首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Neuroepithelial bodies (NEB) were identified in the lung of Bufo marinus. The characteristics of the cells and their innervation were studied with electron and fluorescence microscopy before and after close vagosympathetic denervation. The bodies consist of low columnar cells which rest on the epithelial basal lamina. The majority of the cells do not reach the lumen of the lung (basal cells); the few which do (apical cells) are bordered by microvilli and possess a single cilium. The neuroepithelial cell cytoplasm contains a variety of organelles the most characteristic of which are dense cored vesicles. Microspectrofluorometry and electron microscopic cytochemistry indicate significant quantities of 5-hydroxytryptamine in these cells. The neuroepithelial bodies could be divided into three groups on the basis of their innervation: 1) About 60% of the NEBs are innervated solely by nerve fibres containing agranular vesicles which form reciprocal synapses; 2) about 20% are innervated solely by adrenergic nerve fibres which form distinct synaptic contacts; and 3) the remaining 20% are innervated by both types of nerve fibres. It is proposed that the NEBs are receptors monitoring intrapulmonary PCO 2 and so leading to modulation of activity in afferent nerve fibres (type containing agranular vesicles). The presence of NEBs solely with an adrenergic (efferent) innervation poses a problem with this interpretation.  相似文献   

2.
The adrenergic innervation of structures in the gills of brown and rainbow trout was studied with catecholamine fluorescence histochemistry. In the arterio-arterial vascular pathway, there was an innervation of the afferent and efferent lamellar arterioles, but the afferent and efferent filamental arteries and the secondary lamellae were devoid of any fluorescent nerve fibres. In S. trutta only, there was an additional innervation of the afferent and efferent branchial arteries and the base of the efferent filamental artery. The innervation of the arterio-venous vascular pathway was similar in both trout species. Many fluorescent nerve fibres were found on nutritive arterioles in the gill arch and interbranchial septum, and in the core of each filament between the surface epithelium and the wall of the filament venous sinus. No fluorescent nerve fibres were observed at the origins of the capillaries arising from the efferent filamental artery. The sympathetic nerve supply is provided to the gills mainly through the posttrematic nerve, with an occasional small contribution through the pretrematic nerve. The presence of adrenergic nerves in the gills is discussed in relation to the regulation of blood flow through the arterio-arterial and arterio-venous pathways.  相似文献   

3.
Fibroblast growth factor (FGF) signalling has important roles in the development of the embryonic pharyngeal (branchial) arches, but its effects on innervation of the arches and associated structures have not been studied extensively. We investigated the consequences of deleting two receptor tyrosine kinase (RTK) antagonists of the Sprouty (Spry) gene family on the early development of the branchial nerves. The morphology of the facial, glossopharyngeal and vagus nerves are abnormal in Spry1−/−;Spry2−/− embryos. We identify specific defects in the epibranchial placodes and neural crest, which contribute sensory neurons and glia to these nerves. A dissection of the tissue-specific roles of these genes in branchial nerve development shows that Sprouty gene deletion in the pharyngeal epithelia can affect both placode formation and neural crest fate. However, epithelial-specific gene deletion only results in defects in the facial nerve and not the glossopharyngeal and vagus nerves, suggesting that the facial nerve is most sensitive to perturbations in RTK signalling. Reducing the Fgf8 gene dosage only partially rescued defects in the glossopharyngeal nerve and was not sufficient to rescue facial nerve defects, suggesting that FGF8 is functionally redundant with other RTK ligands during facial nerve development.  相似文献   

