首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pituitary is a rich source of peptidylglycine alpha-amidating monooxygenase (PAM). This bifunctional protein contains peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL) catalytic domains necessary for the two-step formation of alpha-amidated peptides from their peptidylglycine precursors. In addition to the four forms of PAM mRNA identified previously, three novel forms of PAM mRNA were identified by examining anterior and neurointermediate pituitary cDNA libraries. None of the PAM cDNAs found in pituitary cDNA libraries contained exon A, the 315-nucleotide (nt) segment situated between the PHM and PAL domains and present in rPAM-1 but absent from rPAM-2. Although mRNAs of the rPAM-3a and -3b type encode bifunctional PAM precursors, the proteins differ significantly. rPAM-3b lacks a 54-nt segment encoding an 18-amino acid peptide predicted to occur in the cytoplasmic domain of this integral membrane protein; rPAM-3a lacks a 204-nt segment including the transmembrane domain and encodes a soluble protein. rPAM-5 is identical to rPAM-1 through nt 1217 in the PHM domain; alternative splicing generates a novel 3'-region encoding a COOH-terminal pentapeptide followed by 1.1 kb of 3'-untranslated region. The soluble rPAM-5 protein lacks PAL, transmembrane, and cytoplasmic domains. These three forms of PAM mRNA can be generated by alternative splicing. The major forms of PAM mRNA in both lobes of the pituitary are rPAM-3b and rPAM-2. Despite the fact that anterior and neurointermediate pituitary contain a similar distribution of forms of PAM mRNA, the distribution of PAM proteins in the two lobes of the pituitary is quite different. Although integral membrane proteins similar to rPAM-2 and rPAM-3b are major components of anterior pituitary granules, the PAM proteins in the neurointermediate lobe have undergone more extensive endoproteolytic processing, and a 75-kDa protein containing both PHM and PAL domains predominates. The bifunctional PAM precursor undergoes tissue-specific endoproteolytic cleavage reminiscent of the processing of prohormones.  相似文献   

2.
3.
Peptidylglycine alpha-amidating monooxygenase (PAM) is a bifunctional enzyme responsible for the alpha-amidation of peptides in secretory granules of neuroendocrine cells. The single gene encoding PAM undergoes tissue-specific alternative splicing and endoproteolytic processing to generate bifunctional membrane proteins with a single transmembrane domain as well as soluble proteins that are mono- or bifunctional. In order to examine the endoproteolytic processing and subcellular localization of the various forms of PAM in cells lacking regulated secretory granules, we established stably transfected hEK-293 cell lines expressing naturally occurring and mutant forms of PAM. As expected, newly synthesized soluble PAM proteins were rapidly secreted into the medium. Integral membrane protein forms of PAM were largely localized in the perinuclear region with punctate staining visible throughout the cell and 2-5% of the enzyme activity detectable on the cell surface. Bifunctional PAM proteins were slowly released into the medium after expression of integral membrane protein forms of PAM. Deletion of 77 amino acids from the COOH-terminus of the integral membrane forms of PAM resulted in a membrane-bound protein which retained both enzymatic activities but accumulated on the cell surface. Rapid internalization of full-length PAM proteins was observed by incubating live cells with antiserum to PAM; deletion of the COOH-terminal domain eliminated the ability of cells to internalize PAM. Thus the cytoplasmic domain of integral membrane PAM contains a routing determinant recognized by cells lacking the regulated secretory pathway.  相似文献   

