首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A molecular genetic linkage map of mouse chromosome 2   总被引:7,自引:0,他引:7  
Interspecific backcross mice were used to create a molecular genetic linkage map of chromosome 2. Genomic DNAs from N2 progeny were subjected to Southern blot analysis using molecular probes that identified the Abl, Acra, Ass, C5, Cas-1, Fshb, Gcg, Hox-5.1, Jgf-1, Kras-3, Ltk, Pax-1, Prn-p, and Spna-2 loci; these loci were added to the 11 loci previously mapped to the distal region of chromosome 2 in the same interspecific backcross to generate a composite multilocus linkage map. Several loci mapped near, and may be the same as, known mutations. Comparisons between the mouse and the human genomes indicate that mouse chromosome 2 contains regions homologous to at least six human chromosomes. Mouse models for human diseases are discussed.  相似文献   

2.
The murine glial fibrillary acid protein (GFAP) gene is located on chromosome 11 in close proximity to the genes encoding transforming protein p53 (Trp53) and myeloperoxidase (Mpo). Both Trp53 and Mpo have been mapped to human chromosome 17, but the chromosomal assignment of human GFAP has not been previously determined. In this report, we have amplified a cDNA fragment encoding a portion of GFAP from human brain and have used this probe to screen a mouse x human somatic cell hybrid panel. The results show that a human-specific GFAP species of approx 3.7 kb maps to one of these lines, TMS5, which contains chromosome 17 as its only human chromosome. On the basis of these data we speculate that there may be evolutionary relatedness between GFAP and other genes that map to both murine chromosome 11 and human chromosome 17.  相似文献   

3.
An interspecific backcross linkage map of mouse chromosome 8   总被引:5,自引:0,他引:5  
We have established a 67-cM molecular genetic linkage map of mouse chromosome 8 by interspecific backcross analysis. Genes that were mapped in this study include Act-6, Aprt, Aprt-ps1, Emv-2, Es-N, Hp, Insr, Mt-1, Plat, Psx-8, Ucp, and Zfp-4. New regions of homology were established between mouse chromosome 8 and human chromosomes 8 and 19. A conserved linkage group was identified between mouse chromosome 8 and human chromosome 16. The map will be useful for establishing linkage of other markers to mouse chromosome 8.  相似文献   

4.
A mouse cDNA probe homologous to the human MCF2 transforming sequence has been identified and partially cloned, and is used here to localize the gene on the mouse X chromosome. The human gene has been physically mapped to within 60 kb of the gene for coagulation factor IX, within a large conserved linkage group between the mouse and human genomes which extends from HPRT to G6PD on the X chromosomes of both mammalian species. In situ hybridization of the mouse Mcf-2 probe onto mouse metaphase chromosomes indicates that this gene lies in the same region of the X chromosome as Cf-9, the mouse gene for coagulation factor IX. Moreover, segregation of species-specific genomic DNA polymorphisms for Mcf-2 and Cf-9 in a total of 203 individuals derived from two large interspecific mouse backcross populations (which are also segregating for 17 other X-linked molecular markers) demonstrates that the mouse genes are separated by only 0.5 +/- 0.5 cM. Despite this short distance we were able to order Mcf-2 and Cf-9 relative to one another and other genes in this region. The mouse gene order Hprt-Cf-9-Mcf-2-G6pd predicts a similar ordering of genes on the human X chromosome, a gene order which has only recently been demonstrated by physical mapping. Thus, the map location and linkage relationships of the Mcf-2 gene are similar in man and mouse, and this unique protooncogenic locus is part of a conserved linkage group on the mammalian X chromosome.  相似文献   

