首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Insect Biochemistry》1985,15(6):667-675
We have begun to examine the factors controlling the accumulation of the neurotransmitter γ-aminobutyric acid (GABA) in the central nervous system (CNS) of the sphinx moth Manduca sexta. Analysis of soluble amino acids in CNS structures from mature moths outlines the regional distribution of GABA. Analysis of amino acids in the antennal lobes (the primary olfactory centres) of Manduca during metamorphosis reveals that GABA accumulates gradually and continuously through most of adult development until eclosion; within 18 hr after eclosion, levels of GABA abruptly increase 27–50%. The activity of the biosynthetic enzyme glutamic acid decarboxylase (EC 4.1.1.15), assayed in extracts of antennal lobes from developing moths, does not change after eclosion. Extracts of hemolymph from mature moths contain low levels of glutamate ( <0.2 mM) and higher levels of certain other amino acids such as serine, glutamine and proline. The concentration of proline in hemolymph increases up to 2-fold after eclosion. Glutamate, glutamine and proline are interconvertible in the CNS, and each can serve as precursor for GABA synthesis both in vivo and in vitro. The efficiency of the precursor role in vitro is similar for each amino acid, as estimated from the ratio of the specific radioactivities of GABA and glutamic acid in the ganglion derived from each precursor. Exogenous proline and glutamine can equilibrate rapidly with the ganglionic pools of the same amino acids while glutamic acid is relatively excluded. Taken together, the findings of this study show that proline and glutamine may contribute substantially to synthesis of GABA in the CNS of M. sexta.  相似文献   

2.
The effects of adrenal cortical hormone and thyroxine on brain glutamic acid, gamma-amino butyric acid (GABA) and glutamine were studied in rats fed on the amino acid imbalanced diet (8% casein diet supplemented with 0.3% L-threonine). The studies revealed that the decrease in brain glutamic acid and GABA levels in threonine imbalance was recovered by hydrocortisone supplementation. The increased level of brain glutamine in threonine imbalance could not, however, be reversed by hydrocortisone supplementation. Thyroxine supplementation was found to have no impact on any of the members of glutamic acid family in the brain of rats receiving the threonine-imbalanced diet. It was suggested that the decreased levels of brain glutamic acid and GABA in threonine imbalance were caused by diminished adrenal cortical function and the influence of adrenal cortical hormone could be suggested to reside at the level of formation of both glutamic acid and GABA.  相似文献   

3.
Abstract— The influence of hypercapnia on the metabolism of glutamic acid, aspartic acid, glutamine and GABA in rat brain was studied using three different precursors. Acute hypercapnia induced a fall in the concentration of glutamic and aspartic acid, and a rise in the concentration of glutamine and GABA. Acute hypercapnia had a profound effect on the relative specific radioactivity of glutamine indicating that the excess glutamine, present in the brain in hypercapnia, was synthetized from glutamic acid in the compartment where it could become quickly labelled from butyric and glutamic acid, but not from glucose. This effect was maintained in chronic hypercapnia.  相似文献   

4.
Summary. γ-Aminobutyric acid (GABA), a hypotensive compound, is formed from glutamic acid under anaerobic condition in tea shoots. Glutamic acid was exhausted in the first three hours of anaerobic incubation and the increase of GABA stopped. After that, when tea shoots were released under aerobic condition, glutamic acid reproduced rapidly. After one hour of aerobic incubation, tea shoots were given three hours of anaerobic incubation again and then accumulated glutamic acid changed to GABA. The content of GABA increased much more than usual anaerobic incubation. GABA was more in the tea stem than in the leaf. Received January 4, 2000 Accepted March 1, 2000  相似文献   

5.
Abstract— Paper chromatography of extracts from mesenteric Pacinian corpuscles of the cat revealed the presence of glutamic acid, glutamine, aspartic acid and alanine as major amino acids, and glycine, serine and threonine in traces; GABA was not detected. Levels of glutamic acid (0·75 μmol/g ' 0·37, s.d. ), glutamine (1·34 ± 0·55), and aspartic acid (0·32 ± 0·22) of mesenteric and pancreatic samples of Pacinian corpuscles were determined by separation on chromatographic columns. The protein values averaged 5·2 ± 0·66 per cant of the wet weight.
Treatment of the cats with reserpine or pargyline or deafferentation of the Pacinian corpuscles did not significantly alter these values.  相似文献   