4.
The biosynthesis of alpha-amidated peptides from their glycine-extended precursors is catalyzed by the sequential action of peptidylglycine alpha-hydroxylating monooxygenase (PHM) and peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL). The two enzymes are part of a bifunctional, integral membrane protein precursor, peptidylglycine alpha-amidating monooxygenase (PAM). The major forms of PAM mRNA in the adult rat atrium differ by the presence or absence of optional exon A, a 315-nucleotide segment separating the PHM and PAL domains. Using antipeptide antibodies specific to the PHM, exon A, PAL, and cytoplasmic domains of rat PAM, carbonate-washed atrial membranes were found to contain proteins corresponding to rPAM-1 and rPAM-2. Digestion of atrial membranes with a variety of endoproteinases released PHM and PAL catalytic activities. Dose-response curves indicated that both catalytic activities were extremely resistant to inactivation by trypsin. Endoproteolytic digestion of atrial membranes with trypsin, chymotrypsin, elastase, thermolysin, or endoproteinase Lys-C generated a 35-kDa PHM fragment. Digestion with trypsin, elastase, thermolysin, or endoproteinase Lys-C generated a 42-kDa PAL fragment. In contrast to the stability exhibited by the PHM and PAL domains, the cytoplasmic domain of PAM was destroyed by most of the enzymes; only digestion with endoproteinase Lys-C generated a stable fragment. Digestion with endoproteinase Arg-C removed the carboxyl-terminal tail from PAM but failed to release the PHM or PAL domains from the membranes. The PHM fragments generated by some of the endoproteinases showed a tendency to adhere to the membranes. Thus the bifunctional PAM protein consists of independent catalytic domains separated from each other and from the putative transmembrane domain by flexible regions accessible to attack by a wide variety of endoproteinases.  相似文献   

5.
Peptidylglycine alpha-amidating monooxygenase (PAM: EC 1.14.17.3) is a bifunctional protein which catalyzes the COOH-terminal amidation of bioactive peptides; the NH2-terminal monooxygenase and mid-region lyase act in sequence to perform the peptide alpha-amidation reaction. Alternative splicing of the single PAM gene gives rise to mRNAs generating PAM proteins with and without a putative transmembrane domain, with and without a linker region between the two enzymes, and forms containing only the monooxygenase domain. The expression, endoproteolytic processing, storage, and secretion of this secretory granule-associated protein were examined after stable transfection of AtT-20 mouse pituitary cells with naturally occurring and truncated PAM proteins. The transfected proteins were examined using enzyme assays, subcellular fractionation, Western blotting, and immunocytochemistry. Western blots of crude membrane and soluble fractions of transfected cells demonstrated that all PAM proteins were endoproteolytically processed. When the linker region was present between the monooxygenase and lyase domains, monofunctional soluble enzymes were generated from bifunctional PAM proteins; without the linker region, bifunctional enzymes were generated. Soluble forms of PAM expressed in AtT-20 cells and soluble proteins generated through selective endoproteolysis of membrane-associated PAM were secreted in an active form into the medium; secretion of the transfected proteins and endogenous hormone were stimulated in parallel by secretagogues. PAM proteins were localized by immunocytochemistry in the perinuclear region near the Golgi apparatus and in secretory granules, with the greatest intensity of staining in the perinuclear region in cell lines expressing integral membrane forms of PAM. Monofunctional and bifunctional PAM proteins that were soluble or membrane-associated were all packaged into regulated secretory granules in AtT-20 cells.  相似文献   

6.
Peptide alpha-amidation is a widespread, often essential posttranslational modification shared by many bioactive peptides and accomplished by the products of a single gene encoding a multifunctional protein, peptidylglycine alpha-amidating monooxygenase (PAM). PAM has two catalytic domains that work sequentially to produce the final alpha-amidated product peptide. Tissue-specific alternative splicing can generate forms of PAM retaining or lacking a domain required for the posttranslational separation of the two catalytic activities by endoproteases found in neuroendocrine tissue. Tissue-specific alternative splicing also governs the presence of a transmembrane domain and generation of integral membrane or soluble forms of PAM. The COOH-terminal domain of the integral membrane PAM proteins contains routing information essential for the retrieval of PAM from the surface of endocrine and nonendocrine cells. Tissue-specific endoproteolytic processing can generate soluble PAM proteins from integral membrane precursors. Soluble PAM proteins are rapidly secreted from stably transfected nonneuroendocrine cells but are stored in the regulated secretory granules characteristic of neurons and endocrine cells.  相似文献   