5.
An interspecific backcross between C57BL/6J and Mus spretus was used to generate a molecular genetic linkage map of mouse chromosome 18 that includes 23 molecular markers and spans approximately 86% of the estimated length of the chromosome. The Apc, Camk2a, D18Fcr1, D18Fcr2, D18Leh1, D18Leh2, Dcc, Emb-rs3, Fgfa, Fim-2/Csfmr, Gnal, Grl-1, Grp, Hk-1rs1, Ii, Kns, Lmnb, Mbp, Mcc, Mtv-38, Palb, Pdgfrb, and Tpl-2 genes were mapped relative to each other in one interspecific backcross. A second interspecific backcross and a centromere-specific DNA satellite probe were used to determine the distance of the most proximal chromosome 18 marker to the centromere. The interspecific map extends the known regions of linkage homology between mouse chromosome 18 and human chromosomes 5 and 18 and identifies a new homology segment with human chromosome 10p. It also provides molecular access to many regions of mouse chromosome 18 for the first time.  相似文献   

6.
We have constructed a 64-cM molecular genetic linkage map of mouse chromosome 4 using interspecific backcross animals derived from mating C57BL/6J and Mus spretus mice. Several proto-oncogenes and common sites of viral integration have been assigned regional locations on chromosome 4 including Mos, Lyn, Jun, Lmyc, Lck, Fgr, and Dsi-1. Additional loci mapped in this study to chromosome 4 were Tsha, Mup-1, Rrm2-ps1, Ifa, and Anf. A comparison of our mapping data with inbred strain mapping data did not show any evidence for inversions or deletions on chromosome 4. New regions of synteny were defined between mouse chromosome 4 and human chromosomes 1 and 8; a region of homology was found between mouse chromosome 4 and human chromosome 6. This linkage map will provide a framework for identifying homologous genes in mice and humans that may be involved in various disease processes.  相似文献   

7.
A molecular genetic linkage map of mouse chromosome 7   总被引:6,自引:0,他引:6  
A M Saunders  M F Seldin 《Genomics》1990,8(3):525-535
The homology between mouse chromosome 7 and human chromosomes 11, 15, and 19 was examined using interspecific backcross animals derived from mating C3H/HeJ-gld/gld and Mus spretus mice. In an earlier study, we reported on the linkage relationships of 16 loci on mouse chromosome 7 and the homologous relationship between this chromosome and the myotonic dystrophy gene region on human chromosome 19. Segregation analyses were used to extend the gene linkage relationships on mouse chromosome 7 by an additional 21 loci. Seven of these genes (Cyp2a, D19F11S1h, Myod-1, Otf-2, Rnu1p70, Rnu2pa, and Xrcc-1) were previously unmapped in the mouse. Several potential mouse chromosome 7 genes (Mel, Hkr-1, Icam-1, Pvs) did not segregate with chromosome 7 markers, and provisional chromosomal assignments were made. This study establishes a detailed molecular genetic linkage map of mouse chromosome 7 that will be useful as a framework for determining linkage relationships of additional molecular markers and for identifying homologous disease genes in mice and humans.  相似文献   

8.
We have generated a 30-cM molecular genetic linkage map of the proximal half of mouse chromosome 14 by interspecific backcross analysis. Loci that were mapped in this study include Bmp-1, Ctla-1, Hap, hr, Plau, Psp-2, Rib-1, and Tcra. A region of homology between mouse chromosome 14 and human chromosome 10 was identified by the localization of Plau to chromosome 14. This interspecific backcross map will be valuable for establishing linkage relationships of additional loci to mouse chromosome 14.  相似文献   

9.
Interspecific mouse backcross analysis was used to generate a molecular genetic linkage map of mouse chromosome 10. The map locations of the Act-2, Ahi-1, Bcr, Braf, Cdc-2a, Col6a-1, Col6a-2, Cos-1, Esr, Fyn, Gli, Ifg, Igf-1, Myb, Pah, pgcha, Ros-1 and S100b loci were determined. These loci extend over 80% of the genetic length of the chromosome, providing molecular access to many regions of chromosome 10 for the first time. The locations of the genes mapped in this study extend the known regions of synteny between mouse chromosome 10 and human chromosomes 6, 10, 12 and 21, and reveal a novel homology segment between mouse chromosome 10 and human chromosome 22. Several loci may lie close to, or correspond to, known mutations. Preferential transmission of Mus spretus-derived alleles was observed for loci mapping to the central region of mouse chromosome 10.  相似文献   

