首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Drosophila Btk29A is a Tec family nonreceptor tyrosine kinase, the ortholog of which causes X‐linked agammaglobulinemia in humans when mutant. In Btk29AficP mutant ovaries, multiple defects are observed: extrapolar cells form ectopically; osk mRNA fails to accumulate posteriorly in mature oocytes; the shape and alignment of follicle cells are grossly distorted. All these phenotypes are rescued by selectively overexpressing the type 2 isoform of wild‐type Btk29A in follicle cells. Expression of certain proteins enriched in adherens junctions is markedly affected in Btk29AficP mutants; the anterior–posterior gradient normally observed in the expression of DE‐Cadherin and Armadillo are lost and Canoe is sequestered from adherens junctions. Intriguingly, tyrosine phosphorylation of Canoe is reduced in Btk29AficP mutants. It is proposed that Btk29A is required for the establishment of egg chamber polarity presumably through the regulation of subcellular localization of its downstream proteins, including Cno.  相似文献   

2.
Drosophila Btk29A is the ortholog of mammalian Btk, a Tec family nonreceptor tyrosine kinase whose deficit causes X-linked agammaglobulinemia in humans. The Btk29AficP mutation induces multiple abnormalities in oogenesis, including the growth arrest of ring canals, large intercellular bridges that allow the flow of cytoplasm carrying maternal products essential for embryonic development from the nurse cells to the oocyte during oogenesis. In this study, inactivation of Parcas, a negative regulator of Btk29A, was found to promote Btk29A accumulation on ring canals with a concomitant increase in the ring canal diameter, counteracting the Btk29AficP mutation. This mutation markedly reduced the accumulation of phosphotyrosine on ring canals and in the regions of cell-cell contact, where adhesion-supporting proteins such as DE-cadherin and β-catenin ortholog Armadillo (Arm) are located. Our previous in vitro and in vivo analyses revealed that Btk29A directly phosphorylates Arm, leading to its release from DE-cadherin. In the present experiments, immunohistological analysis revealed that phosphorylation at tyrosine 150 (Y150) and Y667 of Arm was diminished in Btk29AficP mutant ring canals. Overexpression of an Arm mutant with unphosphorylatable Y150 inhibited ring canal growth. Thus Btk29A-induced Y150 phosphorylation is necessary for the normal growth of ring canals. We suggest that the dissociation of tyrosine-phosphorylated Arm from DE-cadherin allows dynamic actin to reorganize, leading to ring canal expansion and cell shape changes during the course of oogenesis.  相似文献   

3.
Circadian clocks regulate the daily temporal structure of physiological and behavioural functions. In the fruit fly Drosophila melanogaster Meigen, disruption of daily rhythms is suggested to reduce the fly's lifespan. In the present study, because pairs of mixed‐sex flies are known to show an activity pattern different from that of individual flies, this hypothesis is tested by measuring the lifespan of flies housed same‐sexually or mixed‐sexually under an LD 12 : 12 h photocycle at a constant temperature of 25 °C. The effect of housing wild‐type (Canton‐S) flies with period (per) circadian clock mutant flies is also examined because the mutant flies have different daily activity patterns. When males and females of wild‐type flies are housed together, their lifespan is substantially lengthened (males) or shortened (females) compared with same‐sex housed flies. The shortening of the lifespan in females is significantly enhanced when mated with per mutant males. The shortening effects are significantly reduced when the mixed‐sex interaction is limited for the first 5 days after emergence. A slight elongation in lifespan, rather than a reduction, occurs when wild‐type females are housed same‐sexually with per0 or perL mutant flies. In male flies, the elongation of lifespan occurs not only when wild‐type males are housed with wild‐type, per0 or perL females, but also when housed with per0 or perS mutant males. Mixed‐sex couples always show altered daily locomotor rhythms with an enhanced night‐time activity, whereas same‐sex couples show daily behavioural profiles slightly altered but essentially similar to a sum of the respective two flies. No significant correlation is found between the lifespan and reproductive capacity. These results suggest that the alteration of daily activity rhythms and sexual interaction may have significant impact on the fly's lifespan.  相似文献   

