首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An enduring question in cognitive neuroscience is how the physical properties of the world are represented in the brain to yield conscious perception. In most people, a particular physical stimulus gives rise to a unitary, unimodal perceptual experience. So, light energy leads to the sensation of seeing, whereas sound waves produce the experience of hearing. However, for individuals with the rare phenomenon of synaesthesia, specific physical stimuli consistently induce more than one perceptual experience. For example, hearing particular sounds might induce vivid experiences of colour, taste or odour, as might the sight of visual symbols, such as letters or digits. Here we review the latest findings on synaesthesia, and consider its possible genetic, neural and cognitive bases. We also propose a neurocognitive framework for understanding such anomalous perceptual experiences.  相似文献   

2.
The problem of analytical units for the visual image has been discussed for a long time. The classic dichotomies sensation/perception and figure/ground are no longer used by most investigators. It seems natural to take as analytical units the qualitatively and functionally different aspects of the visual image, such as color, space, movement, and form. Just as separate aspects of complex motor acts are provided by different levels of the structure of movement (1), so the real categories of perception, once identified, can be viewed as the result of the processing of information at different levels of the structure of the image. Actual recognition of this can be seen in the extensive individualization of the subdivisions of the psychology of perception that study the mechanisms of color vision or, for example, the metrics of visual space.  相似文献   

3.
How our central nervous system (CNS) learns and exploits relationships between force and motion is a fundamental issue in computational neuroscience. While several lines of evidence have suggested that the CNS predicts motion states and signals from motor commands for control and perception (forward dynamics), it remains controversial whether it also performs the ‘inverse’ computation, i.e. the estimation of force from motion (inverse dynamics). Here, we show that the resistive sensation we experience while moving a delayed cursor, perceived purely from the change in visual motion, provides evidence of the inverse computation. To clearly specify the computational process underlying the sensation, we systematically varied the visual feedback and examined its effect on the strength of the sensation. In contrast to the prevailing theory that sensory prediction errors modulate our perception, the sensation did not correlate with errors in cursor motion due to the delay. Instead, it correlated with the amount of exposure to the forward acceleration of the cursor. This indicates that the delayed cursor is interpreted as a mechanical load, and the sensation represents its visually implied reaction force. Namely, the CNS automatically computes inverse dynamics, using visually detected motions, to monitor the dynamic forces involved in our actions.  相似文献   

4.
This article addresses the intersection between perceptual estimates of head motion based on purely vestibular and purely visual sensation, by considering how nonvisual (e.g. vestibular and proprioceptive) sensory signals for head and eye motion can be combined with visual signals available from a single landmark to generate a complete perception of self-motion. In order to do this, mathematical dimensions of sensory signals and perceptual parameterizations of self-motion are evaluated, and equations for the sensory-to-perceptual transition are derived. With constant velocity translation and vision of a single point, it is shown that visual sensation allows only for the externalization, to the frame of reference given by the landmark, of an inertial self-motion estimate from nonvisual signals. However, it is also shown that, with nonzero translational acceleration, use of simple visual signals provides a biologically plausible strategy for integration of inertial acceleration sensation, to recover translational velocity. A dimension argument proves similar results for horizontal flow of any number of discrete visible points. The results provide insight into the convergence of visual and vestibular sensory signals for self-motion and indicate perceptual algorithms by which primitive visual and vestibular signals may be integrated for self-motion perception.  相似文献   

5.
Phosphene phenomenon: a new concept   总被引:1,自引:0,他引:1  
Bókkon I 《Bio Systems》2008,92(2):168-174
This paper proposes a new biopsychophysical concept of phosphene phenomenon. Namely, visual sensation of phosphenes is due to the intrinsic perception of ultraweak bioluminescent photon emission of cells in the visual system. In other words, phosphenes are bioluminescent biophotons in the visual system induced by various stimuli (mechanical, electrical, magnetic, ionizing radiation, etc.) as well as random bioluminescent biophotons firings of cells in the visual pathway. This biophoton emission can become conscious if induced or spontaneous biophoton emission of cells in the visual system exceeds a distinct threshold. Neuronal biophoton communication can occur by means of non-visual neuronal opsins and natural photosensitive biomolecules. Our interpretation is in direct connection with the functional roles of free radicals and excited biomolecules in living cells.  相似文献   

