首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Biofilms formed in aerobic seawater on stainless steel are known to be efficient catalysts of the electrochemical reduction of oxygen. Based on their genomic analysis, seven bacterial isolates were selected and a cyclic voltammetry (CV) procedure was implemented to check their electrocatalytic activity towards oxygen reduction. All isolates exhibited close catalytic characteristics. Comparison between CVs recorded with glassy carbon and pyrolytic graphite electrodes showed that the catalytic effect was not correlated with the surface area covered by the cells. The low catalytic effect obtained with filtered isolates indicated the involvement of released redox compounds, which was confirmed by CVs performed with adsorbed iron-porphyrin. None of the isolates were able to form electro-active biofilms under constant polarization. The capacity to catalyze oxygen reduction is shown to be a widespread property among bacteria, but the property detected by CV does not necessarily confer the ability to achieve stable oxygen reduction under constant polarization.  相似文献   

2.
3.
4.
Antibiotic-sensitive bacteria have been found to coexist with antibiotic-producing bacteria in biofilms, but little is known about how the former develop in such an environment. Here we isolated pyocyanin-sensitive bacteria belonging to the genus Brevibacillus from a biofilm derived from soil extract and based on the preestablished biofilm of a pyocyanin producer, Pseudomonas aeruginosa strain P1. In addition, pyocyanin-resistant strains belonging to the genus Raoultella were isolated from the same biofilm. Microbial relationships within biofilms were examined by using three strains, strain P1, Brevibacillus strain S1, and Raoultella strain R1, each of which individually formed a biofilm within 2 days in a flow cell. Strain S1 did not fully develop on the preestablished biofilm of strain P1 during 4 days of cultivation, whereas a mutant of strain P1 which was deficient in pyocyanin production allowed strain S1 to cocolonize within a biofilm. On the other hand, strain R1 developed on the biofilm of strain P1 regardless of pyocyanin production. When mixed 1:1 inocula of strains S1 and R1 were introduced into the strain P1 biofilm, all three species were found in the 4-day biofilm. In the mixed biofilm, strain S1 was surrounded by the layer of strain R1 and seemed to be separated from strain P1 and the outflow solution. However, strain S1 did not survive in a three-species mixed culture under planktonic conditions. These results indicate that the survival of sensitive bacteria in biofilm with a pyocyanin producer is achieved by covering them with a layer of resistant bacteria. We also evaluated the influence of antibiotic production on the producer.  相似文献   

5.
Bacteria can form different types of communities, united by common notion: biofilms. The aim of the present study was to determine the capacity of different antibiotics to penetrate into biofilms and act on unrelated bacteria. The study revealed that the formation of barriers between the community and the environment on artificial biofilms occurred in all strains of unrelated Gram-positive and Gram-negative bacteria used in this investigation. The capacity of antibiotics to penetrate into biofilms varied in different strains of the same species. For certain antibiotics similarity in their penetrating capacity was found to exist with respect to biofilms of unrelated bacteria. The penetration of antibiotics into mixed biofilms depended on the strain which determined its minimal value, so that the protection of one microorganism by another was thus observed. The method for the evaluation of the effectiveness of antibiotic penetration into bacterial biofilms, suitable for use in bacteriological laboratories, is proposed.  相似文献   

6.
A common method for visualizing bacterial biofilms is through confocal laser scanning microscopy images. Current software packages separate connected-biofilm bacteria from unconnected bacteria, such as planktonic or dispersed bacteria, but do not save both image sequences, making interpretation of the two bacterial populations difficult. Thus we report the development of an algorithm to save separate image sequences and enable qualitative and quantitative evaluation of each bacterial population. To improve bacterial viability assessment using a membrane integrity dye, a colocalization algorithm was also developed. This assigns colocalized pixels to the dead bacteria population, rather than to both the live and dead bacteria groups. Visually, this makes it clearer to distinguish a green live bacteria pixel from a yellow colocalized dead bacteria pixel. This algorithm also aids in the quantification of viability for connected-biofilm bacteria and unconnected bacteria to investigate susceptibility of each population to antimicrobials. The utility of these algorithms was demonstrated with Pseudomonas aeruginosa biofilms treated with ciprofloxacin hydrochloride. Results from this study indicate that quantification with colocalization adjustment can prevent underestimation of dead bacteria. These improvements in image processing will enable researchers to visually differentiate connected-biofilm and unconnected bacteria in a single image and to quantify these populations independently for viability without double counting the colocalized image pixels.  相似文献   

