首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have used a panel of somatic cell hybrids containing different rearrangements of human chromosome 13 to integrate genetic and physical maps of this chromosome. The positions of 17 translocation/deletion breakpoints on human chromosome 13 have been determined relative to the microsatellite markers on the genetic linkage map compiled by Généthon. Because markers on maps from several other Consortium groups have also been analyzed using many of the same hybrids, it was possible to relate these with the Généthon map. The position of all of the chromosome breakpoints have been placed, wherever possible, between two adjacent markers on the genetic linkage maps using PCR analysis for the presence/absence of the markers in the somatic cell hybrids. The positions of the breakpoints have already been determined cytogenetically, and some of these breakpoints are located at landmark positions on the chromosome. The relative density of markers along the chromosome differs between independently derived maps, and, based on the known locations of certain breakpoints in the physical map, inconsistencies in the genetic maps have been identified.  相似文献   

2.
A six-point cross was carried out to determine the gene order and distances among loci on mouse chromosome 9. Our results are consistent with the following arrangement: centromere – Lap-1 – (1.2 ± 0.8) – Es-17 – (3.0 ± 1.0) – Ups – (1.3 ± 0.7) – Alp-1 – (23.1 ± 3.4) – Mod-1 – (10.9 ± 2.6) – Acy-1 . This study provides the first estimate of the distances between Es-17, Ups and Alp-1. Exceptions to the preferred association of alleles of Es-17 and Ups have been found in three feral populations and one inbred strain. Evidence is presented for the homology of this chromosome region with the ESA4UPS APO-AI region on the long arm of human chromosome 11.  相似文献   

3.
A Sequence-Tagged Site Map of Human Chromosome 11   总被引:1,自引:0,他引:1  
We report the construction of 370 sequence-tagged sites (STSs) that are detectable by PCR amplification under sets of standardized conditions and that have been regionally mapped to human chromosome 11. DNA sequences were determined by sequencing directly from cosmid templates using primers complementary to T3 and T7 promoters present in the cloning vector. Oligonucleotide PCR primers were predicted by computer and tested using a battery of genomic DNAs. Cosmids were regionally localized on chromosome 11 by using fluorescence in situ hybridization or by analyzing a somatic cell hybrid panel. Additional STSs corresponding to known genes and markers on chromosome 11 were also produced under the same series of standardized conditions. The resulting STSs provide uniform coverage of chromosome 11 with an average spacing of 340 kb. The DNA sequence determined for use in STS production corresponds to about 0.1% (116 kb) of chromosome 11 and has been analyzed for the presence of repetitive sequences, similarities to known genes and motifs, and possible exons. Computer analysis of this sequence has identified and therefore mapped at least eight new genes on chromosome 11.  相似文献   

4.
Oligonucleotide primers for 125 simple sequence repeat microsatellite-based genetic markers have been assayed by polymerase chain reaction (PCR) in the CEPH reference family panel. These microsatellites include 101 dinucleotide repeats as well as 24 new tetranucleotide repeats. The average heterozygosity of this marker set was 72.4%. Genetic data were analyzed with the genetic mapping package LINKAGE. A subset of these microsatellite markers define a set of 56 uniquely ordered loci (>1000:1 against local inversion) that span 271 cM. Sixty-seven additional loci were tightly linked to markers on the uniquely ordered map, but could not be ordered with such high precision. These markers were positioned by CMAP into confidence intervals. One hundred thirteen of the microsatellite markers were also tested on a chromosome 3 framework somatic cell hybrid panel that divides this chromosome into 23 cytogenetically defined regions, integrating the genetic and physical maps of this chromosome. The high density, high heterozygosity, and PCR format of this genetically and physically mapped set of markers will accelerate the mapping and positional cloning of new chromosome 3 genes.  相似文献   

5.
A genetic linkage map of markers for the short arm of human chromosome 8 has been constructed with 14 polymorphic DNA markers on the basis of genotypes obtained in 40 CEPH reference families. This unbroken map spans 45 cM in males and 79 cM in females. The 14 markers include three genes, MSR, LPL, and NEFL, and one anonymous DNA segment that were previously assigned to chromosome 8. The other 10 marker had been isolated from a chromosome 8-specific cosmid library and physically localized to chromosomal bands by fluorescence in situ hybridization. The order of loci determined by genetic linkage was consistent with their physical locations. This map will facilitate efficient linkage studies of human genetic diseases that may be segregating on chromosome 8p and will provide anchor points for development of high-resolution maps for this chromosomal region.  相似文献   