6.
Levels of the amino acids GABA and glutamine were determined in the whole brain of the white albino rat Rattus norvegicus after daily injection of 1/2, 1/4, 1/8, 1/16, 1/32 and 1/100 LD50 of cyolane. With 1/2 LD50 an increase in the level of both GABA and glutamine in the brain was recorded. Dose levels of 1/4 and 1/8 LD50 caused an increase in the level of GABA and a decrease in glutamine concentration followed by an increase from the 7th and 11th days for 1/4 and 1/8 LD50, respectively. The induced increase in GABA level started from the 2nd week for 1/16 and 1/32 LD50 and from the 3rd week for 1/100 LD50. Dose levels of 1/16, 1/32 and 1/100 LD50 caused a fluctuating increase in glutamine concentration starting from the 2nd, 3rd and 6th weeks, respectively, which was followed by a fluctuating decrease at the 9th week for 1/32 and 1/100 LD50. These findings support previous findings that the enhanced transformation of glutamic acid to GABA and glutamine is a result of a disturbance in the metabolism of the glutamic acid-GABA and the glutamic acid-glutamine systems in the rat brain.  相似文献   

7.
1. Glutamic acid showed a significant decrease during hibernation in brain cortex. This is attributed to: (a) Transformation to glutamine to detoxicate ammonia. (b) The synthesis of GABA from glutamic acid. (c) It is suggested that the enzyme GAD is active during hibernation. 2. GABA showed a significant increase in liver and brain cortex. It was absent in the blood serum. (a) The present results show that non-neural tissues contain lower GABA than neural tissues. (b) GABA may be formed locally in tissues by decarboxylation of glutamate as well as from pathways connected with tricarboxylic acid cycle. 3. Aspartic acid showed increased levels in blood serum, liver and brain cortex, the greatest increase was observed in liver. 4. A significant increase was recorded in the level of arginine in brain cortex and liver, whilst a smaller percentage increase was recorded in ornithine level. It is assumed that transformation of arginine to ornithine was depressed during hibernation.  相似文献   

8.
Ammonia contents in the brain stem and prosencephalon markedly increased in a rat model of acute hepatic failure induced by partial hepatectomy following CCl4 intoxication. In hepatic failure rats, synaptosomal glutamic acid (excitatory amino acid neurotransmitter) contents decreased significantly in the prosencephalon, and GABA (inhibitory amino acid neurotransmitter) contents decreased significantly in the brain stem. The molar ratio of glutamic acid to glutamine significantly diminished in the brain stem. Glutamic acid decarboxylase activity in the synaptosomes and the binding of [3H]glutamic acid and [3H]GABA to synaptosomal membrane preparations were unchanged in acute hepatic failure rats. These results indicate than an insufficiency of both excitatory and inhibitory neurotransmitter amino acids is induced by high ammonia contents in the synaptosomes of the brain stem during acute hepatic failure.  相似文献   

9.
The authors studied the effect of 40 and 80 minutes' occlusion of the abdominal aorta on the aspartic acid, glutamic acid, glutamine, glycine and gamma-aminobutyric acid concentration in the sacral, lumbar, thoracic and cervical segments of the dog spinal cord. The most important changes were displayed by the glutamine concentration, which rose significantly after ischaemia in all the regions studied. The alanine and GABA concentration rose in the sacral and lumbar segments respectively, while the glutamic and aspartic acid concentrations in the sacral region fell. At the same time, enzyme activities degrading the synthetic substrates Leu-p-nitroanilide and Gly-p-nitroanilide increased. The significance of the findings is discussed with reference to nerve cell catabolism and function.  相似文献   

10.
Because of less glutaminase activity, soy sauce made with a preparation of proteases from yellow-green Aspergilli contains less glutamic acid than soy sauce made by the traditional shoyu koji method. Thus, an acid treatment was developed to increase this amino acid in enzyme-made shoyu. Amide bonds of glutamine and asparagine in protein molecules were hydrolyzed at 100°C for 30 min with 1.3 N HCl (acid treatment). Using this method, glutamic acid per total nitrogen freed from various proteins by the concerted action of proteinases and peptidases of yellow-green Aspergillus increased to 1.0 to 3.8 times that of control (no acid treatment). An increase of about 31% of glutamic acid per total nitrogen resulted from the acid treatment method in soy sauce made with an enzyme preparation of proteases.  相似文献   

11.
The anticonvulsive effects of GABA, taurine, and glycine were investigated on several chemically-induced and genetic seizure models. Intravenous injections of either GABA, taurine, or glycine provided protection against 3-mercaptopropionic acid (MPA)-induced convulsions in adult Swiss mice. GABA was partially effective against isonicotinic acid hydrazide and was without effect against bicuculline-induced convulsions bProlonged administration of glycine prevented MPA-induced convulsions but not electrically induced seizures or seizures induced by strychnine or metrazol.Intragastric glycine protected young audiogenic seizure-susceptible DBA/2 mice against all three phases of sound-induced convulsions (wild running, clonic and tonic seizure), but GABA and taurine provided little or no protection. With increase of glycine, the cerebral levels of glutamine and serine also increased, but that of glutamic acid decreased. The endogenous glutamic and glycine levels were slightly higher in the brains of the audiogenic seizure-susceptible DBA/2 mice than in that of the resistant BALB/Cy strain.  相似文献   

