首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pituitary, gonadal and adrenal activity were compared in free-living, adult African buffalo bulls during the breeding and nonbreeding seasons. Frequent blood samples were collected for 2 h from anaesthetized bulls treated intravenously with saline, gonadotrophin-releasing hormone (GnRH, 200 micrograms), human chorionic gonadotrophin (hCG, 10,000 i.u.) or adrenocorticotrophic hormone (ACTH, 1.5 mg). Electroejaculates also were collected from anaesthetized bulls during the breeding and nonbreeding seasons. Pretreatment testosterone concentrations among bulls varied more during the breeding (0.17-23.0 ng/ml) than the nonbreeding (0.15-2.21 ng/ml) season. The variation within the breeding season was attributed to 8 of 25 bulls producing higher (P less than 0.05) serum testosterone (High-T; 16.28 +/- 2.03 ng/ml) and testicular LH receptor (1.53 +/- 0.22 fmol/mg testis) concentrations compared with their seasonal counterparts (Low-T; 0.95 +/- 0.26 ng/ml; 0.38 +/- 0.04 fmol/mg) or with all bulls during the nonbreeding season (0.90 +/- 0.27 ng/ml; 0.31 +/- 0.04 fmol/mg). The magnitude of GnRH- and hCG-induced increases in serum testosterone was similar (P greater than 0.05) between Low-T bulls and bulls during the nonbreeding season. In the High-T animals treated with GnRH or hCG, serum testosterone did not increase, suggesting that secretion was already maximal. Peak serum LH concentrations after GnRH were greater (P less than 0.05) in bulls during the nonbreeding than the breeding season; FSH responses were similar (P greater than 0.05). ACTH treatment did not increase serum cortisol concentrations above the 2-fold increase measured in bulls treated with saline, hCG and GnRH (P greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The effects of changes in pulse frequency of exogenously infused gonadotropin-releasing hormone (GnRH) were investigated in 6 adult surgically hypothalamo/pituitary-disconnected (HPD) gonadal-intact rams. Ten-minute sampling in 16 normal animals prior to HPD showed endogenous luteinizing hormone (LH) pulses occurring every 2.3 h with a mean pulse amplitude of 1.11 +/- 0.06 (SEM) ng/ml. Mean testosterone and follicle-stimulating hormone (FSH) concentrations were 3.0 +/- 0.14 ng/ml and 0.85 +/- 0.10 ng/ml, respectively. Before HPD, increasing single doses of GnRH (50-500 ng) elicited a dose-dependent rise of LH, 50 ng producing a response of similar amplitude to those of spontaneous LH pulses. The effects of varying the pulse frequency of a 100-ng GnRH dose weekly was investigated in 6 HPD animals; the pulse intervals explored were those at 1, 2, and 4 h. The pulsatile GnRH treatment was commenced 2-6 days after HPD when plasma testosterone concentrations were in the castrate range (less than 0.5 ng/ml) in all animals. Pulsatile LH and testosterone secretion was reestablished in all animals in the first 7 days by 2-h GnRH pulses, but the maximal pulse amplitudes of both hormones were only 50 and 62%, respectively, of endogenous pulses in the pre-HPD state. The plasma FSH pattern was nonpulsatile and FSH concentrations gradually increased in the first 7 days, although not to the pre-HPD range. Increasing GnRH pulse frequency from 2- to 1-hour immediately increased the LH baseline and pulse amplitude. As testosterone concentrations increased, the LH responses declined in a reciprocal fashion between Days 2 and 7. FSH concentration decreased gradually over the 7 days at the 1-h pulse frequency. Slowing the GnRH pulse to a 4-h frequency produced a progressive fall in testosterone concentrations, even though LH baselines were unchanged and LH pulse amplitudes increased transiently. FSH concentrations were unaltered during the 4-h regime. These results show that 1) the pulsatile pattern of LH and testosterone secretion in HPD rams can be reestablished by exogenous GnRH, 2) the magnitude of LH, FSH, and testosterone secretion were not fully restored to pre-HPD levels by the GnRH dose of 100 ng per pulse, and 3) changes in GnRH pulse frequency alone can influence both gonadotropin and testosterone secretion in the HPD model.  相似文献   

3.