6.
Some like it hot – and spicy: Chili and the capsaicin receptor TRPV1 Since many hundred years, many people like to eat chili pepper containing the pungent ingredient capsaicin that is responsible for making the food hot and spicy. Capsaicin activates transient receptor potential TRPV1 channels that are predominantly expressed in sensory neurons involved in pain sensation. TRPV1 is a noxious heat sensor and can also be activated by protons and several animal toxins. Thus, TRPV1 is a polymodal sensor of multiple noxious stimuli that cause pain. TRPV1 functions as a nocisensor that detects chemical and thermal stimuli and transduces this stimulation into sensory nerve impulses which leads to the perception of pain. Inhibition of TRPV1 reduces or abolishes pain sensation. A strong activation of TRPV1 induces a long-lasting refractory period of the pain-detecting system (desensitization) and may even lead to an irreversible loss of TRPV1-expressing sensory neurons. It still remains unclear why many people love hot and spicy food, accompanied by a burning sensation in the mouth.  相似文献   

7.
The task of deciding how long sensory events seem to last is one that the human nervous system appears to perform rapidly and, for sub-second intervals, seemingly without conscious effort. That these estimates can be performed within and between multiple sensory and motor domains suggest time perception forms one of the core, fundamental processes of our perception of the world around us. Given this significance, the current paucity in our understanding of how this process operates is surprising. One candidate mechanism for duration perception posits that duration may be mediated via a system of duration-selective 'channels', which are differentially activated depending on the match between afferent duration information and the channels' 'preferred' duration. However, this model awaits experimental validation. In the current study, we use the technique of sensory adaptation, and we present data that are well described by banks of duration channels that are limited in their bandwidth, sensory-specific, and appear to operate at a relatively early stage of visual and auditory sensory processing. Our results suggest that many of the computational principles the nervous system applies to coding visual spatial and auditory spectral information are common to its processing of temporal extent.  相似文献   

8.
When two taste stimuli are presented, one to each side of the tongue, with a time delay of up to 1 msec., the taste sensation seems to move across the tongue. This phenomenon which is similar to directional hearing, can be used to show periodic fluctuations in sensation magnitude as well as other aspects of sensation. When the apparatus was refined to present taste stimuli, it was possible to observe rhythmic changes in the perception of taste. An analogy is demonstrated between hearing and taste sensation, even to some quantitative values.  相似文献   

9.
Active spatial perception in the vibrissa scanning sensorimotor system   总被引:2,自引:1,他引:1  
Haptic perception is an active process that provides an awareness of objects that are encountered as an organism scans its environment. In contrast to the sensation of touch produced by contact with an object, the perception of object location arises from the interpretation of tactile signals in the context of the changing configuration of the body. A discrete sensory representation and a low number of degrees of freedom in the motor plant make the ethologically prominent rat vibrissa system an ideal model for the study of the neuronal computations that underlie this perception. We found that rats with only a single vibrissa can combine touch and movement to distinguish the location of objects that vary in angle along the sweep of vibrissa motion. The patterns of this motion and of the corresponding behavioral responses show that rats can scan potential locations and decide which location contains a stimulus within 150 ms. This interval is consistent with just one to two whisk cycles and provides constraints on the underlying perceptual computation. Our data argue against strategies that do not require the integration of sensory and motor modalities. The ability to judge angular position with a single vibrissa thus connects previously described, motion-sensitive neurophysiological signals to perception in the behaving animal.  相似文献   

10.
A brain-damaged patient (D.F.) with visual form agnosia is described and discussed. D.F. has a profound inability to recognize objects, places and people, in large part because of her inability to make perceptual discriminations of size, shape or orientation, despite having good visual acuity. Yet she is able to perform skilled actions that depend on that very same size, shape and orientation information that is missing from her perceptual awareness. It is suggested that her intact vision can best be understood within the framework of a dual processing model, according to which there are two cortical processing streams operating on different coding principles, for perception and for action, respectively. These may be expected to have different degrees of dependence on top-down information. One possibility is that D.F.''s lack of explicit awareness of the visual cues that guide her behaviour may result from her having to rely on a processing system which is not knowledge-based in a broad sense. Conversely, it may be that the perceptual system can provide conscious awareness of its products in normal individuals by virtue of the fact that it does interact with a stored base of visual knowledge.  相似文献   

11.
The internal representation of solid shape with respect to vision   总被引:11,自引:0,他引:11  
It is argued that the internal model of any object must take the form of a function, such that for any intended action the resulting reafference is predictable. This function can be derived explicitly for the case of visual perception of rigid bodies by ambulant observers. The function depends on physical causation, not physiology; consequently, one can make a priori statements about possible internal models. A posteriori it seems likely that the orientation sensitive units described by Hubel and Wiesel constitute a physiological substrate subserving the extraction of the invariants of this function. The function is used to define a measure for the visual complexity of solid shape. Relations with Gestalt theories of perception are discussed.  相似文献   