7.
Physiological responses of bacteria in biofilms to disinfection.   总被引:1,自引:1,他引:1       下载免费PDF全文
In situ enumeration methods using fluorescent probes and a radioisotope labelling technique were applied to evaluate physiological changes of Klebsiella pneumoniae within biofilms after disinfection treatment. Chlorine (0.25 mg of free chlorine per liter [pH 7.2]) and monochloramine (1 mg/liter [pH 9.0]) were employed as disinfectants in the study. Two fluorgenic compounds, 5-cyano-2,3-ditolyl tetrazolium chloride and rhodamine 123, and tritiated uridine incorporation were chosen for assessment of physiological activities. Results obtained by these methods were compared with those from the plate count and direct viable count methods. 5-Cyano-2,3-ditolyl tetrazolium chloride is an indicator of bacterial respiratory activity, rhodamine 123 is incorporated into bacteria in response to transmembrane potential, and the incorporation of uridine represents the global RNA turnover rate. The results acquired by these methods following disinfection exposure showed a range of responses and suggested different physiological reactions in biofilms exposed to chlorine and monochloramine. The direct viable count response and respiratory activity were affected more by disinfection than were the transmembrane potential and RNA turnover rate on the basis of comparable efficiency as evaluated by plate count enumeration. Information revealed by these approaches can provide different physiological insights that may be used in evaluating the efficacy of biofilm disinfection.  相似文献   

8.
Relatively little is known about the microbial ecology of biofilm communities or the diversity of antimicrobial molecules that they produce to regulate these communities. This study tested whether the production of antimicrobial activity in biofilm cultures is enhanced towards competing bacteria found in those biofilms. First, the production of antimicrobial activity of marine bacteria grown in biofilms was tested. Fourteen of the 105 marine isolates tested were found to produce antimicrobial factors when grown in biofilms. The antimicrobial activity produced by these isolates in biofilms was more potent and inhibited a broader range of target bacteria grown in biofilms compared to shaken liquid cultures. In a separate experiment, we found that cultivation in biofilms containing produced metabolites from an ‘inducer’ bacterium stimulated the production of antimicrobial molecules by ‘producer’ bacteria that were active against the ‘inducer’ bacterium. Overall, the study suggests that surface attached marine bacteria can target their antimicrobial activity towards competing bacteria in biofilms.  相似文献   

9.
Unexplored reservoirs of pathogenic bacteria: protozoa and biofilms   总被引:19,自引:0,他引:19  
In the natural, industrial, hospital and domestic environments, there are numerous phenotypes of pathogenic microorganisms, which vary considerably in chemical, physical and biological properties. A link exists between survival, resistance and virulence. In particular, surface-adherent biofilms and bacteria living within protozoa pose potential health problems that are unrecognized by conventional laboratory culture methods.  相似文献   

10.
Electroactivity is a property of microorganisms assembled in biofilms that has been highlighted in a variety of environments. This characteristic was assessed for phototrophic river biofilms at the community scale and at the bacterial population scale. At the community scale, electroactivity was evaluated on stainless steel and copper alloy coupons used both as biofilm colonization supports and as working electrodes. At the population scale, the ability of environmental bacterial strains to catalyze oxygen reduction was assessed by cyclic voltammetry. Our data demonstrate that phototrophic river biofilm development on the electrodes, measured by dry mass and chlorophyll a content, resulted in significant increases of the recorded potentials, with potentials of up to +120 mV/saturated calomel electrode (SCE) on stainless steel electrodes and +60 mV/SCE on copper electrodes. Thirty-two bacterial strains isolated from natural phototrophic river biofilms were tested by cyclic voltammetry. Twenty-five were able to catalyze oxygen reduction, with shifts of potential ranging from 0.06 to 0.23 V, cathodic peak potentials ranging from -0.36 to -0.76 V/SCE, and peak amplitudes ranging from -9.5 to -19.4 μA. These isolates were diversified phylogenetically (Actinobacteria, Firmicutes, Bacteroidetes, and Alpha-, Beta-, and Gammaproteobacteria) and exhibited various phenotypic properties (Gram stain, oxidase, and catalase characteristics). These data suggest that phototrophic river biofilm communities and/or most of their constitutive bacterial populations present the ability to promote electronic exchange with a metallic electrode, supporting the following possibilities: (i) development of electrochemistry-based sensors allowing in situ phototrophic river biofilm detection and (ii) production of microbial fuel cell inocula under oligotrophic conditions.  相似文献   