12.
Production of gamma-aminobutyric acid (GABA) from crop biomass such as cassava in high concentration is desirable, but difficult to achieve. A safe biotechnological route was investigated to produce GABA from cassava powder by C. glutamicum G01 and L. plantarum GB01-21. Liquefied cassava powder was first transformed to glutamic acid by simultaneous saccharification and fermentation with C. glutamicum G01, followed by biotransformation of glutamic acid to GABA with resting cells of L. plantarum GB01-21 in the reaction medium. After optimizing the reaction conditions, the maximum concentration of GABA reached 80.5 g/L with a GABA productivity of 2.68 g/L/h. This is the highest yield ever reported of GABA production from cassava-derived glucose. The bioprocess provides the added advantage of employing nonpathogenic microorganisms, C. glutamicum and L. plantarum, in microbial production of GABA from cassava biomass, which can be used in the food and pharmaceutical industries.  相似文献   

13.
As a first approach to understanding the mechanism for the recognition of a ligand by its receptor, we first calculated the electronic and structural states of ionized gamma-aminobutyric acid (GABA) and ionized glutamic acid using the ab initio method with the 6-311++G (3df, 2pd) basis set. We paid special attention to the physicochemical characteristics of these molecules, such as the electric dipole moment, electrostatic potential, and electrostatic force. Even though GABA and glutamic acid are known to exert completely opposite influences in the mammalian brain by binding their specific receptors, the only difference in their chemical structures is that glutamic acid contains one more carboxyl group than GABA. As a result, we succeeded in showing that a difference of only one carboxyl group induces significant differences in the electronic and structural states between these molecules. These differences have a crucial influence on the electric dipole moments, the electrostatic potentials, and the electrostatic forces. The most remarkable finding of the present research is that the electrostatic potential formed by glutamic acid is composed of only negative parts, while that formed by GABA is separated into positive and negative parts. These results strongly suggest that GABA can approach either positively or negatively charged amino acids by adjusting its own orientation, while glutamic acid can approach only a positively charged binding site.  相似文献   

14.
The aim of the present paper was to determine whether the release of glutamate from putative "glutamergic" terminals in the cerebellum is influenced by gamma-aminobutyric acid (GABA). In a group of preliminary experiments, we present biochemical evidence in favour of a neurotransmitter role of glutamate in the cerebellum: (1) endogenous glutamate was released from depolarized cerebellar synaptosomal preparations in a Ca2+-dependent away; (2) [14C]glutamate was synthesized from [14C]glutamine in cerebellar synaptosomes, and the newly synthesized [14C]glutamate was released released in a Ca2+-dependent way; (3) the elevation of cyclic GMP elicited by depolarization of cerebellar slices in the presence of Ca2+ was partly reversed by the glutamate antagonist glutamic acid diethyl ester, which probably prevented the interaction of endogenously released glutamate with postsynaptic receptors. GABA and muscimol at low concentrations (2--20 micrometers) potentiated the depolarization-induced release of D-[3H]aspartate (a glutamate analogue which labels the glutamate "reuptake pool") from cerebellar synaptosomes. The effect was concentration dependent and was largely prevented by two GABA antagonists, bicuculline and picrotoxin. The stimulation of D-[3H]aspartate release evoked by muscimol was linearly related to the logarithm of K+ concentration in the depolarizing medium. GABA did not affect the overall release of endogenous glutamate, but potentiated, in a picrotoxin-sensitive manner, the depolarization-evoked release of [14C]glutamate previously synthesized from [14C]glutamine. Since nerve endings are the major site of glutamate synthesis from glutamine, GABA and muscimol appear to exert their stimulatory effect at the level of "glutamergic" nerve terminals, probably after interacting with presynaptic GABA receptors. The possible functional significance of these findings is briefly discussed.  相似文献   

15.
In astrocytes grown in primary cultures from cerebral cortex of neonatal rats, alpha 1-adrenoceptors regulate the active uptake of glutamate followed by an activation of glutamic oxaloacetate transaminase (GOT; EC 2.6.1.1.) and a slight activation of glutamine synthetase (GS; EC 6.3.1.2.) activity. The beta-adrenoceptors regulate the active uptake of GABA, and this is followed by an activation of gamma-aminobutyric acid alpha-ketoglutarate transaminase (GABA-T; EC 2.6.1.19.). The data suggest that astrocyte adrenoceptors may modulate neurotransmitter induced neuronal excitability.  相似文献   

