins are appropriate for membrane proteins as well. To this end we present an assessment of current strategies for homology modeling of membrane proteins and introduce a benchmark data set of homologous membrane protein structures, called HOMEP. First, we use HOMEP to reveal the relationship between sequence identity and structural similarity in membrane proteins. This analysis indicates that homology modeling is at least as applicable to membrane proteins as it is to water-soluble proteins and that acceptable models (with C alpha-RMSD values to the native of 2 A or less in the transmembrane regions) may be obtained for template sequence identities of 30% or higher if an accurate alignment of the sequences is used. Second, we show that secondary-structure prediction algorithms that were developed for water-soluble proteins perform approximately as well for membrane proteins. Third, we provide a comparison of a set of commonly used sequence alignment algorithms as applied to membrane proteins. We find that high-accuracy alignments of membrane protein sequences can be obtained using state-of-the-art profile-to-profile methods that were developed for water-soluble proteins. Improvements are observed when weights derived from the secondary structure of the query and the template are used in the scoring of the alignment, a result which relies on the accuracy of the secondary-structure prediction of the query sequence. The most accurate alignments were obtained using template profiles constructed with the aid of structural alignments. In contrast, a simple sequence-to-sequence alignment algorithm, using a membrane protein-specific substitution matrix, shows no improvement in alignment accuracy. We suggest that profile-to-profile alignment methods should be adopted to maximize the accuracy of homology models of membrane proteins.  相似文献   

8.
An open question in protein homology modeling is, how well do current modeling packages satisfy the dual criteria of quality of results and practical ease of use? To address this question objectively, we examined homology‐built models of a variety of therapeutically relevant proteins. The sequence identities across these proteins range from 19% to 76%. A novel metric, the difference alignment index (DAI), is developed to aid in quantifying the quality of local sequence alignments. The DAI is also used to construct the relative sequence alignment (RSA), a new representation of global sequence alignment that facilitates comparison of sequence alignments from different methods. Comparisons of the sequence alignments in terms of the RSA and alignment methodologies are made to better understand the advantages and caveats of each method. All sequence alignments and corresponding 3D models are compared to their respective structure‐based alignments and crystal structures. A variety of protein modeling software was used. We find that at sequence identities >40%, all packages give similar (and satisfactory) results; at lower sequence identities (<25%), the sequence alignments generated by Profit and Prime, which incorporate structural information in their sequence alignment, stand out from the rest. Moreover, the model generated by Prime in this low sequence identity region is noted to be superior to the rest. Additionally, we note that DSModeler and MOE, which generate reasonable models for sequence identities >25%, are significantly more functional and easier to use when compared with the other structure‐building software.  相似文献   

9.
It is commonly believed that similarities between the sequences of two proteins infer similarities between their structures. Sequence alignments reliably recognize pairs of protein of similar structures provided that the percentage sequence identity between their two sequences is sufficiently high. This distinction, however, is statistically less reliable when the percentage sequence identity is lower than 30% and little is known then about the detailed relationship between the two measures of similarity. Here, we investigate the inverse correlation between structural similarity and sequence similarity on 12 protein structure families. We define the structure similarity between two proteins as the cRMS distance between their structures. The sequence similarity for a pair of proteins is measured as the mean distance between the sequences in the subsets of sequence space compatible with their structures. We obtain an approximation of the sequence space compatible with a protein by designing a collection of protein sequences both stable and specific to the structure of that protein. Using these measures of sequence and structure similarities, we find that structural changes within a protein family are linearly related to changes in sequence similarity.  相似文献   