Mature rams of Polled Dorset, Finnish Landrace, Rambouillet and Suffolk breeding were maintained in a temperature-controlled environment and exposed to two consecutive cycles of short (8L:16D) followed by long (16L:8D) days. Serum hormone concentrations were determined in weekly samples and in 24-h profiles characterized at the end of each lighting schedule (i.e., 12, 24, 36 and 48 weeks). In all four breeds, the pituitary-testicular axis was more active during short days as compared with long days and the magnitudes of changes in serum luteinizing hormone (LH), follicle-stimulating hormone (FSH) and testosterone concentrations were greater for the two most seasonal breeds, Finnish Landrace and Suffolks. In comparison to other breeds, Finnish Landrace rams had significantly (P less than 0.05) higher mean LH levels, showed the greatest number of LH peaks/24 h, and had the highest mean testosterone levels at the end of both periods of short days, while Rambouillet rams had significantly (P less than 0.05) lower testosterone. Rambouillets also showed the smallest changes in pulsatile LH and testosterone secretion and displayed the least number of LH peaks/24 h following short days. Serum FSH levels were significantly (P less than 0.05) higher in Finnish Landrace and Suffolk rams than in Polled Dorsets and Rambouillets after 12 weeks of short days. Breed differences in serum LH, FSH and testosterone were not apparent following long days. Prolactin levels in Rambouillet rams were significantly (P less than 0.05) lower than in the other breeds following both periods of long days. These results indicate that breed differences exist in mature rams with regard to hormone secretory profiles. Breed differences in serum gonadotropin and testosterone are only apparent during short days when the hypothalamo-pituitary-testicular axis in rams is considered most active. Likewise, breed differences in prolactin are noticeable only during long days when secretion of this hormone is enhanced. Breed differences in LH, FSH and testosterone secretion in rams during short days might be related to seasonality of mating and/or fecundity of breed types.  相似文献   

4.
Mohamed FH  Cox JE 《Theriogenology》1988,29(4):859-865
The administration of 0.5 mg of long-acting adrenocorticotrophic hormone (ACTH, Synacthen-Depot) twice daily for 5.5 d to four rams outside the breeding season caused marked rises in plasma cortisol without any evidence of adrenal depletion. This treatment also caused marked rises in basal plasma follicle stimulating hormone (FSH) concentrations which remained high even after cessation of treatment. Plasma FSH responses to 5 ug of gonadotrophin releasing hormone (GnRH) were consistently observed and ACTH treatment increased the FSH response to GnRH. In contrast, spontaneous fluctuations in the plasma luteinizing hormone (LH) and testosterone concentrations were abolished by ACTH treatment. The quantity of testosterone released after GnRH (estimated by the maximum values reached and by the area under the response curve) was also suppressed while that of LH was only slightly lower. A comparison of the results of this experiment with those obtained in rams during the breeding season showed that the effects of ACTH on LH and testosterone were more marked during the breeding season. In contrast, the effect of ACTH on FSH is to increase the latter during the nonbreeding season, whereas no effect was observed during the breeding season.  相似文献   

5.