7.
Peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) is a multifunctional protein containing two enzymes that act sequentially to catalyze the alpha-amidation of neuroendocrine peptides. Peptidylglycine alpha-hydroxylating monooxygenase (PHM) catalyzes the first step of the reaction and is dependent on copper, ascorbate, and molecular oxygen. Peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL) catalyzes the second step of the reaction. Previous studies demonstrated that alternative splicing results in the production of bifunctional PAM proteins that are integral membrane or soluble proteins as well as soluble monofunctional PHM proteins. Rat PAM is encoded by a complex single copy gene that consists of 27 exons and encompasses more than 160 kilobases (kb) of genomic DNA. The 12 exons comprising PHM are distributed over at least 76 kb genomic DNA and range in size from 49-185 base pairs; four of the introns within the PHM domain are over 10 kb in length. Alternative splicing in the PHM region can result in a truncated, inactive PHM protein (rPAM-5), or a soluble, monofunctional PHM protein (rPAM-4) instead of a bifunctional protein. The eight exons comprising PAL are distributed over at least 19 kb genomic DNA. The exons encoding PAL range in size from 54-209 base pairs and have not been found to undergo alternative splicing. The PHM and PAL domains are separated by a single alternatively spliced exon surrounded by lengthy introns; inclusion of this exon results in the production of a form of PAM (rPAM-1) in which endoproteolytic cleavage at a paired basic site can separate the two catalytic domains. The exon following the PAL domain encodes the trans-membrane domain of PAM; alternative splicing at this site produces integral membrane or soluble PAM proteins. The COOH-terminal domain of PAM is comprised of a short exon subject to alternative splicing and a long exon encoding the final 68 amino acids present in all bifunctional PAM proteins along with the entire 3'-untranslated region. Analysis of hybrid cell panels indicates that the human PAM gene is situated on the long arm of chromosome 5.  相似文献   

8.
The high levels of peptidylglycine alpha-amidating monooxygenase (PAM, EC 1.14.17.3) found in adult rat atrium led us to examine PAM expression in rat atrium and ventricle from embryonic day 14 through adulthood. Immunocytochemical studies using antisera to PAM identified cardiocytes as the major site of PAM expression in atrium and ventricle throughout development. Levels of PAM mRNA and PAM activity exhibited distinctly different developmental profiles in atrium and ventricle. Ventricular PAM mRNA and PAM activity were highest from embryonic days 14 through 18, declined at the time of birth, rose slightly during the first postnatal week, and declined toward adult levels. Atrial PAM mRNA and PAM activity were low at embryonic day 14, rose to a peak immediately before birth, declined at the time of birth, and then rose after birth. Levels of atrial PAM mRNA and PAM activity were not directly correlated at all developmental stages. Two major forms of PAM mRNA (4.2 +/- 0.1 and 3.8 +/- 0.1 kilobase(s] were identified in atrium and ventricle throughout development. The prevalence of the two forms varied with developmental stage, with atrium and ventricle containing similar forms at each stage. Western blots of atrial and ventricular membranes revealed the existence of a developmental stage-specific distribution of PAM protein among forms ranging in mass from 125 to 94 kDa. In both atrium and ventricle PAM activity was primarily soluble from embryonic days 14 through 16 and primarily particulate after birth. The role of PAM in the heart is not yet clear, but the presence of tissue-specific and developmentally regulated alterations in PAM mRNA, PAM protein, and PAM activity suggests that this peptide processing enzyme plays a key role in the heart.  相似文献   