4.
The fne (found‐in‐neurons) locus encodes one of the three paralogs of the ELAV gene family of Drosophila melanogaster. Members of this family are found throughout metazoans and encode RNA‐binding proteins with primarily neuronal localization, but with remarkably diverse functions given their high level of amino acid sequence conservation. The first identified member of the family, elav of Drosophila is a vital gene. Mutations in the second Drosophila elav paralog, rbp9, are viable but female sterile. No alleles of fne were previously available. FNE protein is normally present in the cytoplasm of all neurons throughout development. Here we describe the generation and characterization of fnenull mutations by homologous recombination. In contrast to elav and similar to rbp9, fnenull mutants are viable, but exhibit a specific and fully penetrant fusion of the β‐lobes in their mushroom bodies (MB), a paired neuropil of the central brain involved in a variety of complex behaviors. Mutant males have reduced courtship indices, but normal short‐ and long‐term courtship memory. Our data show that fne has specific functions which are non‐overlapping with the other two family members, namely in courtship behavior and in the development of the adult MB. The data further show that courtship memory does not require intact β‐lobes in the MB.  相似文献   

5.
Drosophila type 2 Btk29A reveals the highest homology to Btk among mammalian Tec kinases. In Btk29A(ficP) mutant males, the apodeme holding the penis split into two pieces. Human Btk rescued this phenotype in 39% of Btk29A(ficP) males, while the Drosophila transgenes did so in 90-100% of mutants. The Btk29A(ficP) mutation reduced adult longevity to 11% that of wild-type. This effect was counteracted by Drosophila type 2, yielding 76% of the wild-type lifespan. Human Btk extended the lifespan of Btk29A(ficP) mutants only to 20% that of wild-type. Thus human Btk can partially replace Drosophila Btk29A+ in male genital development and survival.  相似文献   

6.
Mating is critical for species survival and is profoundly regulated by neuromodulators and neurohormones to accommodate internal states and external factors. To identify the underlying neuromodulatory mechanisms, we investigated the roles of dopamine receptors in various aspects of courtship behavior in Drosophila. Here, we report that the D1 dopamine receptor dDA1 regulates courtship drive in naïve males. The wild‐type naïve males actively courted females regardless their appearance or mating status. On the contrary, the dDA1 mutant (dumb) males exhibited substantially reduced courtship toward less appealing females including decapitated, leg‐less and mated females. The dumb male's reduced courtship activity was due to delay in courtship initiation and prolonged intervals between courtship bouts. The dampened courtship drive of dumb males was rescued by reinstated dDA1 expression in the mushroom body α/β and γ neurons but not α/β or γ neurons alone, which is distinct from the previously characterized dDA1 functions in experience‐dependent courtship or other learning and memory processes. We also found that the dopamine receptors dDA1, DAMB and dD2R are dispensable for associative memory formation and short‐term memory of conditioned courtship, thus courtship motivation and associative courtship learning and memory are regulated by distinct neuromodulatory mechanisms. Taken together, our study narrows the gap in the knowledge of the mechanism that dopamine regulates male courtship behavior.  相似文献   