An experiment was conducted with four adult, sexually inexperienced Finnish Landrace rams during the ovine nonbreeding (July) and breeding (October) seasons to determine the influence of components of the rams' mating behavior on the secretion of luteinizing hormone (LH), follicle-stimulating hormone (FSH), prolactin (PRL), and testosterone. On four occasions in both seasons, blood was collected by jugular venipuncture at 20-min intervals during an 8-hr period while rams were (1) separated from, (2) observing with minimal direct physical contact, (3) mounting without intromission, or (4) mating estrous-induced ewes. In comparison with separation periods, mating activity in July was associated with increased mean LH (P less than 0.05) and testosterone levels and number of LH peaks, while in October, obvious increases were detected in only baseline LH levels (P less than 0.05). Circulating LH and testosterone levels either did not change (July) or were depressed (October) during the mounting and observation periods. FSH levels generally remained unaffected by engagement in the various sexual activities. Although a clear relationship between type of sexual activity and mean PRL levels was not observed in July, activities which appeared to involve the most physical exertion tended to be associated with much higher circulating PRL levels in October. These data suggest (1) the act of ejaculation is important in the induction of increases in LH and testosterone secretion that occur in rams in response to mating activity during the nonbreeding season and (2) excessively stressful sexual activities during the breeding season may alter the pattern of secretion of some reproductive hormones.  相似文献   

6.
Enkephalin appears to exert an inhibitory action on LH secretion, but whether testosterone regulates enkephalin gene expression is unknown. This study tested the hypothesis that testosterone and/or season modulate preproenkephalin mRNA expression in specific areas of the hypothalamus. Romney Marsh rams were castrated (wethers) either during the breeding season or nonbreeding season and received intramuscular injections of either oil or testosterone propionate (five/group). Blood samples were taken for the assay of plasma LH and testosterone. Preproenkephalin mRNA expression was quantified in hypothalamic sections by in situ hybridization. Mean plasma LH concentrations were reduced and the interpulse interval for LH pulses was greater in testosterone propionate-treated wethers compared with oil-treated wethers, with no change in LH pulse amplitude. Testosterone propionate treatment reduced proenkephalin expression in the diagonal band of Broca, the caudal preoptic area, and the bed nucleus of the stria terminalis. Seasonal differences in proenkephalin expression were observed in the bed nucleus of the stria terminalis, lateral septum, periventricular nucleus, and paraventricular nucleus. No differences were observed between treatments in seven other regions examined. We conclude that testosterone and season regulate proenkephalin mRNA levels in the preoptic area/hypothalamus in the ram in a region-specific manner.  相似文献   

7.
The response of rams and ewes of three breeds to artificial photoperiod   总被引:1,自引:0,他引:1  
Rams and ewes of the Romney Marsh (N = 6), Dorset Horn (N = 8) and Australian Merino (N = 8) breeds were subjected to 4 successive periods of alternating 6 h light/18 h dark ('short' days) and 18 h light/6 h dark ('long' days) preceded by 16 weeks of 12 h light/12 h dark. The initial period was of 32 weeks (16 weeks 'short' days; 16 weeks 'long' days) and the next 3 were of 24 weeks (12 weeks 'short' days; 12 weeks 'long' days). Rams of all breeds showed a cyclic pattern of growth and regression of testes associated with plasma testosterone concentration, influenced by the change in light regimen 15-19 weeks previously. Sexual behaviour was also cyclic but lagged by some 6-7 weeks. The changes were greatest in the Romneys and least in the Merinos in which a higher degree of sexual activity was evident even when the testes were regressed (P less than 0.001). This was the major breed difference. All ewes of the Romney and Dorset breeds showed marked seasonality related to the imposed light regimen, whereas only 1 of the 4 Merinos did so. The mean peak of ovarian activity in the former 2 breeds coincided with that of maximum sexual activity of rams housed with them; that is, some 6 weeks after maximum scrotal volume. The rams and ewes were subjected to serial blood sampling episodes for plasma LH and testosterone and tested for plasma LH release following GnRH administration. There was little variation between breeds in LH concentration. Testosterone concentration varied greatly in the ram, highest levels associated with the developed phase of the testes and with maximum LH pulse frequency. The LH response to GnRH changed with respect to the state of the gonads. Maximal responses were observed in the developing phase of testicular growth although this variation was greater in the Romney and Dorsets than in the Merinos (P less than 0.001). In