6.
Interspecific mouse backcross analysis was used to generate a molecular genetic linkage map of mouse chromosome 10. The map locations of the Act-2, Ahi-1, Bcr, Braf, Cdc-2a, Col6a-1, Col6a-2, Cos-1, Esr, Fyn, Gli, Ifg, Igf-1, Myb, Pah, pgcha, Ros-1 and S100b loci were determined. These loci extend over 80% of the genetic length of the chromosome, providing molecular access to many regions of chromosome 10 for the first time. The locations of the genes mapped in this study extend the known regions of synteny between mouse chromosome 10 and human chromosomes 6, 10, 12 and 21, and reveal a novel homology segment between mouse chromosome 10 and human chromosome 22. Several loci may lie close to, or correspond to, known mutations. Preferential transmission of Mus spretus-derived alleles was observed for loci mapping to the central region of mouse chromosome 10.  相似文献   

7.
Microsatellite repeat loci can provide informative markers for genetic linkage. Currently, the human chromosome 2 genetic linkage map has very few highly polymorphic markers. Being such a large chromosome, it will require a large number of informative markers for the dense coverage desired to allow disease genes to be mapped quickly and accurately. Dinucleotide repeat loci from two anonymous chromosome 2 genomic DNA clones were sequenced so that oligonucleotide primers could be designed for amplifying each locus using the polymerase chain reaction (PCR). Five sets of PCR primers were also generated from nucleotide sequences in the GenBank Database of chromosome 2 genes containing dinucleotide repeats. In addition, one PCR primer pair was made that amplifies a restriction fragment length polymorphism on the TNP1 gene (Hoth and Engel, 1991). These markers were placed on the CEPH genetic linkage map by screening the CEPH reference DNA panel with each primer set, combining these data with those of other markers previously placed on the map, and analyzing the combined data set using CRI-MAP and LINKAGE. The microsatellite loci are highly informative markers and the TNP1 locus, as expected, is only moderately informative. A map was constructed with 38 ordered loci (odds 1000:1) spanning 296 cM (male) and 476 cM (female) of chromosome 2 compared with 306 cM (male) and 529 cM (female) for a previous map of 20 markers.  相似文献   

8.
The nervous (nr) mutant mouse displays two gross recessive traits: both an exaggeration of juvenile hyperactivity and a pronounced ataxia become apparent during the third and fourth postnatal weeks. Using an intersubspecific intercross, we have established a high-resolution map of a segment of mouse Chromosome 8 that places thenrlocus in a genomic segment defined byD8Rck1on the centromeric end andD8Mit3on the telomeric end. This map position places thenrlocus within the BALB/cGr congenic region of the C3HeB/FeJ-nrstrain, confirming the accuracy of our study. We used this map position to identify and evaluate three genes—ankyrin 1, cortexin, and farnesyltransferase—as candidates for thenrgene. These three genes were eliminated from consideration but allowed us to establish the conservation of synteny between the region containing thenrlocus and a segment of the short arm of human chromosome 8 (8p21–p11.2). Finally, the incomplete penetrance of thenrphenotype led us to perform a screen for modifier loci, and we present evidence that such a nervous modifier locus may exist on mouse Chromosome 5.  相似文献   

9.
A Linkage Map of Endogenous Murine Leukemia Proviruses   总被引:18,自引:4,他引:18       下载免费PDF全文
Thirty endogenous proviruses belonging to the modified polytropic (Mpmv) class of murine leukemia virus (MLV) were identified by proviral-cellular DNA junction fragment segregation in several sets of recombinant inbred mice. Twenty-six Mpmv loci were mapped to chromosomal regions by matching proviral strain distribution patterns to those of previously assigned genes. Like other endogenous nonecotropic MLVs, Mpmv loci were present on several chromosomes in all strains examined. We pooled recombinant inbred strain linkage data from 110 MLV loci and selected marker genes in order to construct a chromosomal linkage map. Every mouse chromosome was found to harbor at least one proviral insertion, and several regions contained multiple integrations. However, the overall distribution of the 110 mapped proviruses did not deviate significantly from a random distribution. Because of their polymorphism in inbred strains of mice, and the ability to score as many as 57 proviruses per strain using only three hybridization probes, the nonecotropic MLVs mapped in common strains of mice offer a significant advantage over older methods (e.g., biochemical or individual restriction fragment polymorphisms) as genetic markers. These endogenous insertion elements should also be useful for assessing strain purity, and for studying the relatedness of common and not-so-common inbred strains.  相似文献   

