首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phenological synchrony between the emergence of overwintering herbivorous insects and the budding of host plants is considered a crucial factor in the population dynamics of herbivores. However, the mechanisms driving the interactions between the host plant, herbivores, and their pathogens are often obscure. In the current study, an artificially induced phenological asynchrony was used to investigate how the asynchrony between silver birch Betula pendula and gypsy moth Lymantria dispar affects the immunity of the insect to bacteria, its susceptibility to the entomopathogenic bacteria Bacillus thuringiensis, and the diversity in its midgut microbiota. The lysozyme‐like activity in both the midgut and hemolymph plasma and the nonspecific esterase activity and antimicrobial peptide gene expression in the midgut were studied in both noninfected and B. thuringiensis‐infected larvae. Our results provide the first evidence that phenologically asynchronous larvae are less susceptible to B. thuringiensis infection than phenologically synchronous larvae, and our results show that these effects are related to the high basic levels and B. thuringiensis‐induced levels of lysozyme‐like activities. Moreover, a 16S rRNA analysis revealed that dramatic decreases in the diversity of the larval gut bacterial consortia occurred under the effect of asynchrony. Larvae infected with B. thuringiensis presented decreased microbiota diversity if the larvae were reared synchronously with the host plant but not if they were reared asynchronously. Our study demonstrates the significant effect of phenological asynchrony on innate immunity‐mediated interactions between herbivores and entomopathogenic bacteria and highlights the role of nonpathogenic gut bacteria in these interactions.  相似文献   

2.
Bacillus thuringiensis is an entomopathogenic bacterium that can kill a variety of pests, but seldom causes epizootics because it replicates poorly in insects. We have tested lepidopteran-toxic B. thuringiensis strains with diverse substrate utilization profiles for the ability to survive repeated passages through larvae of the gypsy moth, Lymantria dispar, without intervening growth on artificial media. These experiments have revealed a remarkable correlation between the production of urease by the bacteria and its ability to survive repeated passages through larvae. Of 26 urease-positive strains tested, 23 were capable of surviving five passages through gypsy moth larvae. In contrast, none of the 24 urease-negative strains tested survived to the 4th passage, with only three strains surviving to the 3rd passage. Selection of B. thuringiensis strains with phenotypic traits favoring replication in the environment, such as urease production, may improve their efficacy as biological control agents.  相似文献   

3.
The use of insect pathogens is a viable alternative for insect control because of their relative specificity and lower environmental impact. The search for wild strains against dipterans could have an impact on mosquito control programs. We have made an extensive screening of soil in western Cuba to find bacteria with larvicidal activity against mosquitoes. A total of 150 soil samples were collected and isolates were identifying using the API 50 CHB gallery. Phenotypic characteristics were analyzed by hierarchical ascending classification. Quantitative bioassays were conducted under laboratory conditions following the World Health Organization protocol in order to ascertain the toxicity and efficacy of isolates. The protein profiles of the crystal components were determined by SDS‐PAGE. Eight hundred and eighty‐one bacterial isolates were obtained, and 13 isolates with entomopathogenic activity were isolated from nine samples. Nine isolates displayed higher entomopathogenic activity against both Cx. quinquefasciatus and Ae. aegypti compared with the reference strain 266/2. All toxic isolates showed higher biological potency than the 266/2 strain. These isolates with high entomopathogenic activity displayed a protein pattern similar to the B. thuringiensis var. israelensis IPS‐82 and 266/2 strains. These results are a valuable tool for the control of Diptera of medical importance.  相似文献   

4.
The potential use of Bacillus thuringiensis UM96 as a biocontrol agent for the grey mould phytopathogen Botrytis cinerea was evaluated. In order to dissect the mode of action of this UM96 strain, we also examined the role of lytic activities in the antagonism. First, B. thuringiensis UM96 was characterised based on 16S rRNA and gyrA gene sequencing and phenotypic traits. Petri dish biocontrol assays demonstrated that when strain UM96 was inoculated 24 h previous to B. cinerea, the mycelial growth was inhibited by up to 70%. Test for lytic enzymes activities of cellulase and glucanase was negative. Chitinase was the only positive enzyme activity in two different culture media. PCR detection of the chiB gene was also positive. Chitinolytic supernatants, obtained from rich and minimal media supplemented with colloidal chitin as the sole carbon source, from B. thuringiensis UM96 showed a strong inhibitory effect of B. cinerea that was not observed with heat-treated supernatant. Interestingly, when the supernatant was supplemented with 100 µM allosamidin, a chitinase specific inhibitor, the antagonistic activity was suppressed significantly. A lack of chitinase activity was also observed in allosamidin-treated supernatants. Our pathogenic B. cinerea strain also exhibited susceptibility to pure Streptomyces griseus chitinase. Finally, the chitinolytic strain B. thuringiensis UM96 was able to protect Medicago truncatula plants in vitro from B. cinerea infection and significantly reduced the necrotic zones and root browning of the plants. Together, these results suggest a potential use of B. thuringiensis UM96 for the biological control of B. cinerea and a role for chitinases during the antagonism displayed.  相似文献   