16.
The incorporation of label from U14C glucose into glutamic acid, glutamine and GABA remained unaltered with the presence of lead acetate in the medium whereas tetraethyl lead (TEL) affected the incorporation in a characteristic manner in different regions of brain. Glucose uptake however was not influenced by TEL. Pyridoxal phosphate was found to reverse the effect of TEL on the incorporation especially in cerebellum and brainstem but with little effect in cerebral cortex. These findings suggest that the alterations in the GABA metabolism in TEL toxicity could be restored to some extent by pyridoxine in discrete brain areas.  相似文献   

17.
Daptomycin is a highly effective lipopeptide antibiotic against Gram-positive pathogens. The presence of (2S, 3R) 3-methyl glutamic acid (mGlu) in daptomycin has been found to be important to the antibacterial activity. However the role of (2S, 3R) mGlu is yet to be revealed. Herein, we reported the syntheses of three daptomycin analogues with (2S, 3R) mGlu substituted by (2S, 3R) methyl glutamine (mGln), dimethyl glutamic acid and (2S, 3R) ethyl glutamic acid (eGlu), respectively, and their antibacterial activities. The detailed synthesis of dimethyl glutamic acid was also reported.  相似文献   

18.
The effect of occlusion of the abdominal aorta for 10, 20 and 40 minutes on the concentration of aspartic and glutamic acids, glutamine, glycine, alanine and gamma-amino butyric acid in the anterior and posterior horns of the lumbosacral spinal cord was studied in the dog, further, concentration of amino acids (except GABA) in lumbosacral spinal ganglia and in the ischiadic nerve following 40 minutes of occlusion. The changes were most marked after 40 minutes of occlusion with a rise in concentration of alanine, glutamine and glutamic acid in the dorsal part of grey matter. Striking was also the simultaneous elevated concentration of Glu and Gln in spinal ganglia. The significance of these changes is discussed from the aspect of metabolism and function of nerve cells. Under physiological conditions the free amino acid pool in the central nervous system remains essentially constant. Under pathological conditions, however, like ischemic-hypoxic states, various changes occur.  相似文献   

19.
In excised pro1-1 mutant and corresponding normal type roots of Zea mays L. the uptake and interconversion of [14C]proline, [14C]glutamic acid, [14C]glutamine, and [14C]ornithine and their utilization for protein synthesis was measured with the intention of finding an explanation for the proline requirement of the mutant. Uptake of these four amino acids, with the exception of proline, was the same in mutant and normal roots, but utilization differed. Higher than normal utilization rates for proline and glutamic acid were noted in mutant roots leading to increased CO2 production, free amino acid interconversion, and protein synthesis. Proline was synthesized from either glutamic acid (or glutamine) or ornithine in both mutant and normal roots; it did not accumulate but rather was used for protein synthesis. Ornithine was not a good precursor for proline in either system, but was preferentially converted to arginine and glutamine, particularly in mutant roots. The pro1-1 mutant was thus not deficient in its ability to make proline. Based on these findings, and on the fact that ornithine, arginine, glutamic acid and aspartic acid are elevated as free amino acids in mutant roots, it is suggested that in the pro1-1 mutant proline catabolism prevails over proline synthesis.  相似文献   

20.
Abstract: The accumulation of γ -aminobutyric acid (GABA) after inhibition of GABA-T (4-aminobutyrate: 2-oxoglutamate aminotransferase, EC 2.6.1.19) by various doses of aminooxyacetic acid (AOAA) and gabaculine was studied in four different regions of the mouse brain. The dose-response curve for GABA accumulation after treatment with AOAA was linear up to 10 mg/kg i.p., and then leveled off. The increase in GABA accumulation after gabaculine treatment was linear up to 100 mg/kg i.p. No further increase was observed with doses up to 300 mg/kg i.p. The selectivity of both GABA-T inhibitors was assessed by measuring their effects on the content of free amino acids in mouse brain. Apart from the substantial increase in the GABA concentration, there were significant decreases in the content of glutamic acid, aspartic acid, alanine and glutamine, and an increase in ornithine content after administration of gabaculine. The same changes in amino acid content were observed after treatment with AOAA, but the level of lysine was also increased and the change in alanine level was biphasic. All these changes, however, were very small compared with the large increase in GABA level. A method for estimating the rate of the GABA turnover in vivo by measuring the initial rate of GABA accumulation after administration of AOAA or gabaculine is proposed, and the validity of the two techniques is discussed. The effect of diazepam on GABA levels and on the gabaculine-induced accumulation of GABA was studied. The results obtained with diazepam show that this method can provide valuable insight into the effects of drugs on GABAergic mechanisms in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号