首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A new, simple, and rapid pretreatment method for the determination of chondroitin sulfate, dermatan sulfate, and hyaluronan from urine and blood plasma samples has been developed. Plasma proteins were first converted into small peptides by digestion using a nonspecific protease, actinase E, and the resulting small peptides were removed by centrifugal filtration. The retained, residual crude glycosaminoglycans, including chondroitin/dermatan sulfates and hyaluronan, were converted into unsaturated disaccharides through the action of chondroitin sulfate lyses. Next, these disaccharides were recovered and purified using centrifugal filtration together with DeltaDi-UA2S, added as an internal standard. The filtered disaccharide mixture was analyzed by HPLC with fluorometric postcolumn derivatization using 2-cyanoacetamide as a fluorogenic reagent. This method was applied to a pharmacokinetic study of chondroitin sulfate administered intravenously to mice. The half-life of the administered chondroitin sulfates, having molecular masses from 6 to 50 kDa, varied depending on their molecular sizes. This new method should be useful for studies on the metabolic fate of exogenously administered glycosaminoglycans in small experimental animals.  相似文献   

2.
Blood and urinary low-sulfated chondroitin sulfate from healthy young and aged volunteers have been characterized by gel chromatography, two-dimensional electrophoresis on cellulose acetate strips and by chemical and enzymatic analysis. No difference in content of the material (24 nmol hexosamine per ml plasma) was observed regardless of age. Chemical composition (approximately 40% sulfation at 4-position of galactosamine) and molecular weight (about 8000) of blood and urinary low-sulfated chondroitin sulfates were found to be the same, though urinary excretion of the material was much higher in the aged than in the young adults (Ohkawa et al. (1972) J. Biochem. 72, 1495–1501). Low-sulfated chondroitin sulfate in serum was in a bound form with a molecular weight of more than 100000, irrespective of age. These results suggest that increase in urinary excretion of low-sulfated chondroitin sulfate in the aged is mainly due to renal dysfunction.Low-sulfated chondroitin sulfate was also the main component of acidic glycosaminoglycans in blood from patients with Hurler's syndrome who excreted excessive amounts of dermatan sulfate and heparan sulfate in urine. This suggests that low-sulfated chondroitin sulfate in blood is not merely a precursor of urinary glycosaminoglycans in the case of healthy young adults.  相似文献   

3.
The separation and quantitative analysis of enzymatic degradation products of isomeric chondroitin sulfates by high-performance liquid chromatography (HPLC) are described. The substituted unsaturated disaccharides which result from digestion of chondroitin sulfates with chondroitinase are quickly separated on polar adsorbents such as silica gel. The UV absorption properties of these unsaturated disaccharides permit UV measurement with detection limits of approximately 100 ng. Their separation by HPLC facilitates the use of enzymatic methods for the determination of chondroitin sulfates A, B and C.

The potential of this method in clinical application is demonstrated by quantitative assays of glycosaminoglycans from a normal urine and urine from a patient with Hunter syndrome. The results are consistent with amount of isomeric chondroitin sulfates found in comparable urines by others.  相似文献   


4.
The Morquio syndrome is a spondyloepiphyseal dysplasia characterized by excretion in urine of excessive amounts of keratan sulfate and chondroitin sulfate. To investigate the enzymic basis of this disease, assays for sulfatase were performed using chick embryo chondroitin sulfate and rat chondrosarcoma chondroitin 4-sulfate as substrates. The data obtained, using skin fibroblasts as an enzyme source, indicate that Morquio's syndrome is a deficiency of chondroitin sulfate N-acetylhexosamine sulfate sulfatase.  相似文献   

5.
Four patients with an unusual form of spondyloepiphyseal dysplasia excreted in the urine undersulfated chondroitin 6-sulfate (Biochem. Med. 7, 415–423, 1973). The sera of these patients show a low activity of PAPS — chondroitin sulfate sulfotransferase, while the undersulfated chondroitin sulfate present in their urine is a much better acceptor of 35SO4 than standard chondroitin sulfate when they are incubated with [35S]PAPS and normal sulfotransferases. These results suggest that in these patients the skeletal lesions are secondary to a defect in the synthesis of chondroitin sulfate involving specifically the sulfotransferase activity.  相似文献   