4.
Axonally transported protein labeled many trigeminal nerve endings in subepithelial regions of the anterior hard palate of the rat. Sensory endings were most numerous in the lamina propria near the tips of the palatal rugae where large connective tissue and epithelial papillae interdigitated. Two kinds of sensory ending were found there: “free” endings, and a variety of corpuscular endings. The “free” sensory endings consisted of bundles of unmyelinated axons separated from the connective tissue by relatively unspecialized Schwann cells covering part or all of their surface and a completely continuous basal lamina; they were commonly found running parallel to the epithelium or near corpuscular endings. The corpuscular sensory endings all had a specialized nerve form, specialized Schwann cells, and axonal fingers projecting into the corpuscular basal lamina or connective tissue. There were at least four distinct types of corpuscular ending: Ruffini-like endings were found among dense collagen bundles, and they had a flattened nerve ending with a flattened Schwann lamella on either side. Meissner endings had an ordered stack of flattened nerve terminals with flattened Schwann cells and much basal lamina within and around the corpuscle. Simple corpuscles were single nerve endings surrounded by several layers of concentric lamellar Schwann processes. Glomerular endings were found in lamina propria papillae or encircling epithelial papillae; they were a tangle of varied neural forms each of which had apposed flattened Schwann cells, and a layer of basal lamina of varied thickness. Fibroblasts often formed incomplete partitions around Meissner and simple corpuscles.

The axoplasm of all kinds of subepithelial sensory endings contained numerous mitochondria and vesicles, as well as occasional multivesicular bodies and lysosomes; the axoplasm of all endings was pale with few microtubules and neurofilaments. The specialized lamellar Schwann cells had much pinocytotic activity. Four kinds of junctions were found between the corpuscular sensory endings and the lamellar Schwann cells: (1) symmetric densities that resemble desmosomes; (2) asymmetric densities with either the neuronal or glial membrane more dense; (3) neural membrane densities adjacent to Schwann parallel inner and outer membrane densities; and (4) sites of apparent Schwann endocytosis associated with neural blebs. The “free” sensory endings only made occasional desmosome-like junctions with their Schwann cells.

These observations are discussed in relation to possible mechanosensory transduction mechanisms, with particular attention to axoplasmic structure, axonal fingers, and neural and nonneural cell associations.  相似文献   

5.
This paper reports observations on the innervation of gill filaments of the lamprey, Lampetra japonica. Nerve fibers run on each side of the afferent filament artery (AFA nerve) and in the connective tissue compartment along the efferent filament artery (EFA nerve). The AFA nerve supplies vasomotor fibers to the afferent filament artery and arteriovenous anastomoses and special visceral motor fibers to branchial muscle fibers (musculus compressor branchialis circularis). Nerve endings of the vasomotor fibers contain large, cored vesicles (60–180 nm in diameter) with a variable number of small, clear vesicles (30–70 μm in diameter), whereas those of the visceral motor fibers have many small, clear vesicles with few large, cored vesicles. The EFA nerve supplies vasomotor fibers to the efferent filament artery. Their endings, containing mixtures of predominantly large, cored vesicles and small, clear vesicles make close synaptic contacts with reticular cells. The latter in turn are connected with each other or with smooth muscle cells in the wall of the efferent filament artery by nexuses. No nerves are found in the axial plate between the afferent and efferent filament arteries nor in the secondary lamellae of individual gill filaments. No afferent nerve supply to the gill filament has been found.  相似文献   

6.
Fiedler A  Schipp R 《Tissue & cell》1991,23(6):813-819
The innervation of the branchial heart of Sepia officinalis was examined using TEM and glyoxylic acid induced fluorescence. In the cardiac ganglion and in cardiac nerves bluish-green fluorophores were seen associated with perikarya and varicose nerve fibres. Microspectrofluorometric analysis provided clear evidence that monoaminergic neurons in the branchial heart contain only catecholamines. Considering pharmacological data, it is more than likely that 5-hydroxytryptamine (serotonin) is not present in this system.  相似文献   