11.
The population architecture of sulfidogenic biofilms established in anaerobic fixed-bed bioreactors was characterized by selective polymerase chain reaction amplification and fluorescence microscopy. A region of the 16S rRNA common to resident sulfate-reducing bacteria was selectively amplified by the polymerase chain reaction. Sequences of amplification products, with reference to a collection of 16S rRNA sequences representing most characterized sulfate-reducing bacteria, were used to design both general and specific hybridization probes. Fluorescent versions of these probes were used in combination with fluorescence microscopy to visualize specific sulfate-reducing bacterial populations within developing and established biofilms.  相似文献   

12.
Bacterial biofilms are confined communities that are encapsulated in protective layers of extracellular polymeric substances. Microscopic evaluation of biofilms of diverse bacterial strains on various substrata reveals that, in general, the percentage of viable bacteria decreases with the total number of bacteria in a biofilm.  相似文献   

13.
The population architecture of sulfidogenic biofilms established in anaerobic fixed-bed bioreactors was characterized by selective polymerase chain reaction amplification and fluorescence microscopy. A region of the 16S rRNA common to resident sulfate-reducing bacteria was selectively amplified by the polymerase chain reaction. Sequences of amplification products, with reference to a collection of 16S rRNA sequences representing most characterized sulfate-reducing bacteria, were used to design both general and specific hybridization probes. Fluorescent versions of these probes were used in combination with fluorescence microscopy to visualize specific sulfate-reducing bacterial populations within developing and established biofilms.  相似文献   

14.
Hydrophobicity of the solid surface and microbial cell surface is important factor for the development of biofilms applied in bioengineering systems. An adsorption of phenanthrene was used for analysis of the hydrophobicity of support fibers and bacterial cell surfaces within the biofilter of wastewater. The adsorption of phenanthrene was measured by synchronous fluorescence spectrometry. Cell surface hydrophobicity does not depend on the fixation procedure, pH of microbial suspension, and has no clear correlation with an adherence of the cells to hexadecane droplets. Notwithstanding high hydrophobicity of bacterial cells, the hydrophobicity of intact biofilm is determined by the hydrophobicity of the support fibers. New indexes were proposed to evaluate the reactor performance related with hydrophobic interactions within the biofilm. These indexes showed that significant share of hydrophobic sites within the nitrifying biofilm is protected from the hydrophobic interactions between the cells and environment.  相似文献   

15.
Herein we report the use of Pseudomonas putida F1 biofilms grown on carbonized cellulosic fibers to achieve biodegradation of airborne volatile organic compounds (VOCs) in the absence of any bulk aqueous-phase media. It is believed that direct exposure of gaseous VOC substrates to biomass may eliminate aqueous-phase mass transfer resistance and facilitate VOC capture and degradation. When tested with toluene vapor as a model VOC, the supported biofilm could grow optimally at 300 p.p.m. toluene and 80% relative humidity, with a specific growth rate of 0.425 day−1. During long-term VOC biodegradation tests in a tubular packed bed reactor, biofilms achieved a toluene degradation rate of 2.5 mg gDCW−1 h−1 during the initial growth phase. Interestingly, the P. putida F1 film kept biodegrading activity even at the stationary nongrowth phase. The supported biofilms with a biomass loading of 20% (wt) could degrade toluene at a rate of 1.9 mg gDCW−1 h−1 during the stationary phase, releasing CO2 at a rate of 6.4 mg gDCW−1 h−1 at the same time (indicating 100% conversion of substrate carbon to CO2). All of these observations promised a new type of “dry” biofilm reactors for efficient degradation of toxic VOCs without involving a large amount of water.  相似文献   