the ewes, maximal responses were seen in the follicular phase (P less than 0.001), with no difference between the luteal and acyclic phases. There were no breed differences. Plasma pooled from the serial blood sampling episodes was assayed for prolactin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Two experiments were conducted in July with adult Dorset x Leicester x Suffolk rams to determine whether increases of 150 or 300% in estradiol (E2) concentration in peripheral blood (from 6.3 +/- 0.8 pg/mL in control rams) would affect testosterone secretion directly as well as indirectly via the hypothalamic-pituitary axis. After 4 days of estradiol treatment (experiment 1) provided with subcutaneous polydimethylsiloxane implants filled with crystalline estradiol, luteinizing hormone (LH) and testosterone secretions were reduced by 50% (p < 0.05) in both groups of rams because of subtle decreases in pulse frequencies and amplitudes. Estradiol treatments were also associated with decreases in mean follicle-stimulating hormone (FSH) concentration (30-50% in both groups, p < 0.05) and increases in mean prolactin concentration (35% in low-E2 group; 105% in high-E2 group, p < 0.05), but testicular responsiveness to an LH challenge (single intravenous dose, 10 micrograms NIH-LH-S25) remained normal. When along with estradiol treatment, 10-micrograms doses LH were given every 80 min (experiment 2), testosterone secretion increased by 265% (p < 0.05) in both treated and control rams. Relative to day -1, secretion on day 4 was characterized by higher (p < 0.05) pulse frequencies and baseline concentrations and lower (p < 0.05) pulse amplitudes; values for all characteristics were similar to those for Dorset x Leicester x Suffolk rams in the breeding season. Interestingly, the decreases in mean FSH concentration brought about by estradiol and (or) LH treatments were not any greater than in experiment 1, and estradiol's ability to elevate mean prolactin concentration was blocked completely.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Blood, testicular biopsies and electroejaculates were collected from adult male impala, free-ranging in the Kruger National Park (Republic of South Africa), during the breeding (rut; April-May) and nonbreeding (September-October) seasons. Blood samples were collected at 5-min intervals for 120 min from anaesthetized males (n = 7 impala/group) treated intravenously with saline, gonadotrophin-releasing hormone (GnRH: 1 microgram/kg body weight) or human chorionic gonadotrophin (hCG: 10 or 30 iu/kg). Semen was collected from six more animals during the breeding season and 12 animals during the nonbreeding season using a standardized electroejaculation protocol. Ejaculates obtained during the nonbreeding season were of inferior quality to those collected during the breeding season, and were characterized by lower sperm concentrations, poorer sperm motility and more morphologically abnormal sperm forms. Within season, there were no differences in testosterone secretion between the two hCG doses, and these responses were similar to those observed after GnRH, but during the rut, testosterone secretion stimulated by both GnRH and hCG was approximately nine times greater than during the nonbreeding season. This seasonal increase in testosterone production was associated with a doubling in testicular volume and concentrations of luteinizing hormone (LH) receptors. Although concentrations of testicular follicle-stimulating hormone (FSH) receptors were similar between seasons, receptor content increased during rut as a result of increased testicular volume. In contrast to testosterone secretion, basal LH and FSH secretions were unaffected by season and GnRH-induced gonadotrophin secretion was reduced during rut.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Groups of Romney ewes were joined with either Dorset or Romney rams on December 24 1975 and further groups joined on January 30 1976. A control group was subjected to laparotomy and joined with Romney rams after first ovulation was observed. Matings were recorded daily in all groups. At weekly intervals rams were separated from ewes and bled every 10 minutes for one hour. The plasma was radioimmunoassayed for testosterone.Ewes run with rams showed their first estrus of the breeding season earlier than controls and their onset was more synchronised. The time of ram joining did not affect the time of first estrus but ewes joined with Dorsets showed their first estrus earlier than those with Romneys. Romney rams had significantly higher mean testosterone levels than Dorsets on 5 of the 11 weekly bleedings throughout summer. The testosterone level decreased significantly over the seven consecutive bleedings of the hourly sampling period in five weeks and a significant interaction between breed of ram and testosterone level of consecutive bleedings was observed in three weeks.The results show that testosterone levels in Dorset and Romney rams during summer do not reflect the effectiveness of the breeds in inducing the early onset of estrus in Romney ewes.  相似文献   

11.