7.
The fine structure of the perineural endothelium   总被引:1,自引:0,他引:1  
Summary Fine strands of motor nerves were examined with the electron microscope using thin section as well as freeze-etching techniques. The specimens were taken from frog cutaneous pectoris nerve, rat sciatic nerve, mouse and shrew phrenic nerves and from human skin nerves. The perineural sheath (Henle, Ranvier, Key and Retzius) consists of one to several concentric laminae of endothelial cells; it encases nerve fascicles and eventually individual nerve fibers and terminals. The endothelial cells are extremely thin and fitted together smoothly by overlap and dove-tailing of their border zones. The cell contacts are formed by continuous zonulae occludentes, often reinforced by maculae adhaerentes, and in depth they comprise 3–15 strands with an average of 5–6 strands per junction. The membranes of endothelial cells are studded with attachment sites and stomata of plasmalemmal vesicles suggesting a high level of pinocytotic activity. This phenomenon is by no means restricted to the external laminae of the endothelial sheath. Each endothelial lamina is vested with basement membranes on both (epineural and endoneural) sides, and the spaces between laminae contain a few collagen fibers and fibroblasts. Occasionally, punctate tight junctions are seen between laminae. Cytological evidence supports the hypothesis that the perineural endothelium provides a relatively tight and highly selective barrier separating the peripheral nerves from surrounding tissue and its extracellular fluid spaces. This effect is achieved on the one hand by the sealing of pericellular spaces and on the other hand by a membrane controlled transcellular transport mechanism (pinocytosis), both of which are enhanced by their serial arrangement.Dedicated to Professor Wolfgang Bargmann, Kiel, on the occasion of his 70th birthday.The technical assistance of Dr. F. Dreyer, Mr. D. Savini, Miss H. Claassen and Miss R. Emch is gratefully acknowledged.Financial support was received by the following institutions: Swiss National Foundation for Scientific Research, grants Nrs. 3.368.0.74, 3.774.72, 3.259.74, 3.045.73. Deutsche Forschungsgemeinschaft (Sonderforschungsbereich 38, Projekt N). The Dr. Eric Slack-Gyr Stiftung in Zürich and the Hartmann-Müller Stiftung for Medical Research in Zürich.  相似文献   

8.
The accommodatory system was examined in two teleosts (mackerel and bass). The fine structure and innervation of the lens muscle is presented to characterize the muscle organization. The neural pathway involved in the dynamic accommodation was examined by analysing the fibre spectrum of the ciliary nerve, and the nerve that controls the lens-muscle activity was studied by means of electrical stimulation. The lens muscle is composed of smooth-muscle cells, which contain numerous mitochondria. Many synaptic endings are also found on the muscle cells; these synaptic endings contain many agranular vesicles. From the results of the fibre analysis, it was found that the nerve that controls the lens muscle contains less than 100 myelinated nerve fibres in both fish: the electrical stimulation experiments demonstrate that the muscle is controlled by oculomotor (parasympathetic) nerve fibres. Ultrastructural features of the lens muscle and its nerve control resemble those of the mammalian ciliary muscle. The teleostean lens muscle is classified as a multi-unit smooth muscle.  相似文献   

9.
Summary Gymnotiform electric fish sense low-and high frequency electric signals with ampullary and tuberous electroreceptors, respectively. We employed intracellular recording and labeling methods to investigate ampullary and tuberous information processing in laminae 1–5 of the dorsal torus semicircularis of Eigenmannia. Ampullary afferents arborized extensively in laminae 1–3 and, in some cases, lamina 7. Unlike tuberous afferents to the torus, ampullary afferents had numerous varicosities along their finest-diameter branches. Neurons that were primarily ampullary were found in lamina 3. Neurons primarily excited by tuberous stimuli were found in lamina 5 and, more rarely, in lamina 4. Cells that had dendrites in lamina 1–3 and 5 could be recruited by both ampullary and tuberous stimuli. These bimodal cells were found in lamina 4. During courtship, Eigenmannia produces interruptions of its electric organ discharges. These interruptions stimulate ampullary and tuberous receptors. The integration of ampullary and tuberous information may be important in the processing of these communication signals.Abbreviations JAR jamming avoidance response - EOD electric organ discharge - S1 sinusoidal signal mimicking fish's EOD - S2 jamming signal - Df frequency difference (S2-S1) or between a neighbor's EODs and fish's own EODs - CNS central nervous system  相似文献   