16.
Depth distributions of O2 respiration and denitrification activity were studied in 1- to 2-mm thick biofilms from nutrient-rich Danish streams. Acetylene was added to block the reduction of N2O, and micro-profiles of O2 and N2O in the biofilm were measured simultaneously with a polarographic microsensor. The specific activities of the two respiratory processes were calculated from the microprofiles using a one-dimensional diffusion-reaction model. Denitrification only occurred in layers where O2 was absent or present at low concentrations (of a fewM). Introduction of O2 into deeper layers inhibited denitrification, but the process started immediately after anoxic conditions were reestablished. Denitrification activity was present at greater depth in the biofilm when the NO3 concentration in the overlying water was elevated, and the deepest occurrence of denitrification was apparently determined by the depth penetration of NO3 . The denitrification rate within each specific layer was not affected by an increase in NO3 concentration, and the half-saturation concentration (Km) for NO3 therefore considered to be low (<25M). Addition of 0.2% yeast extract stimulated denitrification only in the uppermost 0.2 mm of the denitrification zone indicating a very efficient utilization of the dissolved organic matter within the upper layers of the biofilm.  相似文献   

17.
This review will examine the connection between the bacterial phosphoenolpyruvate:sugar phosphotransferase system and biofilms. We will consider both the primary role of the phosphoenolpyruvate:sugar phosphotransferase system in sugar uptake by biofilm cells and its possible role in regulatory processes in cells growing as biofilms, and in establishment and maintenance of these biofilms.  相似文献   

18.
The yeastCandida albicans coaggregates with a variety of streptococcal species, an interaction that may promote oral colonization by yeast cells.C. albicans andCandida tropicalis are the yeasts most frequently isolated from the human oral cavity and our data demonstrate that both these species bind toStreptococcus gordonii NCTC 7869 while two otherCandida species (Candida krusei andCandida kefyr) do not. Adherence ofC. albicans was greatest when the yeast had been grown at 30° C to mid-exponential growth phase. For 21 strains ofC. albicans there was a positive correlation between the ability to adhere toS. gordonii and adherence to experimental salivary pellicle. Whole saliva either stimulated or slightly inhibited adherence ofC. albicans toS. gordonii depending on the streptococcal growth conditions. The results suggest that the major salivary adhesins and coaggregation adhesins ofC. albicans are co-expressed.  相似文献   

19.
Modified protocols of fluorescence in situ hybridization (FISH) and catalyze reporter deposition fluorescence in situ hybridization (CARD-FISH) were developed in order to detect bacteria in situ in calcified stromatolite biofilms. Smooth, well-preserved thin sections of calcified biofilms (~5 microm thin, vertical sectioning of ~1 cm deep) were obtained by cryo-sectioning using the adhesive tape-stabilization technique. A modified hybridization buffer was applied during hybridization to prevent calcite dissolution as well as false binding of oligonucleotide probes to the charged mineral surfaces. Particularly, bright and specific CARD-FISH signals allowed the detection of bacteria in intensively calcified biofilms even at low magnification, which is suitable for investigating millimeter- to centimeter-scale vertical distribution patterns of bacteria.  相似文献   

20.
Biofilms of paper mill bacteria were cultivated in paper mill white water-simulating conditions on glass slides or stainless steel coupons in a laboratory culture system. The sugar content and composition of the biofilms were analysed and compared with the sugar composition of paper mill slimes. Acid methanolysis followed by gas chromatography revealed that Burkholderia was the major biofilm producer in pure culture, producing up to 50 microg of biofilm sugar cm(-2) in 5 days in rich medium and 10 microg in paper mill simulating medium. A mixture of simulated paper mill water with a culture medium yielded more biofilm (100 microg cm(-2)) than either of the media alone, so the biofilm accumulation was not proportional to the available substrate. More biofilm accumulated on stainless steel coupons than on glass slides, and the steel-coupon biofilms contained slightly more uronic acids. The biofilm sugars contained mainly galactose, glucose, mannose, and rhamnose. In paper mill medium, the Burkholderia biofilm contained more galactose and glucose, and less rhamnose, than in rich laboratory medium. The sugar composition of paper mill slimes was quite similar to those of steel-cultured Burkholderia cepacia biofilms. This suggests that Burkholderia cepacia is responsible for much of the slime in the paper mill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号