10.
A 64-centiMorgan linkage map of mouse chromosome 9 was developed using cloned DNA markers and an interspecific backcross between Mus spretus and the C57BL/6J inbred strain. This map was compared to conventional genetic maps using six markers previously localized in laboratory mouse strains. These markers included thymus cell antigen-1, cytochrome P450-3, dilute, transferrin, cholecystokinin, and the G-protein alpha inhibitory subunit. No evidence was seen for segregation distortion, chromosome rearrangements, or altered genetic distances in the results from interspecific backcross mapping. Regional map locations were determined for four genes that were previously assigned to chromosome 9 using somatic cell hybrids. These genes were glutathione S-transferase Ya subunit (Gsta), the T3 gamma subunit, the low density lipoprotein receptor, and the Ets-1 oncogene. The map locations for these genes establish new regions of synteny between mouse chromosome 9 and human chromosomes 6, 11, and 19. In addition, the close linkage detected between the dilute and Gsta loci suggests that the Gsta locus may be part of the dilute/short ear complex, one of the most extensively studied genetic regions of the mouse.  相似文献   

11.
A molecular genetic linkage map of mouse chromosome 13 was constructed using cloned DNA markers and interspecific backcross mice from two independent crosses. The map locations of Ctla-3, Dhfr, Fim-1, 4/12, Hexb, Hilda, Inhba, Lamb-1.13, Ral, Rrm2-ps3, and Tcrg were determined with respect to the beige (bg) and satin (sa) loci. The map locations of these genes confirm and extend regions of homology between mouse chromosome 13 and human chromosomes 5 and 7, and identify a region of homology between mouse chromosome 13 and human chromosome 6. The molecular genetic linkage map of chromosome 13 provides a framework for establishing linkage relationships between cloned DNA markers and known mouse mutations and for identifying homologous genes in mice and humans that may be involved in disease processes.  相似文献   

12.
Five sequence-related genes encoding four adrenergic receptors and a serotonin receptor were localized to specific regions of four mouse chromosomes with respect to 11 other genetic markers. Linkage was established by the analysis of the haplotypes of 114 interspecific backcross mice. Adra2r (alpha 2-C10) and Adrb1r (beta 1) receptors mapped to the distal region of mouse chromosome 19. These genes were separated by 2.6 +/- 1.5 cM in a segment of mouse chromosome 19 that has a similar organization of these genes on the long arm of human chromosome 10. The Adra1r (alpha 1B), Adrb2r (beta 2), and Htra1 (5HT1A) genes mapped to proximal mouse chromosome 11, proximal mouse chromosome 18, and distal mouse chromosome 13, respectively. The organization of genes linked to these loci on regions of the three mouse chromosomes is consistent with the organization of homologous human genes on human chromosome 5. These findings further define the relationship of linkage groups conserved during the evolution of the mouse and human genomes. We have identified a region that may have been translocated during evolution and suggest that the human genomic organization of adrenergic receptors more closely resembles that of a putative primordial ancestor.  相似文献   