12.
One of the greatest challenges in visual neuroscience is that of linking neural activity with perceptual experience. In the case of binocular depth perception, important insights have been achieved through comparing neural responses and the perception of depth, for carefully selected stimuli. One of the most important types of stimulus that has been used here is the anti-correlated random dot stereogram (ACRDS). In these stimuli, the contrast polarity of one half of a stereoscopic image is reversed. While neurons in cortical area V1 respond reliably to the binocular disparities in ACRDS, they do not create a sensation of depth. This discrepancy has been used to argue that depth perception must rely on neural activity elsewhere in the brain. Currently, the psychophysical results on which this argument rests are not clear-cut. While it is generally assumed that ACRDS do not support the perception of depth, some studies have reported that some people, some of the time, perceive depth in some types of these stimuli. Given the importance of these results for understanding the neural correlates of stereopsis, we studied depth perception in ACRDS using a large number of observers, in order to provide an unambiguous conclusion about the extent to which these stimuli support the perception of depth. We presented observers with random dot stereograms in which correlated dots were presented in a surrounding annulus and correlated or anti-correlated dots were presented in a central circular region. While observers could reliably report the depth of the central region for correlated stimuli, we found no evidence for depth perception in static or dynamic anti-correlated stimuli. Confidence ratings for stereoscopic perception were uniformly low for anti-correlated stimuli, but showed normal variation with disparity for correlated stimuli. These results establish that the inability of observers to perceive depth in ACRDS is a robust phenomenon.  相似文献   

13.
Recognition of temperature is a critical element of sensory perception and allows us to evaluate both our external and internal environments. In vertebrates, the somatosensory system can discriminate discrete changes in ambient temperature, which activate nerve endings of primary afferent fibers. These thermosensitive nerves can be further segregated into those that detect either innocuous or noxious (painful) temperatures; the latter neurons being nociceptors. We now know that thermosensitive afferents express ion channels of the transient receptor potential (TRP) family that respond at distinct temperature thresholds, thus establishing the molecular basis for thermosensation. Much is known of those channels mediating the perception of noxious heat; however, those proposed to be involved in cool to noxious cold sensation, TRPM8 and TRPA1, have only recently been described. The former channel is a receptor for menthol, and links the sensations provided by this and other cooling compounds to temperature perception. While TRPM8 almost certainly performs a critical role in cold signaling, its part in nociception is still at issue. The latter channel, TRPA1, is activated by the pungent ingredients in mustard and cinnamon, but has also been postulated to mediate our perception of noxious cold temperatures. However, a number of conflicting reports have suggested that the role of this channel in cold sensation needs to be confirmed. Thus, the molecular logic for the perception of cold-evoked pain remains enigmatic. This review is intended to summarize our current understanding of these cold thermoreceptors, as well as address the current controversy regarding TRPA1 and cold signaling.  相似文献   

14.
This paper reviews the basic aspects of auditory processing that play a role in the perception of speech. The frequency selectivity of the auditory system, as measured using masking experiments, is described and used to derive the internal representation of the spectrum (the excitation pattern) of speech sounds. The perception of timbre and distinctions in quality between vowels are related to both static and dynamic aspects of the spectra of sounds. The perception of pitch and its role in speech perception are described. Measures of the temporal resolution of the auditory system are described and a model of temporal resolution based on a sliding temporal integrator is outlined. The combined effects of frequency and temporal resolution can be modelled by calculation of the spectro-temporal excitation pattern, which gives good insight into the internal representation of speech sounds. For speech presented in quiet, the resolution of the auditory system in frequency and time usually markedly exceeds the resolution necessary for the identification or discrimination of speech sounds, which partly accounts for the robust nature of speech perception. However, for people with impaired hearing, speech perception is often much less robust.  相似文献   