7.
Agonists at G‐protein‐coupled receptors in neurons of the dorsal raphe nucleus (DRN) of knock‐out mice devoid of the serotonin transporter (5‐HTT?/?) exhibit lower efficacy to inhibit cellular discharge than in wild‐type counterparts. Using patch‐clamp whole‐cell recordings, we found that a G‐protein‐gated inwardly rectifying potassium (GIRK) current is involved in the inhibition of spike discharge induced by 5‐HT1A agonists (5‐carboxamidotryptamine (5‐CT) and (±)‐2‐dipropylamino‐8‐hydroxy‐1,2,3,4‐tetrahydronaphthalene hydrobromide (8‐OH‐DPAT); 50 nM–30 μM) in both wild‐type and 5‐HTT?/? female and male mice. These effects were mimicked by 5′‐guanylyl‐imido‐diphosphate (Gpp(NH)p; 400 μM) dialysis into cells with differences between genders. The 5‐HTT?/? knock‐out mutation reduced the current density induced by Gpp(NH)p in females but not in males. These data suggest that the decreased response of 5‐HT1A receptors to agonists in 5‐HTT?/? mutants reflects notably alteration in the coupling between G‐proteins and GIRK channels in females but not in males. Accordingly, gender differences in central 5‐HT neurotransmission appear to depend—at least in part—on sex‐related variations in corresponding receptor‐G protein signaling mechanisms. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

8.
Amyotrophic lateral sclerosis (ALS) involves the rapid degeneration of upper and lower motor neurons leading to weakening and paralysis of voluntary movements. Mutations in copper‐zinc superoxide dismutase 1 (SOD1) are a known genetic cause of ALS, and the SOD1 G93A mouse has been used extensively to investigate molecular mechanisms in ALS. In recent years, evidence suggests that ALS and frontotemporal dementia form a spectrum disorder ranging from motor to cognitive dysfunctions. Thus, we tested male and female SOD1 G93A mice for the first time before the onset of debilitating motor impairments in behavioural domains relevant to both ALS and frontotemporal dementia. SOD1 G93A males displayed reduced locomotion, exploration and increased anxiety‐like behaviours compared with control males. Intermediate‐term spatial memory was impaired in SOD1 G93A females, whereas long‐term spatial memory deficits as well as lower acoustic startle response, and prepulse inhibition were identified in SOD1 G93A mice of both sexes compared with respective controls. Interestingly, SOD1 G93A males exhibited an increased conditioned cue freezing response. Nosing behaviours were also elevated in both male and female SOD1 G93A when assessed in social paradigms. In conclusion, SOD1 G93A mice exhibit a variety of sex‐specific behavioural deficits beyond motor impairments supporting the notion of an ALS‐frontotemporal spectrum disorder. Thus, SOD1 G93A mice may represent a useful model to test the efficacy of therapeutic interventions on clinical symptoms in addition to declining motor abilities.  相似文献   

9.
In Drosophila, pheromones play a crucial role in regulating courtship behaviors. In males, female aphrodisiac pheromones promote male‐female courtship, and male antiaphrodisiac pheromones inhibit male‐male courtship. Previous studies have reported that receptor proteins belonging to the pickpocket (ppk) family, ionotropic receptor family and gustatory receptor family are required for pheromone detection and normal courtship. However, none of them has been shown to be sufficient for sensing pheromones after ectopic expression in originally unresponsive cells. “M” cells are activated by male antiaphrodisiac pheromones but not female aphrodisiac pheromones, and the activated cells inhibit male‐male courtship. In our study, male flies with ectopic expression of ppk25, ppk29 and ppk23 in “M” cells showed decreased male‐female courtship. Using an in vivo calcium imaging approach, we found that the “M” cells expressing these three ppks were significantly activated by the female aphrodisiac pheromone 7,11‐heptacosadiene (7,11‐HD). Our results indicate that a sodium channel consisting, at minimum, of ppk25, ppk29 and ppk23, can sense 7,11‐HD, most likely as a receptor. Our findings may help us gain insights into the molecular mechanisms of pheromonal functions.  相似文献   