13.
Recent evidence suggests that the human neuromuscular disorders, hyperkalemic periodic paralysis and paramyotonia congenita, are both caused by genetic defects in the -subunit of the adult skeletal muscle sodium channel, which maps near the growth hormone cluster (GH) on Chromosome (Chr) 17q. In view of the extensive homology between this human chromosome and mouse Chr 11, we typed an interspecies backcross to determine whether the murine homolog (Scn4a) of this sodium channel gene mapped within the conserved chromosomal segment. The cytosolic thymidine kinase gene, Tk-1, was also positioned on the genetic map of Chr 11. Both Scn4a and Tk-1 showed clear linkage to mouse Chr 11 loci previously typed in this backcross, yielding the map order: Tr J-(Re, Hox-2, Krt-1)-Scn4a-Tk-1. No mouse mutant that could be considered a model of either hyperkalemic periodic paralysis or paramyotonia congenita has been mapped to the appropriate region of mouse Chr 11. These data incorporate an additional locus into the already considerable degree of homology observed for these human and mouse chromosomes. These data are also consistent with the view that the conserved segment region may extend to the telomere on mouse Chr 11 and on human 17q.  相似文献   

14.
The human genes encoding the alpha and beta forms of the retinoic acid receptor are known to be located on chromosomes 17 (band q21.1:RARA) and 3 (band p24:RARB). By in situ hybridization, we have now localized the gene for retinoic acid receptor gamma, RARG, on chromosome 12, band q13. We also mapped the three retinoic acid receptor genes in the mouse, by in situ hybridization, on chromosomes 11, band D (Rar-a); 14, band A (Rar-b); and 15, band F (Rar-g), respectively, and in the rat, using a panel of somatic cell hybrids that segregate rat chromosomes, on chromosomes 10 (RARA), 15 (RARB), and 7 (RARG), respectively. These assignments reveal a retention of tight linkage between RAR and HOX gene clusters. They also establish or confirm and extend the following homologies: (i) between human chromosome 17, mouse chromosome 11, and rat chromosome 10 (RARA); (ii) between human chromosome 3, mouse chromosome 14, and rat chromosome 15 (RARB); and (iii) between human chromosome 12, mouse chromosome 15, and rat chromosome 7 (RARG).  相似文献   

15.
A genetic linkage map of rat chromosome 9 consisting of five loci including a new biochemical marker representing a genetic variation of the activity of the liver aldehyde oxidase, (Aox) was constructed. Linkage analysis of the five loci among 92 backcross progeny of (WKS/Iar x IS/Iar)F1 x WKS/Iar revealed significant linkages between these loci. Minimizing crossover frequency resulted in the best gene order: Aox-D9Mit4-Gls-Cryg-Tp53l1. The homologues of the Cryg, Gls, and Aox genes have been mapped on mouse chromosome 1 and human chromosome 2q. The present findings provide further evidence for the conservation of synteny among these regions of rat, mouse, and human chromosomes.  相似文献   

16.
We have isolated and characterized genomic and cDNA clones encoding the murine homolog of the human monocyte/granulocyte cell surface glycoprotein, CD14. As in man, the expression of murine CD14 is limited to the myeloid lineage. The murine and human CD14 genes are highly conserved in their intron-exon organization and nucleotide sequence. Their deduced protein sequences show 66% amino acid identity. In both mouse and man, the CD14 protein contains a repeating (10 times) leucine-rich motif (LXXLXLX) that is also found in a group of heterogeneous proteins from phylogenetically distant species. The CD14 gene has been mapped to mouse chromosome 18 which also contains at least five genes encoding receptors (Pdgfr, Adrb2r, li, Grl-1, Fms). Thus CD14 and the receptor genes form a conserved syntenic group localized on mouse chromosome 18 and human chromosome 5. The inclusion of CD14 in the family of leucine-rich proteins, its expression profile and the murine chromosomal localization support the hypothesis that CD14 may function as a receptor.  相似文献   