9.
The production of alpha-amidated peptides from their glycine-extended precursors is a two-step process involving the sequential action of two catalytic domains encoded by the bifunctional peptidylglycine alpha-amidating monooxygenase (PAM) precursor. The NH2-terminal third of the PAM precursor contains the first enzyme, peptidylglycine alpha-hydroxylating monooxygenase (PHM), a copper, molecular oxygen, and ascorbate-dependent enzyme. The middle third of the PAM precursor contains the second enzyme, peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL). The COOH-terminal third of the PAM precursor encodes a transmembrane domain and a hydrophilic domain that may form a cytoplasmic tail. Antisera to a peptide within the PAL domain were used to identify a 50-kDa protein as the major form of PAL in bovine neurointermediate pituitary granules. This 50-kDa PAL protein was purified and found to begin at Asp434 of bPAM, indicating that it could arise through endoproteolytic cleavage of the bPAM precursor at Lys432-Lys433. With alpha-N-acetyl-Tyr-Val-alpha-hydroxyglycine as the substrate, PAL exhibits a pH optimum of 5.0; enzymatic activity is inhibited by high concentrations of salt but is relatively resistant to thiol reagents and urea. PAL activity is inhibited by EDTA and restored by a number of divalent metals, including Cd2+, Cu2+, Zn2+, and Ca2+. Kinetic studies using alpha-N-acetyl-Tyr-Val-alpha-hydroxyglycine indicate that PAL has a Km of 38 microM and a turnover number of 220/s. Expression vectors encoding only the soluble PHM domain or the PAM precursor from which the PHM domain had been deleted were constructed. hEK293 cells transfected with the PHM vector exhibited a 10-fold increase in secretion of PHM activity with no PHM activity detectable in control or transfected cells. hEK293 cells transfected with the PAL vector exhibited a 2-fold increase in secretion of PAL activity and a 15-fold increase in cellular PAL activity. Most of the PAL activity produced by the transfected cells remained membrane-associated.  相似文献   

10.
The tissue specific expression of peptidylglycine alpha-amidating monooxygenase [(PAM) EC 1.14.17.3], an enzyme which catalyzes the formation of amidated bioactive peptides from their glycine-extended precursors, was examined in adult rat. Soluble and membrane-associated PAM enzymatic activities were determined, and the levels and size classes of PAM mRNA were examined by Northern blot analysis. PAM specific activity varied 1000-fold in the tissues examined, with highest levels in heart atrium, pituitary and salivary glands, and hypothalamus. The fraction of total PAM activity that was membrane associated varied from approximately 70% in heart atrium to 10% in neurointermediate pituitary lobe and thyroid gland. Levels of PAM mRNA varied over 300-fold. In the heart atrium, PAM mRNA accounts for more than 0.1% of the mRNA. For many tissues the ratio of total PAM specific activity to PAM mRNA levels was similar; however, PAM activity was higher than expected from mRNA levels in the salivary glands and lower than expected in several tissues, including heart ventricle. Three major size classes of PAM mRNA were identified among the tissues. Use of RNAse H indicated that differences in size were not due to the length of the poly(A) tail. The heart and central nervous system expressed PAM mRNA of the 4.2 kilobase (kb) and 3.8 kb size classes, while the remaining tissues expressed predominantly 3.8 kb and 3.6 kb classes; few tissues contained only one size class of PAM mRNA. The two major forms of PAM mRNA in adult heart atrium differ by the presence or absence of a 315 nucleotide segment in the protein coding region. Using a cDNA probe from within this segment, the 4.2 kb and 3.8 kb size classes of PAM mRNA in the central nervous system appeared to resemble those in the heart atrium. In the remaining tissues, a subset of PAM mRNAs in the 3.8 kb and 3.6 kb size classes hybridized with this probe, suggesting that additional forms of PAM mRNA are present.  相似文献   

11.
Many bioactive peptides terminate with an amino acid alpha-amide at their COOH terminus. The enzyme responsible for this essential posttranslational modification is known as peptidyl-glycine alpha-amidating monooxygenase or PAM. We identified cDNAs encoding the enzyme by using antibodies to screen a bovine intermediate pituitary lambda gt11 expression library. Antibodies to a beta-galactosidase/PAM fusion protein removed PAM activity from bovine pituitary homogenates. The 108,207 dalton protein predicted by the complete cDNA is approximately twice the size of purified PAM. An NH2-terminal signal sequence and short propeptide precede the NH2 terminus of purified PAM. The sequences of several PAM cyanogen bromide peptides were localized in the NH2-terminal half of the predicted protein. The cDNA encodes an additional 430 amino acid intragranular domain followed by a putative membrane spanning domain and a hydrophilic cytoplasmic domain. The forms of PAM purified from bovine neurointermediate pituitary may be generated by endoproteolytic cleavage at a subset of the 10 pairs of basic amino acids in the precursor. High levels of PAM mRNA were found in bovine pituitary and cerebral cortex. In corticotropic tumor cells, levels of PAM mRNA and pro-ACTH/endorphin mRNA were regulated in parallel by glucocorticoids and CRF.  相似文献   