10.
Innervation of the guinea pig spleen studied by electron microscopy   总被引:1,自引:0,他引:1  
The innervation of the guinea pig spleen was investigated by electron microscopy. Unmyelinated nerve fibers in the capsulotrabecular and arterial systems were found to contain large and small granular and small agranular synaptic vesicles in their terminals and are thought to be sympathetic adrenergic in nature. They influence the contraction of the smooth muscle cells by diffusion innervation in these systems. These nerve terminals were also scattered in both the red and the white pulp. Pulp nerves wrapped by Schwann cells were further enclosed by myofibroblastic reticular cells. This condition revealed that the pulp nerves pass through the connective-tissue spaces of the reticular fibers, which contain elastic fibers, collagenous fibrils, and lamina densa-like materials of the usual basement laminae. One of the target cells for the pulp nerves is considered to be the myofibroblastic reticular cell in the reticular meshwork. Neurotransmitter substances released from the naked adrenergic nerve terminals travel through the reticular fibers and may play a role, by both close association innervation and diffusion innervation, in the contraction of reticular cells to expose the reticular fibers. At the exposed sides, connective-tissue elements of the reticular fibers are bathed with blood plasma, and the included naked nerve terminals, devoid of Schwann cells but with basement laminae of these cells, face free cells at some distance or are in close association with free cells, especially lymphocytes, macrophages, and plasma cells. The close ultrastructural relationship between the naked adrenergic nerve terminals and immunocytes strongly suggests that there is an intimate relationship between the immune system and the sympathetic nervous system through both close association innervation and diffusion innervation. Thus splenic adrenergic nerves of the guinea pig may play a triple role in 1) contraction of smooth muscle cells to regulate blood flow in the organ, 2) induction of the exposure of reticular fibers by contraction of the reticular cells in order to form a close relationship of the nerve terminals with the immunocytes, and 3) subsequent neuroimmunomodulation of the immunocytes.  相似文献   

11.
Summary The formaldehyde-induced fluorescence technique had shown 5-hydroxytryptamine-containing enteric neurons in the intestine of the teleost Platycephalus bassensis, but did not reveal such neurons in the intestine of Tetractenos glaber or Anguilla australis. Re-examination of these animals with 5-hydroxytryptamine immunohistochemistry showed immunoreactive enteric neurons in the intestine of all three teleost species. The 5-hydroxytryptamine-containing enteric neurons showed essentially the same morphology in all species examined: the somata were situated in the myenteric plexus, extending down into the circular muscle layer, but none were found in the submucosa; processes were found in the myenteric plexus, the circular muscle layer and the lamina propria. It was concluded that the neurons may innervate the muscle layers or the mucosal epithelium, but were unlikely to be interneurons. In a range of teleosts, enterochromaffin cells were found in the intestine of only those species in which the formaldehyde technique did not visualize neuronal 5-hydroxytryptamine. Available evidence suggests that, in vertebrates, 5-HT-containing enterochromaffin cells are lacking only where there is an innervation of the gut mucosa by nerve fibres containing high concentrations of 5-HT.  相似文献   

12.
Somatostatinergic nerves in the spinal cord of the monkey were investigated utilizing immunohistochemistry with various antibodies against synthetic somatostatin. In contrast to earlier investigations, it is shown that somatostatinergic nerve endings occur in most of the areas of the grey matter of the spinal cord. The somatostatinergic axons are, however, characteristically distributed in three main regions: (1) Densely-packed endings are seen in lamina II of the substantia gelatinosa, forming a crescent-shaped pattern in the columna dorsalis. Somatostatin immunoreactivity is also seen in lamina I and in the Lissauer tract. (2) A fine network of fibers is observed around the central canal; the endings are concentrated on special cell bodies. Some single perikarya are also stained in this region. (3) A loose network of single fibers is found ending on perikarya of the columna lateralis or ventralis. The perikarya of the nerve axons, with the exception of those terminating in the columna dorsalis, have as yet not been identified. In order to better understand the somatostatinergic system of the spinal cord, these newly-detected somatostatinergic nerves must be studied and their exact pathways analyzed.  相似文献   