A sustained volley of high-frequency pulses of GnRH secretion is a fundamental step in the sequence of neuroendocrine events leading to ovulation during the breeding season of sheep. In the present study, the pattern of GnRH secretion into pituitary portal blood was examined in ewes during both the breeding and anestrous seasons, with a focus on determining whether the absence of ovulation during the nonbreeding season is associated with the lack of a sustained increase in pulsatile GnRH release. During the breeding season, separate groups (n = 5) of ovary-intact ewes were sampled during the midluteal phase of the estrous cycle and following the withdrawal of progesterone (removal of progesterone implants) to synchronize onset of the follicular phase. During the nonbreeding season, another two groups (n = 5) were sampled either in the absence of hormonal treatments or following withdrawal of progesterone. Pituitary portal and jugular blood for measurement of GnRH and LH, respectively, were sampled every 10 min for 6 h during the breeding season or for 12 h in anestrus. During the breeding season, mean frequency of episodic GnRH release was 1.4 pulses/6 h in luteal-phase ewes; frequency increased to 7.8 pulses/6 h during the follicular phase (following progesterone withdrawal). In marked contrast, GnRH pulse frequency was low (mean less than 1 pulse/6 h) in both groups of anestrous ewes (untreated and following progesterone withdrawal), but GnRH pulse amplitude exceeded that in both luteal and follicular phases of the estrous cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Changes in the dynamics of luteinizing hormone (LH) release in the adult ram following immunoneutralization of endogenous estradiol were investigated. Castrate rams were actively immunized against estradiol-6-bovine serum albumin for 7 months and then their patterns of episodic LH release and LH response to multiple injections of gonadotropin-releasing hormone (GnRH, two 5-micrograms doses given iv 2 h apart) were assessed (April). In comparison with control rams immunized against rabbit gamma globulin, estradiol-immunized rams (antibody titre approximately 1:5000) exhibited more frequent LH releases (11.7 +/- 0.3 vs. 9.3 +/- 0.8 pulses/8 h, P less than 0.05) and a greater LH response to the first GnRH injection (peak delta value 190 +/- 8 vs. 130 +/- 25 ng/mL, P less than 0.01). Estradiol antiserum collected from the castrate rams was used in the passive immunization of intact rams (antibody titre approximately 1:200) for 1 month (beginning mid-July). Although episodic LH release was always similar for control and immunized rams, testosterone levels in the latter group increased approximately 150%. In contrast with the castrate ram response, GnRH treatment (two 5-micrograms doses given iv 80 min apart) produced a "self-priming" effect on LH release in the intact rams, an effect that was dampened with estradiol immunoneutralization. Consequently, peak 2:peak 1 ratios for delta value and 80-min mean incremental increase were much smaller (P less than 0.01) for the immunized rams (approximately 2:1 vs. 4:1 for the control rams).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
No gene-specific differences were found with respect to LH or testosterone pulsatile secretion (over 12 h), or in 12 hourly mean FSH concentrations in adult Booroola FF and ++ rams. Also, no differences between genotypes in the LH response to an injection of testosterone propionate, the FSH response to an infusion of bovine follicular fluid, or the testosterone response to injections of PMSG were noted. However, during the phase of seasonal testicular development, mean testosterone pulse amplitude (over 12 h) and the FSH response to 25 micrograms GnRH were higher in FF than in ++ rams (P less than 0.05); there were also significant effects of sire (P less than 0.05 in FF genotype only) and litter size (P less than 0.05) on testosterone pulse amplitude and GnRH-stimulated FSH release, respectively. During the breeding season, mean LH, but not FSH, concentrations were higher in FF than in ++ rams, after an injection of 0.5 micrograms GnRH; LH release was not affected by sire or litter size (P greater than 0.05). Long-term studies revealed that the FF rams were born in significantly larger litters, they weighed significantly less than ++ rams (P less than 0.05), and that bodyweight was significantly correlated (P less than 0.05) with litter size. There were no differences in testis size, and testis size was not significantly correlated with bodyweight. There was a strong tendency (P = 0.056) for overall mean FSH concentrations, measured weekly for 9 months, to be highest more often in FF than in ++ rams.