12.
Peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) catalyzes the COOH-terminal alpha-amidation of peptidylglycine substrates, yielding amidated products. We have previously reported a putative regulatory RNA binding protein (PAM mRNA-BP) that binds specifically to the 3' untranslated region (UTR) of PAM-mRNA. Here, the PAM mRNA-BP was isolated and revealed to be La protein using affinity purification onto a 3' UTR PAM RNA, followed by tandem mass spectrometry identification. We determined that the core binding sequence is approximately 15-nucleotides (nt) long and is located 471 nt downstream of the stop codon. Moreover, we identified the La autoantigen as a protein that specifically binds the 3' UTR of PAM mRNA in vivo and in vitro. Furthermore, La protein overexpression caused a nuclear retention of PAM mRNAs and resulted in the down-regulation of endogenous PAM activity. Most interestingly, the nuclear retention of PAM mRNA is lost upon expressing the La proteins that lack a conserved nuclear retention element, suggesting a direct association between PAM mRNA and La protein in vivo. Reporter assays using a chimeric mRNA that combined luciferase and the 3' UTR of PAM mRNA demonstrated a decrease of the reporter activity due to an increase in the nuclear localization of reporter mRNAs, while the deletion of the 15-nt La binding site led to their clear-cut cytoplasmic relocalization. The results suggest an important role for the La protein in the modulation of PAM expression, possibly by mechanisms that involve a nuclear retention and perhaps a processing of pre-PAM mRNA molecules.  相似文献   

13.
In previous studies we have demonstrated a secretory granule-associated peptide alpha-amidation activity in rat anterior, intermediate, and posterior pituitary. This activity is capable of converting 125I-labeled synthetic D-Tyr-Val-Gly to labeled D-Tyr-Val-NH2, and requires ascorbic acid, CuSO4, and molecular oxygen for optimal activity. Because of the requirement for peptides with COOH-terminal glycine residues, and cofactor requirements similar to monooxygenases such as dopamine beta-monooxygenase, we have proposed that the alpha-amidating enzyme be named peptidylglycine alpha-amidating monooxygenase, or PAM. The present study focused on (i) verifying that PAM could utilize a physiologically relevant peptide substrate, and (ii) demonstrating the retention of the cofactor requirements with purification of PAM. PAM (Mr = 50,000) was partially purified from rat anterior pituitary secretory granules and was shown to be capable of converting alpha-N-acetyl-ACTH(1-14) to alpha-N-acetyl-ACTH(1-13)NH2 (alpha-melanocyte stimulating hormone) and ACTH(9-14) to ACTH(9-13)NH2. The optimal rates for these conversions were dependent on ascorbic acid and CuSO4. Kinetic analyses, using the model compound D-Tyr-Val-Gly as the peptide substrate, demonstrated that, compared to the crude granule extract, the partially purified enzyme displayed increased apparent affinities for both the peptide substrate and ascorbate. These analyses also showed that the Km for D-Tyr-Val-Gly was dependent on the concentration of ascorbate, while the Km for ascorbate was constant over a wide range of D-Tyr-Val-Gly concentrations. The results presented here indicate that PAM can alpha-amidate physiologically relevant peptides related to alpha MSH, and performs the reaction in an ascorbate-dependent fashion. Retention of the ascorbate and copper requirements with purification further support the hypothesis that these cofactors are important requirements for the COOH-terminal alpha-amidation of neuro and endocrine peptides.  相似文献   