13.
The pattern of development of the teeth, laminae, piston, muscles, cartilages and fimbriae associated with the suctorial disc of lampreys has been investigated histologically during the seven stages of metamorphosis in the Southern Hemisphere species, Geotria australis. The cirrhi-bearing hood of ammocoetes and the earliest stage of metamorphosis (S1) were indistinguishable. In stages S2, S3, S4, these cirrhi regressed and the supraoral lamina, piston and infraoral lamina primordial regions began to differentiate. The fifth stage (S5) was characterised by an elaboration of the annular cartilage and disc musculature, deposition of the tectal cartilage, initiation of tooth development, formation of oral fimbriae, and eruption of the keratin cone of the transverse lingual lamina. Subsequently (S6), the keratin cusps of the supraoral and infraoral laminae became exposed at the surface, and distinct retractor and protractor muscles formed around the lingual cartilage. In the latter part of the terminal stage in metamorphosis (S7), just prior to the time when the animal migrates downstream, the primary tooth cones and the keratin cusp of the longitudinal lingual laminae began breaking through the epithelial surface of the disc.  相似文献   

14.
Homologies of the branchial arch muscles in the cyprinid Zacco platypus are assessed based on their innervation. Muscles serving the first gill arch are innervated by branches of the glossopharyngeal (IX) nerve and those serving other arches by the vagal (X) nerve. Absence of the levator posterior is confirmed. Five pairs of muscles originating from the cranium and inserted onto the specialized 5th ceratobranchial, all unique to cyprinids, are innervated by the 4th branchial trunks of X, indicating that all pairs are derivatives of the sphincter oesophagi, involving reorganization from intrinsic to extrinsic elements. Homologies of some ventral branchial muscles are also discussed and the criteria for homology improved by clarifying the innervation pattern. J. Morphol., 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

15.
16.
The distribution of laminar nerve endings that contained immunoreactive calretinin was examined in the laryngeal mucosa of the adult rat. In whole-mount preparations, the immunoreactive laminar endings were distributed in the supraglottic region but not in the subglottic region. The laminar endings that arose from thick nerve fibers with or without swellings were identified as corpuscles with many variform terminal arborizations. They appeared to be located at the interface between the epithelium and the subepithelial connective tissue. The terminals were scattered under the basal lamina of the epithelium, and some of them were located within the epithelial layer. Immunoelectron microscopy revealed that both sub- and intraepithelial immunoreactive terminals that were filled with mitochondria were partly or totally ensheathed by Schwann cell processes. The denervation experiments, in which the superior laryngeal nerve was cut unilaterally or bilaterally, suggested that the laminar endings originate from the superior laryngeal nerve with strict ipsilateral innervation. The laminar endings might be associated with detection of changes in pressure in the laryngeal cavity or chemical stimuli.  相似文献   

17.
Summary The distribution of nerves showing neuropeptide Y (NPY)-like immunoreactivity in the cardiovascular system of elasmobranchs and teleosts has been investigated. Two species of teleosts, the rainbow trout (Salmo gairdneri) and the Atlantic cod (Gadus morhua), and three species of elasmobranchs, the spiny dogfish (Squalus acanthias), the little skate (Raja erinacea) and the starry ray (Raja radiata), were used in this study. An innervation of the cardiovascular system by an NPY-like substance was found only in the two species of Raja. A rich innervation was encountered in these skates, with the highest density of fibres in the wall of the ventricle, the conus arteriosus, the coeliac artery and smaller mesenterial vessels. In the vessels, the fibres formed a plexus at the adventitio-mediol border. Few fibres were found in the walls of the dorsal aorta, the sinus venosus and the atrium, and no fibres were observed in the walls of the ventral aorta. Falck-Hillarp fluorescence histochemistry showed the presence of a rich innervation of arteries and arterioles of the gut by catecholamine-containing nerve fibres.  相似文献   