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The objective was to compare the relative response between rams and bulls in characteristics of LH, FSH and testosterone (T) secretion, during and after long-term treatment with GnRH analogs. Animals were treated with GnRH agonist, GnRH antagonist, or vehicle (Control) for 28 days. Serial blood samples were collected on day 21 of treatment, and at several intervals after treatment. Injections of natural sequence GnRH were used to evaluate the capacity of the pituitary to release gonadotropins during and after treatment. Treatment with GnRH agonist increased basal LH and T concentrations in both rams and bulls, with a greater relative increase in bulls. Endogenous LH pulses and LH release after administration of GnRH were suppressed during treatment with GnRH agonist. Treatment with GnRH antagonist decreased mean hormone concentrations, LH and T pulse frequency, and the release of LH and T after exogenous GnRH, with greater relative effects in bulls. Rams previously treated with antagonist had a greater release of LH after administration of GnRH compared with control rams, while rams previously treated with agonist showed a reduced LH response. Bulls previously treated with agonist had reduced FSH concentrations and LH pulse amplitudes compared with control bulls while bulls previously treated with antagonist had greater T concentrations and pulse frequency. The present study was the first direct comparison between domestic species of the response in males to treatment with GnRH analogs. The findings demonstrated that differences do occur between rams and bulls in LH, FSH and testosterone secretion during and after treatment. Also, the consequences of treatment with either GnRH analog can persist for a considerable time after discontinuation of treatment.  相似文献   

15.
Stress responses are thought to act within the hypothalamopituitary unit to impair the reproductive system, and the sites of action may differ between sexes. The effect of isolation and restraint stress on pituitary responsiveness to GnRH in sheep was investigated, with emphasis on possible sex differences. Experiments were conducted during the breeding season and the nonbreeding season. In both experiments, 125 ng of GnRH was injected i.v. every 2 h into hypothalamopituitary disconnected, gonadectomized rams and ewes on 3 experimental days, with each day divided into two periods. During the second period on Day 2, isolation and restraint stress was imposed for 5.5 h. Plasma concentrations of LH and cortisol were measured in samples of blood collected from the jugular vein. In the second experiment (nonbreeding season), plasma concentrations of epinephrine, norepinephrine, 3,4-dihydroxyphenylalanine, and 3,4-dihydroxyphenylglycol were also measured. In both experiments, there was no effect of isolation and restraint stress on plasma concentrations of cortisol in either sex. During the breeding season, there was no effect of isolation and restraint stress on plasma concentrations of LH in either sex. During the nonbreeding season, the amplitude of the first LH pulse after the commencement of stress was significantly reduced (P < 0.05) in rams and ewes. In the second experiment, during stress there was a significant increase (P < 0.05) in plasma concentrations of epinephrine in rams and ewes and significantly higher (P < 0.05) basal concentrations of norepinephrine in ewes than in rams. These results suggest that in sheep stress reduces responsiveness of the pituitary gland to exogenous GnRH during the nonbreeding season but not during the breeding season, possibly because of mediators of the stress response other than those of the hypothalamus-pituitary-adrenal gland axis.  相似文献   

16.