10.
除人Y染色体外,本文采用生物素标记的人全部整条染色体特异探针与白眉长臂猿(Hylobates hoolock)有丝分裂中期分裂相进行染色体原位杂交即染色体涂染法以研究人和白眉长臂猿染色体之间的同源性。在白眉长臂猿18对常染色体上检测出了与人22对常染色体同源的59对染色体片段,确定了人和白眉长臂猿之间的精度较高的染色体连锁群。结果表明:自人与白眉长臂猿的祖先分歧以来,大量的染色体间重排(至少发生了39次易位)和染色体内的重排导致了二者核型的差异。根据杂交结果绘制了首份人和白眉长臂猿比较染色体图谱,并结合已有的人和白掌长臂猿(Hylobates lar)(2n=44)和合趾长臂猿(Hylobates syndactylus)(2n=50)的比较染色体图谱对长臂猿属的染色体进化作了初步的探讨。  相似文献   

11.
A comprehensive genetic linkage map of the porcine genome has been developed by typing 128 genetic markers in a cross between the European Wild Boar and a domestic breed (Large White). The marker set includes 68 polymerase chain reaction-formatted microsatellites, 60 anchored reference markers informative for comparative mapping and 47 markers which have been physically assigned by in situ hybridization. Novel multipoint assignments are provided for 54 of the markers. The map covers about 1800 cM, and the average spacing between markers is 11 cM. We used the map data to estimate the genome size in pigs, thereby addressing the total recombination distance in a third mammalian species. A sex-average genome length of 1873 +/- 139 cM was obtained by comparing the recombinational and physical distances in defined regions of the genome. This is strikingly different from the length of the human genome (3800-4000 cM) and is more similar to the mouse estimate (1600 cM). The recombination rate in females was significantly higher than in males.  相似文献   

12.
A Genetic Linkage Map for Cattle   总被引:34,自引:4,他引:34       下载免费PDF全文
We report the most extensive physically anchored linkage map for cattle produced to date. Three-hundred thirteen genetic markers ordered in 30 linkage groups, anchored to 24 autosomal chromosomes (n = 29), the X and Y chromosomes, four unanchored syntenic groups and two unassigned linkage groups spanning 2464 cM of the bovine genome are summarized. The map also assigns 19 type I loci to specific chromosomes and/or syntenic groups and four cosmid clones containing informative microsatellites to chromosomes 13, 25 and 29 anchoring syntenic groups U11, U7 and U8, respectively. This map provides the skeletal framework prerequisite to development of a comprehensive genetic map for cattle and analysis of economic trait loci (ETL).  相似文献   

13.
A mouse radiation hybrid (RH) panel was used to make a framework map for the entire length of mouse chromosome (Chr) 13. Forty-one loci were typed, and while most used primers flanking simple sequence repeats, some genes were included. The most proximal and distal loci are D13Mit132 and D13Mit35. The estimate of map length for Chr 13 is 1328 cR. The map is compared with the same set of loci from the consensus map for Chr 13, which is 70 cM in length, and also with a recombinational map derived from an intraspecies cross typed for many of the same loci. The mouse RH panel gave good resolution for Chr 13 and at the distal end allowed separation of previously nonrecombinant markers that are present on a single 620-kb YAC clone. Data analysis was performed using the RH option for Map Manager QT. This framework RH map of Chr 13 is the second of a series of RH maps for mouse chromosomes.  相似文献   

14.
Inheritance of restriction fragment length polymorphisms associated with four anonymous DNA markers (D12Nyu1, 2, 3 and 4), the Fos proto-oncogene, the Mtv-9 viral integration site, and the alpha 1-antitrypsin (Aat-1) and immunoglobulin heavy chain (Igh) gene families in the mouse has been followed in a backcross experiment. A Bayesian multilocus map-building strategy yielded the map: centromere-D12Nyu2-10 cM-D12Nyu1-2 cM-D12Nyu3-15 cM-Fos-1 cM-D12Nyu4-2 cM-Mtv-9-8 cM-Aat-1-17 cM-Igh-C. A map constructed from male meiotic data was substantially shorter than one constructed from female meiotic data. Significant interference was observed for the linkage group. Two groups of markers studied in recombinant inbred strains of mice could be interpolated into the map: Es-25, D12Nyu10, D12Nyu7 and Apob form a cluster proximal to D12Nyu2, and Ly-18, Ah, and D12Nyu5 form a cluster between D12Nyu2 and D12Nyu1. These data establish an unambiguously ordered linkage group including Igh and Aat-1 that spans most of chromosome 12.  相似文献   