17.
The protamines are small, arginine-rich nuclear proteins that replace histones and transition proteins late in the haploid phase of spermatogenesis in mammals. The two mouse genes encoding protamines--Prm-1 and Prm-2--have been molecularly cloned and mapped to mouse chromosome 16 (MMU 16). A cDNA clone of mouse Prm-1 that hybridized to the corresponding human gene was used to analyze a panel of somatic cell hybrids made between human lymphoblasts and the E36 hamster cell line. The human gene, which we have designated PRM 1, was syntenic with human chromosome 16 (HSA 16) and discordant with all other human chromosomes. Linkage analysis in the mouse was accomplished using the backcross (Czech II x BALB/c Pt) x Czech II to map Prm-1 and Prm-2 to a position near the 5' terminus of MMU 16. No recombination between Prm-1 and Prm-2 was observed among 89 progeny of the Czech II x BALB/c cross or among 94 progeny of the backcross (CBA/J x BALB/cJ) x BALB/cJ, demonstrating that the two loci are separated by less than 1.6 cM on MMU 16. This tight linkage may be of functional significance, as Prm-1 and Prm-2 are among a limited number of genes known to be expressed postmeiotically in male haploid germ cells.  相似文献   

18.
Polymorphic microsatellites have been developed in the vicinity of nine genes on bovine chromosome (BTA) 24, all orthologous to genes on human chromosome (HSA) 18. The microsatellites have been isolated from bacterial and yeast artificial chromosome clones containing the genes. A linkage map was developed including these polymorphic markers and four anonymous, published microsatellites. Yeast artificial chromosomes containing six of these genes have also been mapped using fluorescent in situ hybridization (FISH), thereby tying the linkage map together with the physical map of BTA24. Comparing gene location on HSA18 and BTA24 identifies four regions of conserved gene order, each containing at least two genes. These genes identify six regions of conserved order between human and mouse, two more than in the human-bovine comparison. The breakpoints between regions of conserved order for human-bovine are also breakpoints in the human-mouse comparison. The centromere identifies a fifth conserved region if the BTA24 centromere is orthologous with the HSA18 centromere. Received: 17 September 1998 / Accepted: 4 December 1998  相似文献   

19.
Npy1randNpy2r,the genes encoding mouse type 1 and type 2 neuropeptide Y receptors, have been mapped by interspecific backcross analysis. Previous studies have localized the human genes encoding these receptors to chromosome 4q31–q32. We have now assignedNpy1randNpy2rto conserved linkage groups on mouse Chr 8 and Chr 3, respectively, which correspond to the distal region of human chromosome 4q. Using yeast artificial chromosomes, we have estimated the distance between the human genes to be approximately 6 cM. Although ancient tandem duplication events may account for some closely spaced G-protein-coupled receptor genes, the large genetic distance between the human type 1 and type 2 neuropeptide Y receptor genes raises questions about whether this mechanism accounts for their proximity.  相似文献   

20.
We recently cloned three membrane guanylyl cyclases, designated GC-D, GC-E, and GC-F, from rat olfactory tissue and eye. Amino acid sequence homology suggests that they may compose a new gene subfamily of guanylyl cyclase receptors specifically expressed in sensory tissues. Their chromosomal localization was determined by mouse interspecific backcross analysis. The GC-D, GC-E, and GC-F genes (Gucy2d, Gucy2e,andGucy2f) are dispersed through the mouse genome in that they map to chromosomes 7, 11, and X, respectively. Close proximity of the mouse GC-D gene toOmp(olfactory marker protein) andHbb(hemoglobin β-chain complex) suggests that the human homolog gene maps to 11p15.4 or 11q13.4–q14.1. The human GC-F gene was localized to the long arm of chromosome Xq22 by fluorescencein situhybridization. The genomic organization of the mouse GC-E gene was determined and compared to other guanylyl cyclase genes. The mouse GC-D, GC-E, and GC-F genomic clones contain identical exon–intron boundaries within their extracellular and cytoplasmic domains, demonstrating the conservation of the gene structures. With respect to human genetic diseases, GC-E mapped to mouse chromosome 11 within a syntenic region on human chromosome 17p13 that has been linked with loci for autosomal dominant retinitis pigmentosa and Leber congenital amaurosis. No apparent disease loci have been yet linked to the locations of the GC-D or GC-F genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号