6.
Diabetes mellitus was induced in one group of rats by a single injection of streptozotocin. The glycemia, the body weight, and the blood systolic pressure were measured every week, and the 24 h urine volume and urinary excretions of creatinine, albumin and glycosaminoglycans were measured every 2 weeks. At the end of the experiment (12 weeks) the weight and the glycosaminoglycan composition of the kidneys were determined. All the diabetic animals were hyperglycemic, hypertense, and did not gain weight during all the experimental period. Albuminuria appeared from the second week on. Rat urine was shown to contain heparan sulfate, chondroitin sulfate, and dermatan sulfate, and the glycosaminoglycan excretion decreased in all diabetic animals. The onset of the change in glyco-samino-glycan excretion rate was a very early event, appearing in the second week after diabetes induction. The main glycosaminoglycan found in normal rat kidney was heparan sulfate and, in contrast to the urine, the total kidney glycosaminoglycans increased in diabetic kidney, due to chondroitin sulfate and dermatan sulfate accumulation. The heparan sulfate concentration (per tissue dry weight) did not change. Our results suggest that quantification of urinary glycosaminoglycans may be a useful tool for the early diagnosis of diabetic nephropathy.  相似文献   

7.
A new discontinuous agarose-gel electrophoresis in 0.05 M HCl/0.04 M barium acetate combined with the highly sensitive visualization technique using toluidine blue/Stains-All has been developed for the simultaneous assaying of hyaluronic acid (HA) and dermatan sulfate (DS) with a detection limit at submicrogram level greater than other conventional procedures. Furthermore, this procedure also separates and reveals chondroitin sulfate (CS). The densitometric analysis of bands resulted in a linear response between 0.01 and 0.5 microg of glycosaminoglycans (GAGs) with correlation coefficients greater than approximately 0.94. Hyaluronic acid and dermatan sulfate extracted and purified from the abdominal skin of six rats were separated and quantified in comparison with the evaluation made by treatment of chondroitin ABC lyase and separation of Delta-disaccharides from hyaluronic acid (DeltadiHA) and dermatan sulfate/chondroitin sulfate (Deltadi4s and Deltadi6s) by HPLC. The total amount of rat skin polysaccharides (hyaluronic acid and dermatan sulfate) was 1.24+/-0.26 microg/mg of tissue by discontinuous agarose-gel electrophoresis and 1.20+/-0.33 microg/mg by HPLC with hyaluronic acid and dermatan sulfate percentages of 50.32+/-2.38 and 49.66+/-2.53, respectively. The analyses also confirmed that hyaluronic acid and dermatan sulfate are the main rat abdominal skin polysaccharides with chondroitin sulfate present in trace amounts. This new agarose-gel electrophoresis could be particularly useful in the study of the distribution of glycosaminoglycans in the skin from different body sites of animals and normal human subjects and may be of importance in understanding the changes that occur in the skin, especially the metabolism of extracellular matrix constituents, in connective tissue disorders.  相似文献   

8.
Chondroitin sulfate at the plasma membranes of cultured fibroblasts   总被引:6,自引:4,他引:2       下载免费PDF全文
We have previously shown that in confluent human fibroblast cultures chondroitin sulfate proteoglycan is a component of the fibronectin-containing pericellular matrix fibers. In the present work the distribution of chondroitin sulfate was studied in subconfluent cell cultures using antibodies that bind to a chemically defined carbohydrate fragment of chondroitinase ABC-modified chondroitin sulfate proteoglycan. Using immunofluorescence microscopy, we observed, in addition to the fibrillar matrix staining, chondroitin sulfate diffusely distributed at the cell surface. In indirect immunoferritin electron microscopy this staining corresponded to patchy binding of ferritin close (24 nm) to the outer aspect of the plasma membrane. The patchy organization appeared uniform in all cell surfaces. The cell surface chondroitin sulfate could not be removed from the plasma membrane by agents that dissociate electrostatic interactions. These data show that in fibroblasts chondroitin sulfate is a component of the outer aspect of the plasma membrane, and raise the possibility of an integral plasma membrane chondroitin sulfate proteoglycan.  相似文献   

9.
The potential of nanomelic chondrocytes to synthesize chondroitin sulfate was investigated by providing the mutant cells with p-nitrophenyl-beta-D-xyloside, a compound which acts as an artificial acceptor for glycosaminoglycan synthesis. Under these conditions the synthesis of chondroitin sulfate in nanomelic and normal chondrocytes is comparable. The chondroitin sulfate synthesized by the mutant is indistinguishable in molecular size and composition from that synthesized by similarly treated normal chondrocytes.  相似文献   