15.
We have developed a multiplex method of genome analysis, restriction landmark genomic scanning (RLGS) that has been used to construct genetic maps in mice. Restriction landmarks are end-labeled restriction fragments of genomic DNA that are separated by using high resolution, two-dimensional gel electrophoresis identifying as many as two thousand landmark loci in a single gel. Variation for several hundred of these loci has been identified between laboratory strains and between these strains and Mus spretus. The segregation of more than 1100 RLGS loci has been analyxed in recombinant inbred (RI) strains and in two separate interspecific genetic crosses. Genetic maps have been derived that link 1045 RLGS loci to reference loci on all of the autosomes and the X chromosome of the mouse genome. The RLGS method can be applied to genome analysis in many different organisms to identify genomic loci because it used end-labeling of restriction landmarks rather than probe hybridization. Different combinations of restriction enzymes yield different sets of RLGS loci providing expanded power for genetic mapping.  相似文献   

16.
17.
A gene cluster of three to five high-cysteine keratin-associated proteins (KAPs) has been identified on mouse Chromosome 10 (MMU10) in the region of conserved linkage with human chromosome 21 (HSA21). One of these genes,Krtap12-1,has been sequenced in its entirety and shown to be an intronless gene encoding a predicted 130-amino-acid protein.Krtap12-1is most closely related to two previously identified KAP4 genes, but variation in sequence and cysteine content suggests that it represents a new KAP family.Krtap12-1is expressed in the skin of a 3-day-old mouse. The corresponding region of HSA21, betweenITGB2(integrin β2) andPFKL(the liver isoform of phosphofructokinase), has proven refractory to cloning, and thus mapping of this region at high resolution has been problematic. Based on the KAP gene cluster position in mouse, evidence has been found for an orthologous human KAP cluster on HSA21q22.3, reinforcing the observation that comparative genomics can play an essential and practical role in determining mammalian genome organization.  相似文献   

18.
《Genomics》1995,29(3)
The BRCA1 gene is in large part responsible for hereditary human breast and ovarian cancer. Here we report the isolation of the murineBrca1homologue cDNA clones. In addition, we identified genomic P1 clones that contain most, if not all, of the mouseBrca1locus. DNA sequence analysis revealed that the mouse and human coding regions are 75% identical at the nucleotide level while the predicted amino acid identity is only 58%. A DNA sequence variant in theBrca1locus was identified and used to map this gene on a (Mus m. musculusCzech II × C57BL/KsJ)F1 × C57BL/KsJ intersubspecific backcross to distal mouse chromosome 11. The mapping of this gene to a region highly syntenic with human chromosome 17, coupled with Southern and Northern analyses, confirms that we isolated the murineBrca1homologue rather than a related RING finger gene. The isolation of the mouseBrca1homologue will facilitate the creation of mouse models for germline BRCA1 defects.  相似文献   

19.
The transgene-induced mutation 9257 and the spontaneous mutation twirler cause craniofacial and inner ear malformations and are located on mouse chromosome 18 near the ataxia locusax.To map the human homolog of 9257, a probe from the transgene insertion site was used to screen a human genomic library. Analysis of a cross-hybridizing human clone identified a 3-kb conserved sequence block that does not appear to contain protein coding sequence. Analysis of somatic cell hybrid panels assigned the human locus to 18q11. The polymorphic microsatellite markers D18S1001 and D18S1002 were isolated from the human locus and mapped by linkage analysis using the CEPH pedigrees. The 9257 locus maps close to the centromeres of human chromosome 18q and mouse chromosome 18 at the proximal end of a conserved linkage group. To evaluate the role of this locus in human craniofacial disorders, linkage to D18S1002 was tested in 11 families with autosomal dominant nonsyndromic cleft lip and palate and 3 families with autosomal dominant cleft palate only. Obligatory recombinants were observed in 8 of the families, and negative lod scores from the other families indicated that these disorders are not linked to the chromosome 18 loci.  相似文献   

20.
A 64-centiMorgan linkage map of mouse chromosome 9 was developed using cloned DNA markers and an interspecific backcross between Mus spretus and the C57BL/6J inbred strain. This map was compared to conventional genetic maps using six markers previously localized in laboratory mouse strains. These markers included thymus cell antigen-1, cytochrome P450-3, dilute, transferrin, cholecystokinin, and the G-protein alpha inhibitory subunit. No evidence was seen for segregation distortion, chromosome rearrangements, or altered genetic distances in the results from interspecific backcross mapping. Regional map locations were determined for four genes that were previously assigned to chromosome 9 using somatic cell hybrids. These genes were glutathione S-transferase Ya subunit (Gsta), the T3 gamma subunit, the low density lipoprotein receptor, and the Ets-1 oncogene. The map locations for these genes establish new regions of synteny between mouse chromosome 9 and human chromosomes 6, 11, and 19. In addition, the close linkage detected between the dilute and Gsta loci suggests that the Gsta locus may be part of the dilute/short ear complex, one of the most extensively studied genetic regions of the mouse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号