10.
The availability of fast and robust algorithms for protein structure comparison provides an opportunity to produce a database of three-dimensional comparisons, called families of structurally similar proteins (FSSP). The database currently contains an extended structural family for each of 154 representative (below 30% sequence identity) protein chains. Each data set contains: the search structure; all its relatives with 70-30% sequence identity, aligned structurally; and all other proteins from the representative set that contain substructures significantly similar to the search structure. Very close relatives (above 70% sequence identity) rarely have significant structural differences and are excluded. The alignments of remote relatives are the result of pairwise all-against-all structural comparisons in the set of 154 representative protein chains. The comparisons were carried out with each of three novel automatic algorithms that cover different aspects of protein structure similarity. The user of the database has the choice between strict rigid-body comparisons and comparisons that take into account interdomain motion or geometrical distortions; and, between comparisons that require strictly sequential ordering of segments and comparisons, which allow altered topology of loop connections or chain reversals. The data sets report the structurally equivalent residues in the form of a multiple alignment and as a list of matching fragments to facilitate inspection by three-dimensional graphics. If substructures are ignored, the result is a database of structure alignments of full-length proteins, including those in the twilight zone of sequence similarity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Enhanced genome annotation using structural profiles in the program 3D-PSSM   总被引:31,自引:0,他引:31  
A method (three-dimensional position-specific scoring matrix, 3D-PSSM) to recognise remote protein sequence homologues is described. The method combines the power of multiple sequence profiles with knowledge of protein structure to provide enhanced recognition and thus functional assignment of newly sequenced genomes. The method uses structural alignments of homologous proteins of similar three-dimensional structure in the structural classification of proteins (SCOP) database to obtain a structural equivalence of residues. These equivalences are used to extend multiply aligned sequences obtained by standard sequence searches. The resulting large superfamily-based multiple alignment is converted into a PSSM. Combined with secondary structure matching and solvation potentials, 3D-PSSM can recognise structural and functional relationships beyond state-of-the-art sequence methods. In a cross-validated benchmark on 136 homologous relationships unambiguously undetectable by position-specific iterated basic local alignment search tool (PSI-Blast), 3D-PSSM can confidently assign 18 %. The method was applied to the remaining unassigned regions of the Mycoplasma genitalium genome and an additional 13 regions were assigned with 95 % confidence. 3D-PSSM is available to the community as a web server: http://www.bmm.icnet.uk/servers/3dpssm Copyright 2000 Academic Press.  相似文献   

12.
Hong Y  Kang J  Lee D  van Rossum DB 《PloS one》2010,5(10):e13596
A major computational challenge in the genomic era is annotating structure/function to the vast quantities of sequence information that is now available. This problem is illustrated by the fact that most proteins lack comprehensive annotations, even when experimental evidence exists. We previously theorized that embedded-alignment profiles (simply "alignment profiles" hereafter) provide a quantitative method that is capable of relating the structural and functional properties of proteins, as well as their evolutionary relationships. A key feature of alignment profiles lies in the interoperability of data format (e.g., alignment information, physio-chemical information, genomic information, etc.). Indeed, we have demonstrated that the Position Specific Scoring Matrices (PSSMs) are an informative M-dimension that is scored by quantitatively measuring the embedded or unmodified sequence alignments. Moreover, the information obtained from these alignments is informative, and remains so even in the "twilight zone" of sequence similarity (<25% identity). Although our previous embedding strategy was powerful, it suffered from contaminating alignments (embedded AND unmodified) and high computational costs. Herein, we describe the logic and algorithmic process for a heuristic embedding strategy named "Adaptive GDDA-BLAST." Adaptive GDDA-BLAST is, on average, up to 19 times faster than, but has similar sensitivity to our previous method. Further, data are provided to demonstrate the benefits of embedded-alignment measurements in terms of detecting structural homology in highly divergent protein sequences and isolating secondary structural elements of transmembrane and ankyrin-repeat domains. Together, these advances allow further exploration of the embedded alignment data space within sufficiently large data sets to eventually induce relevant statistical inferences. We show that sequence embedding could serve as one of the vehicles for measurement of low-identity alignments and for incorporation thereof into high-performance PSSM-based alignment profiles.  相似文献   

13.
Elofsson A 《Proteins》2002,46(3):330-339
One of the most central methods in bioinformatics is the alignment of two protein or DNA sequences. However, so far large-scale benchmarks examining the quality of these alignments are scarce. On the other hand, recently several large-scale studies of the capacity of different methods to identify related sequences has led to new insights about the performance of fold recognition methods. To increase our understanding about fold recognition methods, we present a large-scale benchmark of alignment quality. We compare alignments from several different alignment methods, including sequence alignments, hidden Markov models, PSI-BLAST, CLUSTALW, and threading methods. For most methods, the alignment quality increases significantly at about 20% sequence identity. The difference in alignment quality between different methods is quite small, and the main difference can be seen at the exact positioning of the sharp rise in alignment quality, that is, around 15-20% sequence identity. The alignments are improved by using structural information. In general, the best alignments are obtained by methods that use predicted secondary structure information and sequence profiles obtained from PSI-BLAST. One interesting observation is that for different pairs many different methods create the best alignments. This finding implies that if a method that could select the best alignment method for each pair existed, a significant improvement of the alignment quality could be gained.  相似文献   