10.
11.
In species where females preferentially select the most colourful males, males may strategically invest in courtship and nuptial colour according to the presence of rivals. In this experimental study, we tested this in the three‐spined stickleback (Gasterosteus aculeatus) in which mature males exhibit carotenoid‐based red coloration to attract mates and defend their territories against male competitors. We challenged experimental males with either a red‐ornamented dummy male or a non‐ornamented dummy for five min per day in six‐d experimental trial, which was repeated twice during the breeding season. We found that the males presented with a coloured rival exhibited more frequent courtship behaviours (i.e. fanning and gluing) to females than those presented with a non‐coloured intruder during the second experimental trial. At the end of each trial, the experimental males also showed a significantly larger area of red coloration in the presence of a coloured intruder. Our findings suggest that male sticklebacks regulate mating effort according to the presence of competitive rivals by increasing their investment in costly signals when successful mating and territory defence is at risk.  相似文献   

12.
13.
Male files homozygous for the gene ebony11 are partially blind, and at a disadvantage in competitive mating. The courtship of the mutant males is deficient in wing vibration stimulation, which is characterized by a low proportion of sine song and a high intra-pulse frequency. Males heterozygous for ebony have normal vision, but show an increase in courtship song, and are superior in competitive mating to wild type males. The auditory characteristics of courtship song produced by heterozygous males are indistinguishable from those of wild type, and their superiority in competitive mating success is due to overdominance involving this specific element of male courtship behaviour.  相似文献   

14.
The vesicle‐trafficking protein SYP121 (SYR1/PEN1) was originally identified in association with ion channel control at the plasma membrane of stomatal guard cells, although stomata of the Arabidopsis syp121 loss‐of‐function mutant close normally in ABA and high Ca2+. We have now uncovered a set of stomatal phenotypes in the syp121 mutant that reduce CO2 assimilation, slow vegetative growth and increase water use efficiency in the whole plant, conditional upon high light intensities and low relative humidity. Stomatal opening and the rise in stomatal transpiration of the mutant was delayed in the light and following Ca2+‐evoked closure, consistent with a constitutive form of so‐called programmed stomatal closure. Delayed reopening was observed in the syp121, but not in the syp122 mutant lacking the homologous gene product; the delay was rescued by complementation with wild‐type SYP121 and was phenocopied in wild‐type plants in the presence of the vesicle‐trafficking inhibitor Brefeldin A. K+ channel current that normally mediates K+ uptake for stomatal opening was suppressed in the syp121 mutant and, following closure, its recovery was slowed compared to guard cells of wild‐type plants. Evoked stomatal closure was accompanied by internalisation of GFP‐tagged KAT1 K+ channels in both wild‐type and syp121 mutant guard cells, but their subsequently recycling was slowed in the mutant. Our findings indicate that SYP121 facilitates stomatal reopening and they suggest that K+ channel traffic and recycling to the plasma membrane underpins the stress memory phenomenon of programmed closure in stomata. Additionally, they underline the significance of vesicle traffic for whole‐plant water use and biomass production, tying SYP121 function to guard cell membrane transport and stomatal control.  相似文献   

15.
A host of classical and molecular genetic tools make Drosophila a tremendous model for the dissection of gene activity. In particular, the FLP‐FRT technique for mitotic recombination has greatly enhanced gene loss‐of‐function analysis. This technique efficiently induces formation of homozygous mutant clones in tissues of heterozygous organisms. However, the dependence of the FLP‐FRT method on cell division, and other constraints, also impose limits on its effectiveness. We describe here the generation and testing of tools for Mutant Analysis by Rescue Gene Excision (MARGE), an approach whereby mutant cells are formed by loss of a rescue transgene in a homozygous mutant organism. Rescue‐transgene loss can be induced in any tissue or cell‐type and at any time during development or in the adult using available heat‐shock‐induced or tissue‐specific flippases, or combinations of UAS‐FLP with Gal4 and Gal80ts reagents. The simultaneous loss of a constitutive fluorescence marker (GFP or RFP) identifies the mutant cells. We demonstrate the efficacy of the MARGE technique by flip‐out (clonal and disc‐wide) of a Ubi‐GFP‐carrying construct in imaginal discs, and by inducing a known yki mutant phenotype in the Drosophila ovary.  相似文献   