10.
The sulfated mucopolysaccharide composition of normal Swiss 3T3 cell line and its tumorigenic mutant ST1 is reported. It is shown that chondroitin sulfate B and heparitin sulfate are the sulfated mucopolysaccharides of the normal 3T3 line whereas chondroitin sulfate A and heparitin sulfate are the major ones of the ST1 variant. Degradation of the chondroitin sulfates derived from both cell lines with chondroitinases B and ABC have shown that they contain only 4-sulfated disaccharides differing from each other by the type of uronic acid residue. It is also shown that the chondroitin sulfate A from the tumorigenic variant is mostly located at the cell surface whereas the chondroitin sulfate B from the normal line is less accessible to trypsinization. A relative increase of chondroitin sulfate A was also observed in 3T3 that had lost contact inhibition after successive subcultures, and in the 3T6 cell line. These combined results are in agreement with the earlier proposal that glucuronic acid-containing chondroitin sulfate plays a role in the stimulation of cell division in neoplastic and embryonic tissues.  相似文献   

11.
A series of disaccharides derived from chondroitin sulfate and heparin/heparan sulfate were derivatized at their reducing ends with a fluorophore 2-aminobenzamide to develop a sensitive microanalytical method for glycosaminoglycans. The resulting labeled compounds derived from chondroitin sulfate or heparin/heparan sulfate were well-separated and quantified by HPLC equipped with a fluorescence detector. The detection limit was a low picomole level. This method was applied to the analysis of the disaccharide composition of tetra- and hexasaccharides derived from chondroitin sulfate and heparin/heparan sulfate as well as these glycosaminoglycan polysaccharides. The method was also successfully applied to the exosequencing of chondrohexasaccharides, where the fluorophore-labeled oligosaccharides were degraded exolytically from the nonreducing ends using bacterial eliminases. The resultant labeled fragments were identified by HPLC.  相似文献   

12.
Chondrocytes isolated from the Swarm rat chondrosarcoma were incubated in culture with [1-3H]glucose for 30 min to 8 h. Labeled proteoglycans were isolated, treated with borohydride under alkaline conditions, and the three complex sugar structures purified: N- and O-linked oligosaccharides and chondroitin sulfate chains. The amount of incorporated radioactivity into each component sugar was analyzed by HPLC after enzyme digestion and hydrolysis. The kinetic data for labeling of each sugar over the time course of the experiment were fit to first-order rate equations and the half times (t1/2) to linear labeling were calculated. The t1/2 values were essentially the same, 5-8 min, for galactose in all three complex sugar structures and for chain glucuronic acid in chondroitin sulfate, while that for xylitol in chondroitin sulfate, 15.8 min, was significantly longer. Thus, oligosaccharide synthesis is concomitant with chondroitin sulfate chain synthesis; the addition of the chondroitin sulfate linkage galactose occurs at or nearly at the same time as chain elongation while the addition of linkage xylose residues to the core protein may precede chain synthesis by up to 8 min. Since the intracellular t1/2 of the core protein precursor for these cells is 45 to 90 min, the data strongly suggest that the addition of xylose is not completed to any significant extent while the polypeptide is still nascent or shortly after its release into the rough endoplasmic reticulum. It is proposed that the addition of xylose to the core protein precursor is a late endoplasmic reticulum or early Golgi event. The analytical data were consistent with the presence of ester phosphate on about 80% of the xylose residues of the newly synthesized proteoglycan.  相似文献   