18.
The ultrastructure of nerve endings in the oviduct visceral muscles of Locusta migratoria was studied by electron microscopy and by immunogold labeling for two kinds of neuromodulators, the pentapeptide proctolin and FMRFamide-related peptides. Nerve endings contained electron-lucent round vesicles and two kinds of granules (round and avoid), and formed two types of synapses or release sites with the muscle. The morphologically distinct nerve endings were classified into three different categories based on the composition of synaptic vesicles and granules. Type-I nerve endings were dominated by electron-lucent round vesicles and contained only a few round electron-dense granules. Type-II nerve endings contained mostly electron-dense round granules and electron-lucent round vesicles. A few electron-dense ovoid granules were also present. Electron-dense ovoid granules dominated the type-III nerve endings, which usually contained less electron-lucent vesicles than either type-I or II nerve endings. Both proctolin and FMRFamide-like immunoreactivity was associated with electron-dense round granules. However, FMRFamide-like immunoreactivity was only found in the type-II nerve endings, while proctolin immunoreactivity was found within type-I nerve endings as well as in some type-II nerve endings. Immunological results therefore allow us to further divide type-II nerve endings into type-IIa (immunonegative for proctolin) and type-IIb (immunopositive for proctolin). Type-III nerve endings show no immunolabeling to either proctolin or FMRFamide.  相似文献   

19.
Summary The Organum vasculosum laminae terminalis (OVLT) of the duck is lined innerly by specialized ependymal cells (tanycytes) and outwardly by a well-developed superficial vascular network, the capillaries of which often show a fenestrated endothelium. The OVLT also includes glial cells, internal non-fenestrated capillaries, bundles of fine nerve fibers and three groups of axonal swellings. One type contains granulations of 1000–1400 Å in diameter as well as 300–500 Å clear vesicles. The second type exhibits granulations and dense core vesicles of 500–800 Å in diameter along with small electron-lucent vesicles having diameters of 300–400 Å. In the third type, exclusively clear vesicles 300–600 Å in diameter are found. Asymmetrical synapses on dendrites and neuronal perikarya are found at every level of the organ. In the most external zone, the interposition of tanycyte endings sometimes allows neurosecretory axons to reach the parenchymal basement membrane (basal lamina).When tritiated molecules (amino acids or monoamines) are administered either in vitro by incubation or in vivo by intraventricular injections, radioautographic grains are observed over the tanycyte perikarya. Although this labeling is observed at every time point following the administration of the tracers, within three minutes only 3H-GABA appears to be concentrated in the cytoplasmic processes of the tanycytes. 3H-noradrenaline and 3H-serotonin are taken up and retained by some axons of the second type described above. Noradrenergic fibers are primarily localized in the inner zone of the OVLT where they display axodendritic synaptic contacts. Serotonergic fibers appear sparsely distributed in the OVLT but are more numerous in the lateral edges of the organ where synaptic differentiations on dendrites or on dendritic spines are also observed.It is concluded that the duck OVLT probably displays a neuroendocrine activity. Uptake and selective transport of exogenous molecules by tanycytes are also suggested by the present radioautographic observations. Finally, monoaminergic innervation is discussed at the OVLT level with special reference to the occurrence of serotonergic synapses.Supported by the Département de Biologie du C.E.A., and the I.N.S.E.R.M. (C.R.A.T., 74.1.438.45)  相似文献   

20.
Summary The aluminium-formaldehyde (ALFA) histofluorescence method was used to study the innervation of the gill of the marine bivalve mollusc Mytilus edulis and the results were contrasted with those obtained with the standard formaldehyde-induced-fluorescence (FIF) method. The ALFA method produced more fluorescing structures than the FIF method, thus revealing fine branches of the branchial nerve running beneath the gill epithelium which previously remained undetected. This study demonstrates the usefulness of the ALFA histofluorescence method in the study of marine invertebrates.This study was supported in part by Grants 1506RR08171 from NIMH and 5T32GM07641 from the MARC Program of NIGMS. I wish to thank E. Aiello for thoughtful discussions of the work  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号