The relationships between testis size, hormone secretion and sperm production were studied during the spring (December) and autumn (May) in rams of two breeds with different breeding seasons and body weights (Corriedale and Australian Merino) maintained on native pastures and under natural photoperiods in Uruguay. Blood samples were collected at 20-min intervals during a 260-360-min period in 13 rams (four Corriedale, nine Australian Merino) during the late spring and autumn. Rams were weighed and testis size was estimated by orchimetry at each time period. Sperm production was estimated during a 2-week period, 2 months before blood collection and during each week following every blood collection. There was no relationship between testicular size and sperm production measured at the same time, nor between live weight and sperm production. In contrast, testicular volume during the late spring was correlated with sperm production in the autumn (r = 0.65; P = 0.02). The autumn serum LH was higher in Corriedale than in Merino rams. LH pulsatility was unaffected by season, but LH pulse frequency tended to be higher in Corriedale than in Merino rams, particularly in the late spring (2.37 versus 1.56 pulses/6 h; P = 0.08). Serum testosterone concentration was similar in both breeds and seasons. FSH levels were higher in the late spring than in the autumn in both breeds (Corriedale: 2.83 +/- 0.48 versus 2.17 +/- 0.24 ng x mL(-1); Merino: 2.23 +/- 0.24 versus 1.88 +/- 0.17 ng x mL(-1)). FSH and testosterone concentrations during the late spring were positively correlated with autumn sperm production (P = 0.07 and P = 0.03, respectively). In conclusion, the present experiment suggests that LH secretion is not a good parameter for the prediction of sperm production. In contrast, in our conditions (breeds and native pastures) testicular size and testosterone or FSH concentrations from the late spring may be used to predict sperm production in the autumn.  相似文献   

17.
Pituitary and testicular endocrine responses to exogenous gonadotropin releasing hormone (GnRH) and luteinizing hormone (LH), respectively, were assessed for adult rams in an investigation of the regulation of seasonal changes in the patterns of episodic LH and testosterone secretion. Concurrent variations in testis size and in circulating levels of follicle stimulating hormone (FSH) and prolactin (PRL) were also examined. On 10 occasions throughout the year, serum hormone levels were assessed over 6- to 8-h periods during which time rams were left untreated (day 1) or were injected (iv) with single doses of either 10 micrograms synthetic GnRH (day 2) or 30 micrograms NIH-LH-S18 (day 3); blood samples were collected from the jugular vein at 10- to 20-min intervals. Testicular redevelopment during the summer, as indicated by increasing testis diameter measurements, was associated with increases in mean FSH level and was preceded by a springtime rise in mean PRL level; "spontaneously" occurring LH pulses and those produced in response to GnRH treatment were relatively large during this period. Increases in the magnitude of testosterone elevations in response to both endogenously and exogenously produced LH pulses occurred in August. Mean testosterone levels were elevated fourfold in the fall as a consequence of relatively frequent and small LH pulses stimulating a more responsive testis to produce more frequent and larger testosterone elevations; endogenous LH pulses, however, did not appear to stimulate the testes maximally at this time.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The physiological responses of luteinizing hormone, testosterone and cortisol in sexually experienced Ile de France rams to the introduction of estrous females were studied during the nonbreeding season. Blood sampling were collected from males for 7 h at 20-min intervals, starting 3 h before stimulation by estrous females. The differences in hormonal secretions were tested by comparisons between pretreatment and treatment Periods in 45 stimulated rams. Comparisons were conducted between rams that had increased LH pulse frequency and those that did not, between rams that ejaculated and those that did not, and between rams that were in direct physical contact and those that were kept at a distance of 30 cm from estrous females. Twenty-five rams (55% of the total) showed significant increases in LH pulse frequency (range, 0.80 to 4.00 peaks/ram/6 h, P<0.05), in basal and mean LH levels (1.5- and 2.5-fold, respectively), and in mean testosterone levels (3.5-fold). More frequent LH pulses had been found during the pretreatment period in 20 rams without increased LH pulse frequency. Eight ejaculating rams showed higher cortisol and mean, basal, and peak LH amplitude levels. Deprivation of physical contact with estrous females was associated with an absence of endocrine response. These results suggest that olfactory and/or tactile cues may be involved in the female effect on hormone levels.  相似文献   

19.