16.
A family of six genes encoding acyl‐CoA‐binding proteins (ACBPs), ACBP1–ACBP6, has been characterized in Arabidopsis thaliana. In this study, we demonstrate that ACBP1 promotes abscisic acid (ABA) signaling during germination and seedling development. ACBP1 was induced by ABA, and transgenic Arabidopsis ACBP1‐over‐expressors showed increased sensitivity to ABA during germination and seedling development, whereas the acbp1 mutant showed decreased ABA sensitivity during these processes. Subsequent RNA assays showed that ACBP1 over‐production in 12‐day‐old seedlings up‐regulated the expression of PHOSPHOLIPASE Dα1 (PLDα1) and three ABA/stress‐responsive genes: ABA‐RESPONSIVE ELEMENT BINDING PROTEIN1 (AREB1), RESPONSE TO DESICCATION29A (RD29A) and bHLH‐TRANSCRIPTION FACTOR MYC2 (MYC2). The expression of AREB1 and PLDα1 was suppressed in the acbp1 mutant in comparison with the wild type following ABA treatment. PLDα1 has been reported to promote ABA signal transduction by producing phosphatidic acid, an important lipid messenger in ABA signaling. Using lipid profiling, seeds and 12‐day‐old seedlings of ACBP1‐over‐expressing lines were shown to accumulate more phosphatidic acid after ABA treatment, in contrast to lower phosphatidic acid in the acbp1 mutant. Bimolecular fluorescence complementation assays indicated that ACBP1 interacts with PLDα1 at the plasma membrane. Their interaction was further confirmed by yeast two‐hybrid analysis. As recombinant ACBP1 binds phosphatidic acid and phosphatidylcholine, ACBP1 probably promotes PLDα1 action. Taken together, these results suggest that ACBP1 participates in ABA‐mediated seed germination and seedling development.  相似文献   

17.
Epilepsy is a common neurological disorder affecting approximately 1% of the population. Mutations in voltage‐gated sodium channels are responsible for several monogenic epilepsy syndromes. More than 800 mutations in the voltage‐gated sodium channel SCN1A have been reported in patients with generalized epilepsy with febrile seizures plus and Dravet syndrome. Heterozygous loss‐of‐function mutations in SCN1A result in Dravet syndrome, a severe infant‐onset epileptic encephalopathy characterized by intractable seizures, developmental delays and increased mortality. A common feature of monogenic epilepsies is variable expressivity among individuals with the same mutation, suggesting that genetic modifiers may influence clinical severity. Mice with heterozygous deletion of Scn1a (Scn1a+/?) model a number of Dravet syndrome features, including spontaneous seizures and premature lethality. Phenotype severity in Scn1a+/? mice is strongly dependent on strain background. On the 129S6/SvEvTac strain Scn1a+/? mice exhibit no overt phenotype, whereas on the (C57BL/6J × 129S6/SvEvTac)F1 strain Scn1a+/? mice exhibit spontaneous seizures and early lethality. To systematically identify loci that influence premature lethality in Scn1a+/? mice, we performed genome scans on reciprocal backcrosses. Quantitative trait locus mapping revealed modifier loci on mouse chromosomes 5, 7, 8 and 11. RNA‐seq analysis of strain‐dependent gene expression, regulation and coding sequence variation provided a list of potential functional candidate genes at each locus. Identification of modifier genes that influence survival in Scn1a+/? mice will improve our understanding of the pathophysiology of Dravet syndrome and may suggest novel therapeutic strategies for improved treatment of human patients.  相似文献   