5.
The aim of this study was to evaluate the larvicidal activity, and sub lethal effects of entomopathogenic bacteria Brevibacillus laterosporus, Bacillus thuringiensis var. israelensis, B. thuringiensis var. kurstaki, and a commercial formulation of Bacillus sphaericus on Musca domestica. Bacterial suspensions were prepared in different concentrations and added to the diet of newly-hatched larvae which were monitored until the adult stage. The larvae were susceptible to the B. laterosporus, B. thuringiensis var. israelensis, and B. thuringiensis var. kurstaki bacteria in varied concentration levels. These bacteria have larvicidal and sub lethal effects on the development of flies, reducing both adult size, and impairing the reproductive performance of the species.  相似文献   

6.
Abstract

Bacillus thuringiensis is a Gram positive bacterium that produces an insecticidal crystalline protein making it one of the most important biocontrol agents for pest management. Bioinsecticides based on B. thuringiensis were produced by fermentation processes in liquid media. Cultural conditions controlling proteolytic activities in different culture media were investigated to study the possible correlations between B. thuringiensis production of proteases and delta-endotoxins in a low-cost complex medium. Aeration appeared to play an important role in delta-endotoxin production. The correlation between proteolytic activity and aeration does not seem to be reliable. A negative correlation (correlation coefficient =? 0.774) was established between protease activity and delta-endotoxin production. In order to prove this correlation, protease hypo-producing and overproducing mutants were isolated through random mutagenesis of two wild strains, BUPM13 and BUPM5, by using nitrous acid. Interestingly, delta-endotoxin production of BUPM13-1, BUPM13-2 and BUPM13-3 was markedly improved when compared to the wild strain BUPM 13, reaching 2.1-fold, 3.69-fold and 8.13-fold, respectively. Maximal protease activity (540-2468 UI) obtained by BUPM5-1 and BUPM5-2 was 2.34-fold and 10.7-fold, respectively, more than that obtained by the wild strain BUPM5 with a drastic decrease of their delta-endotoxin production. Study of delta-endotoxin production by the selected mutants confirmed that insecticidal crystal protein stability in the culture strongly depends on the level of endogenous protease activity. This was also confirmed by bioassays measuring the LC50 using larvae of Ephestia kuehniella. Determining protease activity in fermentation culture could be useful in indirectly predicting the potency of B. thuringiensis strains with high insecticidal activities. This would allow low-cost selection of overproducing wild isolates or mutants in the screening programmes for the reduction of production cost, which is important from a practical point of view.  相似文献   

7.
The aim of this study was to assess the diagnostic properties of the two selective plating media and a chromogenic medium for identification of Bacillus cereus. The 324 isolates were B. cereus (37%), Bacillus weihenstephanensis (45%) or Bacillus thuringiensis (18%), as identified by a new combination of techniques. All isolates were growing on mannitol–egg yolk–polymyxin agar (MYP), and they did not form acid from mannitol. However, a significant lower number of B. thuringiensis isolates did not show lecithinase activity. All isolates were also growing on polymyxin–egg yolk–mannitol–bromothymol blue agar (PEMBA); however, 11% isolates indicated that they did produce acid from mannitol, and 15% isolates did not show any lecithinase activity. Five of the isolates did not grow at all on the chromogenic agar, and 14 of the growing isolates were β-glucosidase negative. It is concluded that the two recommended selective plating media MYP and PEMBA for detection of B. cereus group bacteria both have their limitations for identification of some B. cereus, B. weihenstephanensis or B. thuringiensis. However, MYP is preferable compared to PEMBA. The chromogenic medium has its own advantages and limitations, and some of the limitations seem to be solved by incubation at 30°C instead of the recommended 37°C.  相似文献   