14.
Stable cell lines with significantly elevated or diminished levels of a key neuropeptide processing enzyme, peptidylglycine alpha-amidating monooxygenase (PAM), were generated by transfection of a mouse pituitary cell line with expression vectors containing PAM cDNA in the sense or antisense orientation. By evaluating the ability of these cell lines to alpha-amidate endogenous neuropeptides, a rate-limiting role for PAM in neuropeptide alpha-amidation was demonstrated. Overexpression of either the full-length PAM precursor with its trans-membrane domain or a soluble protein containing only the monooxygenase domain of PAM led to increased alpha-amidation of endogenous neuropeptides. Overexpression of the full-length PAM led to an unexpected decrease in the endoproteolytic processing of endogenous prohormone; conversely, underexpression of PAM led to significantly enhanced endoproteolytic processing of endogenous prohormone. These data suggest that PAM may have additional functions in peptide processing.  相似文献   

15.
16.
Endothelin-converting enzyme-1 (ECE-1) cleaves big endothelins, as well as bradykinin and beta-amyloid peptide. Several isoforms of ECE-1 (a-d) have been identified to date; they differ only in their NH(2) terminus but share the catalytic domain located in the COOH-terminal end. Using quantitative PCR, we found ECE-1d to be the most abundant type in several endothelial cells (EC) types. In addition to full-length ECE-1 forms we have identified novel, alternatively spliced mRNAs of ECE-1 b-d. These splice variants (SVs) lack exon 3', which codes for the transmembrane region and is present in full-length forms. SVs mRNA were highly expressed in EC derived from macro and microvascular beds but much less so in other, non-endothelial cells expressing ECE-1, which suggests that the splicing mechanism is cell-specific. Analyses of ECE-1d and its SV form in stably transfected HEK-293 cells revealed that both proteins were recognized by anti COOH-terminal ECE-1 antibodies, but anti NH(2)-terminal antibodies only bound ECE-1d. The novel protein, designated ECE-1 sv, has an apparent molecular mass of 75 kDa; by using site-directed mutagenesis its start site was identified in a region common to all ECE-1 forms suggesting that ECE-1 b-d SV mRNAs are translated into the same protein. In agreement with the findings demonstrating common COOH terminus for ECE-1sv and ECE-1d, both exhibited a similar catalytic activity. However, immunofluorescence staining and differential centrifugation revealed a distinct intracellular localization for these two proteins. The presence of ECE-1sv in different cellular compartments than full-length forms of the enzyme may suggest a distinct physiological role for these proteins.  相似文献   

17.
18.
19.
Peptidylglycine α-amidating monooxygenase (PAM) is an essential enzyme that catalyzes the COOH-terminal amidation of many neuroendocrine peptides. The bifunctional PAM protein contains an NH2-terminal monooxygenase (PHM) domain followed by a lyase (PAL) domain and a transmembrane domain. The cytosolic tail of PAM interacts with proteins that can affect cytoskeletal organization. A reverse tetracycline-regulated inducible expression system was used to construct an AtT-20 corticotrope cell line capable of inducible PAM-1 expression. Upon induction, cells displayed a time- and dose-dependent increase in enzyme activity, PAM mRNA, and protein. Induction of increased PAM-1 expression produced graded changes in PAM-1 metabolism. Increased expression of PAM-1 also caused decreased immunofluorescent staining for ACTH, a product of proopiomelanocortin (POMC), and prohormone convertase 1 (PC1) in granules at the tips of processes. Expression of PAM-1 resulted in decreased ACTH and PHM secretion in response to secretagogue stimulation, and decreased cleavage of PC1, POMC, and PAM. Increased expression of a soluble form of PAM did not alter POMC and PC1 localization and metabolism. Using the inducible cell line model, we show that expression of integral membrane PAM alters the organization of the actin cytoskeleton. Altered cytoskeletal organization may then influence the trafficking and cleavage of lumenal proteins and eliminate the ability of AtT-20 cells to secrete ACTH in response to a secretagogue.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号