13.
Identification of chondroitin sulfate E in human lung mast cells   总被引:3,自引:0,他引:3  
Human lung mast cells (HLMC) enriched up to 99% purity by counter current elutriation and density gradient centrifugation were labeled with 35S-sulfate to determine cell-associated proteoglycans. The 35S-labeled proteoglycans were extracted by the addition of detergent and 4 M guanidine-HCl, and separated from unincorporated precursor by Sephadex G-50 chromatography. 35S-Proteoglycans chromatographed over Sepharose 4B with a Kav of 0.48. 35S-Glycosaminoglycans separated from the parent 35S-proteoglycans by beta-elimination and chromatographed over Sepharose 4B with a Kav of 0.63. Characterization of 35S-proteoglycans by chondroitin ABC lyase treatment revealed approximately 36% of the proteoglycan to be composed of chondroitin sulfates. Analysis by HPLC of component disaccharides liberated by chondroitin ABC lyase using an amino-cyano-substituted silica column indicated that the chondroitin sulfates consisted of the monosulfated A disaccharide (GlcUA----GaINAc4SO4) (75%) and the over-sulfated E disaccharide (GlcUA----GaINAc4,6-diSO4) (25%). Nitrous acid/heparinase-susceptible heparin proteoglycans accounted for approximately 62% of the total 35S-proteoglycans present in the HLMC. Proteoglycans remaining after exposure of the original proteoglycan extract to either heparinase or chondroitin ABC lyase were of similar size, suggesting that the majority of heparin and chondroitin sulfate glycosaminoglycans were on separate protein cores. Proteoglycans extracted from HLMC were protease insensitive. Hence, in addition to heparin proteoglycans, HLMC synthesize a hitherto unrecognized quantity of chondroitin sulfate E proteoglycans.  相似文献   

14.
Oligosaccharides prepared from glycosaminoglycans (GAGs) including heparin, heparan sulfate, chondroitin sulfates, dermatan sulfate, and keratan sulfate were analyzed using reverse-phase ion-pairing HPLC and ion-exchange HPLC with suppressed conductivity detection. The results were compared with those obtained by strong anion-exchange HPLC using uv detection. These oligosaccharides were first prepared by enzymatically depolymerizing the GAGs with enzymes including heparin lyase (EC 4.2.2.7), heparan sulfate lyase (EC 4.2.2.8), chondroitin ABC lyase (EC 4.2.2.4), and keratan sulfate hydrolase (EC 3.2.1.103). Analysis was then performed without derivitization under isocratic conditions with a limit of sensitivity in the picomole range. Preliminary studies suggest that this approach may be particularly useful in examining oligosaccharides having no uv chromophore such as those prepared from keratan sulfate.  相似文献   

15.
We have investigated the glycosaminoglycan composition of normal human liver, focal nodular hyperplasia, hepatic adenoma, and hepatocellular carcinoma. Uronic acid increased about 4 fold in the benign and reactive lesions, and greater than 7 fold in the carcinoma. Whereas in focal nodular hyperplasia and adenoma dermatan sulfate was the predominant glycosaminoglycan, in hepatocellular carcinoma chondroitin sulfate was the predominant species; it increased 24 fold over normal liver and 3-5 fold over all the other tissues. HPLC analysis of chondroitinase ABC or AC digests showed a 58 fold increase in Delta-Di-OS disaccharides in hepatocellular carcinoma, indicating significant undersulfation of chondroitin sulfate. Surprisingly, the normal-appearing liver surrounding the carcinoma showed glycosaminoglycan changes similar to adenoma and nodular hyperplasia. These results thus indicate that specific glycosaminoglycan changes occur in hepatocellular carcinoma, and suggest for the first time that proteoglycan metabolism is also altered in the non-cirrhotic, hepatic parenchyma adjacent to liver carcinoma.  相似文献   

16.
Heparin, dermatan sulfate and chondroitin sulfate in mixtures were fractionated by sequential precipitation with methanol, ethanol and propanol. The recovered fractions from 0.1 to 2.0 volumes of various solvents were analyzed by agarose-gel electrophoresis and densitometric analysis. Heparins with different relative percentages of slow-moving and fast-moving components were precipitated from 0.5 to 0.7 volumes of methanol, and in this range of volumes, the amount of slow-moving component of heparin decreases and that of the fast-moving species increases. From 0.8 to 1.6 volumes of methanol, mixtures with different percentages of the fast-moving component, dermatan sulfate and chondroitin sulfate are precipitated. Heparin was precipitated from mixtures in the range of 0.1 to 0.4 volumes of ethanol, and from 0.5 to 0.8 volumes mixtures with different relative percentages of dermatan sulfate and chondroitin sulfate were precipitated. From 1.0 to 2.0 volumes of ethanol, high purity (about 100%) chondroitin sulfate can be precipitated. Propanol induces the precipitation of heparin from 0.3 to 0.4 volumes, whilst dermatan sulfate with a purity greater than 85% is precipitated at 0.5 and 0.6 volumes of propanol. 100% chondroitin sulfate is obtained with volumes greater than 0.8. Heparin and chondroitin sulfate from a bovine lung extract of glycosaminoglycans were purified by sequential precipitation with ethanol. The fraction precipitated with 0.4 volumes of ethanol shows greater than 90% heparin and that recovered from 0.9 to 2.0 volumes is composed of 100% chondroitin sulfate.  相似文献   