14.
PASS2 is a nearly automated version of CAMPASS and contains sequence alignments of proteins grouped at the level of superfamilies. This database has been created to fall in correspondence with SCOP database (1.53 release) and currently consists of 110 multi-member superfamilies and 613 superfamilies corresponding to single members. In multi-member superfamilies, protein chains with no more than 25% sequence identity have been considered for the alignment and hence the database aims to address sequence alignments which represent 26 219 protein domains under the SCOP 1.53 release. Structure-based sequence alignments have been obtained by COMPARER and the initial equivalences are provided automatically from a MALIGN alignment and subsequently augmented using STAMP4.0. The final sequence alignments have been annotated for the structural features using JOY4.0. Several interesting links are provided to other related databases and genome sequence relatives. Availability of reliable sequence alignments of distantly related proteins, despite poor sequence identity and single-member superfamilies, permit better sampling of structures in libraries for fold recognition of new sequences and for the understanding of protein structure–function relationships of individual superfamilies. The database can be queried by keywords and also by sequence search, interfaced by PSI-BLAST methods. Structure-annotated sequence alignments and several structural accessory files can be retrieved for all the superfamilies including the user-input sequence. The database can be accessed from http://www.ncbs.res.in/%7Efaculty/mini/campass/pass.html.  相似文献   

15.
To adequately deal with the inherent complexity of interactions between protein side-chains, we develop and describe here a novel method for characterizing protein packing within a fold family. Instead of approaching side-chain interactions absolutely from one residue to another, we instead consider the relative interactions of contacting residue pairs. The basic element, the pair-wise relative contact, is constructed from a sequence alignment and contact analysis of a set of structures and consists of a cluster of similarly oriented, interacting, side-chain pairs. To demonstrate this construct's usefulness in analyzing protein structure, we used the pair-wise relative contacts to analyze two sets of protein structures as defined by SCOP: the diverse globin-like superfamily (126 structures) and the more uniform heme binding globin family (a 94 structure subset of the globin-like superfamily). The superfamily structure set produced 1266 unique pair-wise relative contacts, whereas the family structure subset gave 1001 unique pair-wise relative contacts. For both sets, we show that these constructs can be used to accurately and automatically differentiate between fold classes. Furthermore, these pair-wise relative contacts correlate well with sequence identity and thus provide a direct relationship between changes in sequence and changes in structure. To capture the complexity of protein packing, these pair-wise relative contacts can be superimposed around a single residue to create a multi-body construct called a relative packing group. Construction of convex hulls around the individual packing groups provides a measure of the variation in packing around a residue and defines an approximate volume of space occupied by the groups interacting with a residue. We find that these relative packing groups are useful in understanding the structural quality of sequence or structure alignments. Moreover, they provide context to calculate a value for structural randomness, which is important in properly assessing the quality of a structural alignment. The results of this study provide the framework for future analysis for correlating sequence changes to specific structure changes.  相似文献   

16.
Although a quantitative relationship between sequence similarity and structural similarity has long been established, little is known about the impact of orthology on the relationship between protein sequence and structure. Among homologs, orthologs (derived by speciation) more frequently have similar functions than paralogs (derived by duplication). Here, we hypothesize that an orthologous pair will tend to exhibit greater structural similarity than a paralogous pair at the same level of sequence similarity. To test this hypothesis, we used 284,459 pairwise structure‐based alignments of 12,634 unique domains from SCOP as well as orthology and paralogy assignments from OrthoMCL DB. We divided the comparisons by sequence identity and determined whether the sequence‐structure relationship differed between the orthologs and paralogs. We found that at levels of sequence identity between 30 and 70%, orthologous domain pairs indeed tend to be significantly more structurally similar than paralogous pairs at the same level of sequence identity. An even larger difference is found when comparing ligand binding residues instead of whole domains. These differences between orthologs and paralogs are expected to be useful for selecting template structures in comparative modeling and target proteins in structural genomics.  相似文献   