18.
Fusion of the testis occurs in most Lepidoptera insects, including Spodoptera litura, an important polyphagous pest. Testicular fusion in S. litura is advantageous for male reproduction, and the molecular mechanism of fusion remains unknown. Doublesex influences the formation of genitalia, the behavior of courtship, and sexually dimorphic traits in fruit-fly and silkworm, and is essential for sexual differentiation. However, its purpose in the testis of S. litura remains unknown. The doublesex gene of S. litura (Sldsx) has male-specific SldsxM and female-specific SldsF isoforms, and exhibits a higher expression level in the male testis. At the testicular fusion stage (L6D6), Sldsx attained the highest expression compared to the pre-fusion and post-fusion periods. Moreover, Sldsx had a higher expression in the peritoneal sheaths of testis than that of germ cells in the follicle. CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/Cas9) was applied to S. litura to determine the role of Sldsx. A mixture of single guide RNA messenger RNA and Cas9 protein (300 ng/μL each) was injected into eggs within 2 h following oviposition. CRISPR/Cas9 successfully induced genomic mutagenesis of Sldsx at Go generation. The mutant males had smaller testis surrounded by less tracheae. Moreover, the mutant males had abnormal external genitalia and could not finish mating with wild-type females. Additionally, testes were fused for almost all mutant males. The results showed that Sldsx was not related to testicular fusion, and is required for both testis development and the formation and function of external genitalia in S. litura. The main roles of doublesex on the male are similar to other insects.  相似文献   

19.
Intracellular pH homeostasis is essential for all living cells. In plants, pH is usually maintained by three structurally distinct and differentially localized types of proton pump: P‐type H+‐ATPases in the plasma membrane, and multimeric vacuolar‐type H+‐ATPases (V‐ATPases) and vacuolar H+‐pyrophosphatases (H+‐PPases) in endomembranes. Here, we show that reduced accumulation of proanthocyanidins (PAs) and hence the diminished brown seed coloration found in the Arabidopsis thaliana mutant transparent testa 13 (tt13) is caused by disruption of the gene encoding the P3A‐ATPase AHA10. Identification of the gene encoded by the tt13 locus completes the molecular characterization of the classical set of transparent testa mutants. Cells of the tt13 seed coat endothelium do not contain PA‐filled central vacuoles as observed in the wild‐type. tt13 phenocopies tt12, a mutant that is defective in vacuolar import of the PA precursor epicatechin. Our data show that vacuolar loading with PA precursors depends on TT13. Consistent with the tt13 phenotype, but in contrast to other isoforms of P‐type H+‐ATPases, TT13 localizes to the tonoplast. PA accumulation in tt13 is partially restored by expression of the tonoplast localized H+‐PPase VHP1. Our findings indicate that the P3A‐ATPase TT13 functions as a proton pump in the tonoplast of seed coat endothelium cells, and generates the driving force for TT12‐mediated transport of PA precursors to the vacuole.  相似文献   

20.
In response to pathogens, plant cells exhibit a rapid increase in the intracellular calcium concentration and a burst of reactive oxygen species (ROS). The cytosolic increase in Ca2+ and the accumulation of ROS are critical for inducing programmed cell death (PCD), but the molecular mechanism is not fully understood. We screened an Arabidopsis mutant, sad2‐5, which harbours a T‐DNA insertion in the 18th exon of the importin beta‐like gene, SAD2. The H2O2‐induced increase in the [Ca2+]cyt of the sad2‐5 mutant was greater than that of the wild type, and the sad2‐5 mutant showed clear cell death phenotypes and abnormal H2O2 accumulation under fumonisin‐B1 (FB1) treatment. CaCl2 could enhance the FB1‐induced cell death of the sad2‐5 mutant, whereas lanthanum chloride (LaCl3), a broad‐spectrum calcium channel blocker, could restore the FB1‐induced PCD phenotype of sad2‐5. The sad2‐5 fbr11‐1 double mutant exhibited the same FB1‐insensitive phenotype as fbr11‐1, which plays a critical role in novo sphingolipid synthesis, indicating that SAD2 works downstream of FBR11. These results suggest the important role of nuclear transporters in calcium‐ and ROS‐mediated PCD response as well as provide an important theoretical basis for further analysis of the molecular mechanism of SAD2 function in PCD and for improvement of the resistance of crops to adverse environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号