17.
A system capable of resolving all the known unsaturated nonsulfated, mono- and disulfated disaccharides derived from chondroitin sulfate samples, dermatan sulfate, and hyaluronic acid after their derivatization with dansylhydrazine and separation by HPLC and fluorimetric detection is reported. This method was found superior to others in that unsaturated disaccharides can be separated with good resolution in about 50 min in an isocratic solvent with a sensitivity greater than about 50 pmol (approx 20-30 ng) and linearity from 50 to 500 pmol. The system was applied to the analysis of various chondroitin sulfate samples, including highly sulfated species and dermatan sulfate, and also to a defructosylated polysaccharide with a chondroitin backbone purified from Escherichia coli U1-41. Excellent agreement was obtained with traditional compositional analysis performed by anion-exchange HPLC separation and UV absorption at 230 nm.  相似文献   

18.
Gastrullation of sea urchin embryos is arrested in sulfate-free sea water. This developmental arrest has been considered to be due to lack of sulfation of glycosaminoglycans in the extracellular matrix of the embryos. In the present study, we characterized a dermatan sulfate type component formed in gastrula-stage embryos of the sea urchin Clypeaster japonicus and examined the effects of sulfate deprivation on the formation. Glycosamino-glycans were prepared from gastrula-stage embryos incubated with [3H]acetate in normal and sulfate-free sea water. Enzymatic analyses indicated that embryos formed a glycosaminoglycan of the dermatan sulfate type which contained an N-acetylgalactosamine-6-sulfate-containing disaccharide as a major unit, plus a minor unidentified component. Under sulfate-free conditions, embryos formed an under-sulfated chondroitin/dermatan sulfate copolymer which mainly consisted of non-sulfate, glucuronic acid-containing (chondroitin) disaccharide units. These results suggest that sulfate deprivation diminishes not only the degree of sulfation but also the formation of L-iduronic acid-containing (dermatan) disaccharide units in dermatan sulfate in sea urchin embryos.  相似文献   

19.
Glycosaminoglycans (GAGs) were prepared from the urine of three patients and from normal individuals by cetylpyridinium chloride precipitation and Pronase digestion. The GAGs were analyzed by electrophoresis, anion-exchange chromatography, and enzymatic and chemical degradation. Each of the three patients showed a four- to fivefold increase in urinary GAG excretion compared to normal controls and in one patient a tenfold increase was measured during a period of behavioral agitation which included joint swelling. Urinary GAGs from affected individuals were characterized by a high proportion of low sulfated molecules. The predominant low sulfated component was chondroitin-4-sulfate (C4S); however, small amounts of chondroitin-6-sulfate (C6S) were also present. Heparan sulfate (HS) was present in normal proportion (5-10%) and most of it was not low sulfated. Abnormal excretion of chondroitin (Ch), hyaluronic acid (HA), and dermatan sulfate (DS) was not detected. These findings suggest that the clinical manifestations of Lowe syndrome may be caused by a defect in GAG metabolism.  相似文献   

20.
A specific chondroitin sulfate-lyase, chondro-2-sulfatase, was first used for identification of the unsaturated disaccharide constituents (delta Di-S) generated from variously sulfated chondroitin sulfate and dermatan sulfate isomers by a high-performance liquid chromatographic (HPLC) method. delta Di-S generated from oversulfated chondroitin sulfate and dermatan sulfate isomers following digestion with chondroitinases were further digested by the chondro-2-sulfatase, which led to the release of one sulfate from a specific 2-position of the uronic acid residue, as judged with the new HPLC system using a resin made from a sulfonized styrene-divinylbenzene copolymer. It was also found that the chondro-2-sulfatase digests not only delta Di-S with the structure of D-uronic acid 2 sulfate 1-3-N-acetyl-D-galactosamine but also other sulfated delta Di-S with partially the same constituents, i.e., unsaturated di-sulfated disaccharide B, unsaturated di-sulfated disaccharide D or G, and unsaturated tri-sulfated disaccharide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号