8.
Abstract The role of tannic acid in increasing effectiveness of Bacillus thuringiensis var. kurstaki (HD-1) against Helicover pa armigera was examined in bioassays on semisynthetic diet. Concentrations of B. thuringiensis (0 %, 0.005 %, 0. 01 %, 0.015 %, 0.02 %, 0.025 % wet weight) were incorporated into the diet containing 0. 025% tannic acid and tannic acid-free diet. LD50 of B. thuringiensis with tannic acid were 0.006% but that without tannic acid was 0.011%. Both B. thuringiensis and tannic acid retarded growth of H. armigera significantly, but there was no synergetic effect between them. Choice tests showed that B, thuringiensis deterred feeding of the fifth instar larvae of H. armigera but tannic acid had no such effect. Experiments on colony growth of B. thuringiensis on NBA media containing tannic acid (0, 1, 3, 6, 9, 12, 15, 18, 21 mg/100 ml) demonstrated that tannic acid reduced colony growth of B. thuringiensis, and inhibited sporulation above 15 mg/100 ml.  相似文献   

9.
A synchronous coinfection of the Colorado potato beetle Leptinotarsa decemlineata (Say) with the entomopathogenic bacteria Bacillus thuringiensis ssp. morrisoni Bonnifoi & de Barjak var. tenebrionis Krieg et al. and hyphomycete Metarhizium anisopliae (Metsch.) Sorokin or Beauveria bassiana (Bals.) Vuill leads to the rapid death of 95–100% of larvae. The bacteria arrest the nutrition of insects, while the fungal spores kill the weakened larvae. The synergistic effect of two pathogens is recorded at a relatively low hyphomycete titer (1–5 × 106 conidia/ml) and is evident in the mortality dynamics at all larval ages. These bacterial and fungal pathogens display no antagonism on artificial nutrient media. This microbial complex is highly efficient under natural conditions (80–90% larval mortality rate and no plant defoliation).  相似文献   

10.
Beta-exotoxin produced byBacillus thuringiensis var.thuringiensis grown in the acid hydrolysates of wheat and rice brans caused 95% and 85% mortality respectively ofMeloidogyne sp. as against 72% of β-exotoxin produced on farm yard manure within 7 days. Acid hydrolysate of wheat or rice bran and solid farm yard manure proved to be the best media for growth ofB. thuringiensis var.thuringiensis.  相似文献   

11.
Photorhabdus temperata and Bacillus thuringiensis are entomopathogenic bacteria exhibiting toxicities against different insect larvae. Vegetative Insecticidal Protein Vip3LB is a Bacillus thuringiensis insecticidal protein secreted during the vegetative growth stage exhibiting lepidopteran specificity. In this study, we focused for the first time on the heterologous expression of vip3LB gene in Photorhabdus temperata strain K122. Firstly, Western blot analyses of whole cultures of recombinant Photorhabdus temperata showed that Vip3LB was produced and appeared lightly proteolysed. Cellular fractionation and proteinase K proteolysis showed that in vitro-cultured recombinant Photorhabdus temperata K122 accumulated Vip3LB in the cell and appeared not to secrete this protein. Oral toxicity of whole cultures of recombinant Photorhabdus temperata K122 strains was assayed on second-instar larvae of Ephestia kuehniella, a laboratory model insect, and the cutworm Spodoptera littoralis, one of the major pests of many important crop plants. Unlike the wild strain K122, which has no effect on the larval growth, the recombinant bacteria expressing vip3LB gene reduced or stopped the larval growth. These results demonstrate that the heterologous expression of Bacillus thuringiensis vegetative insecticidal protein-encoding gene vip3LB in Photorhabdus temperata could be considered as an excellent tool for improving Photorhabdus insecticidal activities.  相似文献   

12.
Thirty-five strains of the entomopathogenic bacterium Bacillus thuringiensisactive on Spodoptera exigua, were characterized by means of serological identification and determination of crygene contents by PCR. The insecticidal activity of these 35 strains was further confirmed against S. exiguaand tested against two other species of the same genus: S. littoralisand S. frugiperda. The results indicate that serovars aizawai, thuringiensis, and kurstakiwere the most frequent within S. exigua-active strains and that serovar aizawaihad the highest number of strains exhibiting toxicity against the three species bioassayed. The presence in crygenes as determined by PCR suggests a non random distribution of some crygenes among serovars. Genes cry1C, cry1D, and cry1E, which are known to code for proteins toxic against Spodopteraspecies, were very common within S. exigua-active strains, specially in those belonging to serovar aizawai. However, some strains harbouring one or more of these genes were not toxic to S. littoralisor S. frugiperda; and some strains lacking all of the Spodoptera-active genes were found to be toxic to all three species. This suggests differences in the expression levels among strains bearing toxic genes and the involvement of other genes toxic to Spodopteraspecies. Since strains sharing the same crygenes exhibited different host ranges, the results indicate the need to perform toxicity bioassays in addition to other tests (serological identification and PCR) in order to determine the insecticidal activity of B. thuringiensisstrains.  相似文献   