15.
It is recognized that, as the bladder fills, there is a corresponding increase in sensation. This awareness of the volume in the bladder is then used in a complex decision making process to determine if there is a need to void. It is also part of everyday experience that, when the bladder is full and sensations strong, these sensations can be suppressed and the desire to void postponed. The obvious explanation for such altered perceptions is that they occur centrally. However, this may not be the only mechanism. There are data to suggest that descending neural influences and local factors might regulate the sensitivity of the systems within the bladder wall generating afferent activity. Specifically, evidence is accumulating to suggest that the motor-sensory system within the bladder wall is influenced in this way. The motor-sensory system, first described over 100 years ago, appears to be a key component in the afferent outflow, the afferent “noise,” generated within the bladder wall. However, the presence and possible importance of this complex system in the generation of bladder sensation has been overlooked in recent years. As the bladder fills the motor activity increases, driven by cholinergic inputs and modulated, possibly, by sympathetic inputs. In this way information on bladder volume can be transmitted to the CNS. It can be argued that the ability to alter the sensitivity of the mechanisms generating the motor component of this motor-sensory system represents a possible indirect way to influence afferent activity and so the perception of bladder volume centrally. Furthermore, it is emerging that the apparent modulation of sensation by drugs to alleviate the symptoms of overactive bladder (OAB), the anti-cholinergics and the new generation of drugs the β3 sympathomimetics, may be the result of their ability to modulate the motor component of the motor sensory system. The possibility of controlling sensation, physiologically and pharmacologically, by influencing afferent firing at its point of origin is a “new” concept in bladder physiology. It is one that deserves careful consideration as it might have wider implications for our understanding of bladder pathology and in the development of new therapeutic drugs. In this overview, evidence for the concept peripheral modulation of bladder afferent outflow is explored.  相似文献   

16.
When one finger touches the other, the resulting tactile sensation is perceived as weaker than the same stimulus externally imposed. This attenuation of sensation could result from a predictive process that subtracts the expected sensory consequences of the action, or from a postdictive process that alters the perception of sensations that are judged after the event to be self-generated. In this study we observe attenuation even when the fingers unexpectedly fail to make contact, supporting a predictive process. This predictive attenuation of self-generated sensation may have evolved to enhance the perception of sensations with an external cause.  相似文献   

17.
在运动过程中,时距知觉的能力非常重要,能帮助个体对时长进行判断及对事件的发生做出预测和准备.近年来,越来越多的研究发现运动本身会直接影响个体的时距知觉.本文分别从运动参数、运动阶段、视觉运动刺激和运动有关的个体因素四个方面梳理了运动对时距知觉产生影响的行为学证据.目前已经有大量研究从不同角度证明,大脑运动系统组成了支持...  相似文献   

18.
Attention is crucial for visual perception because it allows the visual system to effectively use its limited resources by selecting behaviorally and cognitively relevant stimuli from the large amount of information impinging on the eyes. Reflexive, stimulus-driven attention is essential for successful interactions with the environment because it can, for example, speed up responses to life-threatening events. It is commonly believed that exogenous attention operates in the retinotopic coordinates of the early visual system. Here, using a novel experimental paradigm [1], we show that a nonretinotopic cue improves both accuracy and reaction times in a visual search task. Furthermore, the influence of the cue is limited both in space and time, a characteristic typical of exogenous cueing. These and other recent findings show that many more aspects of vision are processed nonretinotopically than previously thought.  相似文献   

19.
Redies C 《Spatial Vision》2007,21(1-2):97-117
Philosophers have pointed out that there is a close relation between the esthetics of art and the beauty of natural scenes. Supporting this similarity at the experimental level, we have recently shown that visual art and natural scenes share fractal-like, scale-invariant statistical properties. Moreover, evidence from neurophysiological experiments shows that the visual system uses an efficient (sparse) code to process optimally the statistical properties of natural stimuli. In the present work, a hypothetical model of esthetic perception is described that combines both lines of evidence. Specifically, it is proposed that an artist creates a work of art so that it induces a specific resonant state in the visual system. This resonant state is thought to be based on the adaptation of the visual system to natural scenes. The proposed model is universal and predicts that all human beings share the same general concept of esthetic judgment. The model implies that esthetic perception, like the coding of natural stimuli, depends on stimulus form rather than content, depends on higher-order statistics of the stimuli, and is non-intuitive to cognitive introspection. The model accommodates the central tenet of neuroesthetic theory that esthetic perception reflects fundamental functional properties of the nervous system.  相似文献   

20.
The subjective investigation, that is focused on the sensations of a person, is a good tool for the evaluation of an environment that group of people consider comfortable. In the experiment reported here, participants were dressed into 1-layer and 2-layer clothing systems. They performed physical activity and rated the subjective perception of comfort, as well as the thermal and moisture sensation. The aim of this investigation is to compare the subjective human perception during the physical activity wearing different clothing systems to the objective results of sweat absorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号