17.
MUSTANG: a multiple structural alignment algorithm   总被引:1,自引:0,他引:1  
Multiple structural alignment is a fundamental problem in structural genomics. In this article, we define a reliable and robust algorithm, MUSTANG (MUltiple STructural AligNment AlGorithm), for the alignment of multiple protein structures. Given a set of protein structures, the program constructs a multiple alignment using the spatial information of the C(alpha) atoms in the set. Broadly based on the progressive pairwise heuristic, this algorithm gains accuracy through novel and effective refinement phases. MUSTANG reports the multiple sequence alignment and the corresponding superposition of structures. Alignments generated by MUSTANG are compared with several handcurated alignments in the literature as well as with the benchmark alignments of 1033 alignment families from the HOMSTRAD database. The performance of MUSTANG was compared with DALI at a pairwise level, and with other multiple structural alignment tools such as POSA, CE-MC, MALECON, and MultiProt. MUSTANG performs comparably to popular pairwise and multiple structural alignment tools for closely related proteins, and performs more reliably than other multiple structural alignment methods on hard data sets containing distantly related proteins or proteins that show conformational changes.  相似文献   

18.
MOTIVATION: The quality of a model structure derived from a comparative modeling procedure is dictated by the accuracy of the predicted sequence-template alignment. As the sequence-template pairs are increasingly remote in sequence relationship, the prediction of the sequence-template alignments becomes increasingly problematic with sequence alignment methods. Structural information of the template, used in connection with the sequence relationship of the sequence-template pair, could significantly improve the accuracy of the sequence-template alignment. In this paper, we describe a sequence-template alignment method that integrates sequence and structural information to enhance the accuracy of sequence-template alignments for distantly related protein pairs. RESULTS: The structure-dependent sequence alignment (SDSA) procedure was optimized for coverage and accuracy on a training set of 412 protein pairs; the structures for each of the training pairs are similar (RMSD< approximately 4A) but the sequence relationship is undetectable (average pair-wise sequence identity = 8%). The optimized SDSA procedure was then applied to extend PSI-BLAST local alignments by calculating the global alignments under the constraint of the residue pairs in the local alignments. This composite alignment procedure was assessed with a testing set of 1421 protein pairs, of which the pair-wise structures are similar (RMSD< approximately 4A) but the sequences are marginally related at best in each pair (average pair-wise sequence identity = 13%). The assessment showed that the composite alignment procedure predicted more aligned residues pairs with an average of 27% increase in correctly aligned residues over the standard PSI-BLAST alignments for the protein pairs in the testing set.  相似文献   

19.
MSAT     
This article describes the development of a new method for multiple sequence alignment based on fold-level protein structure alignments, which provides an improvement in accuracy compared with the most commonly used sequence-only-based techniques. This method integrates the widely used, progressive multiple sequence alignment approach ClustalW with the Topology of Protein Structure (TOPS) topology-based alignment algorithm. The TOPS approach produces a structural alignment for the input protein set by using a topology-based pattern discovery program, providing a set of matched sequence regions that can be used to guide a sequence alignment using ClustalW. The resulting alignments are more reliable than a sequence-only alignment, as determined by 20-fold cross-validation with a set of 106 protein examples from the CATH database, distributed in seven superfold families. The method is particularly effective for sets of proteins that have similar structures at the fold level but low sequence identity. The aim of this research is to contribute towards bridging the gap between protein sequence and structure analysis, in the hope that this can be used to assist the understanding of the relationship between sequence, structure and function. The tool is available at http://balabio.dcs.gla.ac.uk/msat/.  相似文献   

20.
DeWeese-Scott C  Moult J 《Proteins》2004,55(4):942-961
Experimental protein structures often provide extensive insight into the mode and specificity of small molecule binding, and this information is useful for understanding protein function and for the design of drugs. We have performed an analysis of the reliability with which ligand-binding information can be deduced from computer model structures, as opposed to experimentally derived ones. Models produced as part of the CASP experiments are used. The accuracy of contacts between protein model atoms and experimentally determined ligand atom positions is the main criterion. Only comparative models are included (i.e., models based on a sequence relationship between the protein of interest and a known structure). We find that, as expected, contact errors increase with decreasing sequence identity used as a basis for modeling. Analysis of the causes of errors shows that sequence alignment errors between model and experimental template have the most deleterious effect. In general, good, but not perfect, insight into ligand binding can be obtained from models based on a sequence relationship, providing there are no alignment errors in the model. The results support a structural genomics strategy based on experimental sampling of structure space so that all protein domains can be modeled on the basis of 30% or higher sequence identity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号