13.
Thirty bacterial strains were isolated from the rhizosphere of plants collected from Egypt and screened for production of chitinase enzymes. Bacillus thuringiensis NM101-19 and Bacillus licheniformis NM120-17 had the highest chitinolytic activities amongst those investigated. The production of chitinase by B. thuringiensis and B. licheniformis was optimized using colloidal chitin medium amended with 1.5% colloidal chitin, with casein as a nitrogen source, at 30°C after five days of incubation. An enhancement of chitinase production by the two species was observed by addition of sugar substances and dried fungal mats to the colloidal chitin media. The optimal conditions for chitinase activity by B. thuringiensis and B. licheniformis were at 40°C, pH 7.0 and pH 8.0, respectively. Na+, Mg2+, Cu2+, and Ca2+ caused enhancement of enzyme activities whereas they were markedly inhibited by Zn2+, Hg2+, and Ag+. In vitro, B. thuringiensis and B. licheniformis chitinases had potential for cell wall lysis of many phytopathogenic fungi tested. The addition of B. thuringiensis chitinase was more effective than that of B. licheniformis in increasing the germination of soybean seeds infected with various phytopathogenic fungi.  相似文献   

14.
Entomopathogenic nematodes are used for insect control. Herein, an extracellular protease was partially purified from a culture supernatant ofXenorhabdus nematophilus, a symbiotic bacterium of an entomopathogenic nematode,Steinernema glaseri, using precipitation with 80% v/v isopropyl alcohol followed by gel permeation chromatography with a packed Sephacryl S-300 HR media. The partially purified protease exhibited maximal activity at pH 7 in the presence of 1 mM CaCl2. The protease was identified as a metallo-protease based on the inhibition of its activity by the metal chelating agent, EDTA.  相似文献   

15.
Insects are good models for studying the innate immune response. We report that Galleria mellonella larvae infected with entomopathogenic bacteria Bacillus thuringiensis kurstaki show changes in the level of Hsp90. Our experimental approach was to pre-treat larvae with the Hsp90-binding compound, 17-DMAG, before infection with B. thuringiensis. We show that pre-treated animals display a higher level of immune response. This was mainly manifested by enhanced action of their hemolymph directed toward living bacteria as well as lysozyme activity digesting bacterial peptidoglycan. The observed phenomenon was due to the higher activity of antimicrobial peptides which, in contrast to healthy animals, was detected in the hemolymph of the immunestimulated larvae. Finally, the physiological significance of our observation was highlighted by the fact that G. mellonella pre-treated with 17-DMAG showed a prolonged survival rate after infection with B. thuringiensis than the control animals. Our report points to a role for Hsp90 in the immune response of G. mellonella after infection with B. thuringiensis at the optimal growth temperature.  相似文献   

16.
Aims: The aim of this work was to detect Bacillus thuringiensis endospore production during fermentation under conditions hindering endospore detection, i.e. in a complex undefined industrial medium with a high content of solids in suspension. Methods and Results: Bacterial endospore production was measured using the photoluminescence of dipicolinate (DPA) with Tb3+. The high temperature and pressure of a conventional autoclave was used to release DPA from the endospores. The endospore was obtained from B. thuringiensis var. kurstaki HD‐73 fermentations in industrial‐type media with 25·1 and 54·1 g l?1 glucose, 4·4 and 35·3 g l?1 soybean meal, 5·8 g l?1 yeast extract, 9·2 g l?1 corn steep solids and mineral salts. Conclusions: In this study, we successfully determined the DPA concentrations during the culture of B. thuringiensis in high‐concentration soybean meal media. A good correlation was found between microscope endospore counting and DPA measurements in the cultures. Significance and Impact of the Study: Because of synergy between Cry protein and endospore in B. thuringiensis bioinsecticides formulation, it is important to be able to determine endospore development during B. thuringiensis industrial‐type fermentation, in order to ascertain the beginning of sporulation.  相似文献   

17.
Bacillus thuringiensis subsp.israelensis andB. sphaericus strains 2362 and 1593 were grown in media based on defatted mustard-seed meal (MSM). The meal contains 40% (w/w) protein, with glutamic acid and arginine as the major amino acids. The toxic potencies of the final bacterial powders towardsCulex pipens quinquefasciatus Say, compared with those of the respective international reference standards, were 46% forB. thuringiensis subsp.israelensis, 62% forB. sphaericus 2362 and 88% forB. sphaericus 1593 when 2% (w/v) MSM was used for growth. With 4% (w/v) MSM,B. thuringiensis subsp.israelensis grew better but had undetectable larvicidal activity, whereas theB. sphaericus strains not only grew better but gave a higher degree of sporulation and toxicity. The potencies ofB. sphaericus in medium with 4% MSM were comparable with those of international reference standards.The authors are with the Department of Life Sciences, University of Bombay, Bombay 400 098, India.  相似文献   