Six Booroola and six Merino rams were fed either a diet which maintained constant live weight or the same diet plus a supplement of high protein lupin grain for 15 weeks, and changes in live weight and testicular volume were measured. Serial blood samples taken for 24 h before the start and 9 weeks after the treatment began were assayed for plasma LH and testosterone and the resulting profiles were analysed for pulses of both hormones. Five weeks later, the animals were given two intravenous injections of 1 μg gonadotrophin-releasing hormone (GnRH) 1 h apart in order to measure pituitary gland responsiveness. A further week later the animals were injected intravenously with 500 μg human chorionic gonadotrophin (hCG) and the levels of testosterone were measured in samples taken after 1.5 h to estimate the testicular responsiveness.The nutritional supplement stimulated testicular growth in both genotypes, so that at the end of the treatment period the testes had increased significantly (P<0.01) in volume by 66% in the Merinos and by 63% in the Booroolas. The live weights also increased, but by relatively less (34% and 43% for supplemented Merinos and Booroolas). The rates of increase in both testicular size and live weight were similar for the two breeds. There were no significant effects of diet on the tonic secretion of LH or testosterone, or on responsiveness to GnRH or hCG.The intervals between LH pulses were significantly shorter (P<0.05) in Booroola rams than in Merino rams both before and after treatment (5.8 h vs. 11.6 h before treatment). The breed differences in LH secretion were mimicked by the testosterone profiles. In the Booroolas, five of the twelve LH profiles contained groups consisting of two to four individually identifiable pulses, each of which elicited a separate pulse of testosterone. A pulse group was observed in only one profile from the Merinos (P=0.06). There were no significant differences between the genotypes in any other parameter of LH or testosterone secretion, or in their responsiveness to GnRH or hCG.It was concluded that (i) nutritional supplements will stimulate testicular growth in both Merino rams and Booroola rams; (ii) the increase in testicular size does not appear to involve an increase in the responsiveness of the testis to LH; and (iii) there are both qualitative and quantitative differences between the genotypes in the patterns of secretion of LH and testosterone which may be associated with the differences in their fecundity.  相似文献   

20.
The effects of season and estradiol on the secretion of gonadotropic hormones in adult Dorset X Leicester X Suffolk rams were studied. Control groups of intact and castrate rams, and castrate rams given estradiol replacement (approximately 11.5 pg/mL) via polydimethylsiloxane capsules (sc) were assessed for 1 year, beginning in August. Mean concentrations of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and prolactin (PRL) were determined every 2 weeks for all three groups of rams and measurements of testosterone concentration and scrotal circumference were taken on the intact rams. Pulsatile LH release and the LH response to a 2-micrograms dose (iv) of gonadotropin-releasing hormone (GnRH) were assessed for all rams when the testes of intact rams were redeveloped (late October), regressed (early February, late April), and redeveloping (early August). Season directly affected LH-pulse amplitude, which increased only in the control castrate rams between February and April. In October, LH-pulse frequency was the same in both groups of castrate rams, while in April, frequency in the estradiol-treated castrate rams was suppressed to intact ram values. Pituitary responsiveness to exogenous GnRH did not change throughout the year in either of the castrate groups, but along with LH-pulse amplitude, it was increased in August in the intact rams. Although FSH secretion was 14-fold higher in the control castrate rams than in the intact rams, seasonal-directional changes in mean concentration were similar. FSH concentration in the estradiol-treated castrate rams was stable throughout the year. PRL secretion never differed between the control castrate and intact rams but was enhanced in the estradiol-treated castrate rams, particularly during long days.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号