18.
1. The aerial surface of plants is a habitat for large and diverse microbial communities; termed the phyllosphere. These microbes are unavoidably consumed by herbivores, and while the entomopathogens are well studied, the impact of non‐pathogenic bacteria on herbivore life history is less clear. 2. Previous work has suggested that consumption of non‐entomopathogenic bacteria induces a costly immune response that might decrease the risk of infection. However, we hypothesised that insect herbivores should be selective in how they respond to commonly encountered non‐pathogenic bacteria on their host plants to avoid unnecessary and costly immune responses. 3. An ecologically realistic scenario was used in which we fed cabbage looper, Trichoplusia ni Hübner, larvae on cabbage or cucumber leaves treated with the common non‐entomopathogenic phyllosphere bacteria, Pseudomonas fluorescens and P. syringae. Their constitutive immunity and resistance to a pathogenic bacterium (Bacillus thuringiensis; Bt) and a baculovirus (T. ni single nucleopolyhedrovirus) were then examined. 4. While feeding on bacteria‐treated leaves reduced the growth rate and condition of T. ni, there was no effect on immunity (haemolymph antibacterial and phenoloxidase activities and haemocyte numbers). Phyllosphere bacteria weakly affected the resistance of T. ni to Bt but the direction of this effect was concentration dependent; resistance to the virus was unaffected. Host plant had an impact, with cucumber‐fed larvae being more susceptible to Bt. 5. The lack of evidence for a costly immune response to non‐entomopathogenic bacteria suggests that T. ni are probably adapted to consuming common phyllosphere bacteria, and highlights the importance of the evolutionary history of participants in multi‐trophic interactions.  相似文献   

19.
The occurrence of entomopathogenic fungi was investigated in irrigated vegetable fields and citrus orchards soils, over a nine-month period (April-December 1999),using the Galleria bait method (GBM). Entomopathogenic fungi were found to occur in 33.6% of the soil samples studied, with positive samples yielding 70 fungal isolates, belonging to 20 species from 13 genera. Conidiobolus coronatus was the most frequent and abundant entomopathogenic species recovered, comprising 31.4% of the total number of isolates. Soil pH, soil moisture content and the geographical location had minor or no effect on the isolation of entomopathogenic fungi in the fields studied. On the other hand, organic matter content of soil, and vegetation type were found to significantly affect the occurrence of entomopathogenic fungi in soil habitats, with orchard fields yielding larger numbers of isolates than vegetable fields. Using Koch's postulates the pathogenicity of fungal isolates to Galleria larvae was found to range from 16–100% (mortality rate). Isolates of C. coronatus proved to be the most virulent isolates recovered. The effect of media and temperature on mycelial growth rate, conidial production and conidial germination of six entomopathogenic fungal species (C. coronatus, Entomophaga grylli, Erynia castrans, Hirsutella jonesii, Paecilomyces farinosus and Sporodiniella umbellata) was also studied. Mycelial growth rate, spore production and spore germination were significantly affected by media, temperature and isolates. In view of the present results, C. coronatus appears to be a good candidate for pest control in agricultural soils, as it has a wide tolerance to agricultural practices, has frequently been isolated from both vegetable and orchard fields, and is characterized by high mycelial growth rate, conidial production and conidial germination.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

20.
An endophytic Serratia marcescens strain SRM (MTCC 8708) isolated from the flowers of summer squash was found to be entomopathogenic against the larvae of Helicoverpa armigera. Natural epizootic of this bacterial strain on the larvae collected from summer squash flowers ranged from 19.9 to 72.3%. Under laboratory conditions, a dose of 6 × 1010 c.f.u./ml diet induced 66.3% mortality of first instar H. armigera larvae. Similarly all other growth and development parameters of the insect were severely retarded in a dose-dependent manner. The bacterium invaded the entire alimentary canal and haemolymph with successful replacement of all other gut-associated microflora. There was a great reduction in midgut proteinase activity due to inhibition of five major proteinase isozymes by S. marcescens infection. Further, a synergistic interaction between chitinases isolated from this strain and Bacillus thuringiensis Cry1Ac toxin was observed. The present findings suggest that this plant-associated S. marcescens strain SRM could be suitably exploited for the management of H. armigera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号