首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
While much has been known about the mutualistic associations between the sepiolid squid Euprymna tasmanica and the luminescent bacterium, Vibrio fischeri , less is known about the connectivity between the microscopic and molecular basis of initial attachment and persistence in the light organ. Here, we examine the possible effects of two symbiotic genes on specificity and biofilm formation of V. fischeri in squid light organs. Uridine diphosphate glucose-6-dehydrogenase (UDPDH) and mannose-sensitive hemagglutinin ( mshA ) mutants were generated in V. fischeri to determine whether each gene has an effect on host colonization, specificity, and biofilm formation. Both squid light organ colonization assays and transmission electron microscopy confirmed differences in host colonization between wild-type and mutant strains, and also demonstrated the importance of both UDPDH and mshA gene expression for successful light organ colonization. This furthers our understanding of the genetic factors playing important roles in this environmentally transmitted symbiosis.  相似文献   

3.
Upon hatching, the Hawaiian squid Euprymna scolopes is rapidly colonized by its symbiotic partner, the bioluminescent marine bacterium Vibrio fischeri . Vibrio fischeri cells present in the seawater enter the light organ of juvenile squid in a process that requires bacterial motility. In this study, we investigated the role chemotaxis may play in establishing this symbiotic colonization. Previously, we reported that V.?fischeri migrates toward numerous attractants, including N-acetylneuraminic acid (NANA), a component of squid mucus. However, whether or not migration toward an attractant such as squid-derived NANA helps the bacterium to localize toward the light organ is unknown. When tested for the ability to colonize juvenile squid, a V. fischeri chemotaxis mutant defective for the methyltransferase CheR was outcompeted by the wild-type strain in co-inoculation experiments, even when the mutant was present in fourfold excess. Our results suggest that the ability to perform chemotaxis is an advantage during colonization, but not essential.  相似文献   

4.
Colonization of the light-emitting organ of the Hawaiian squid Euprymna scolopes is initiated when the nascent organ of a newly hatched squid becomes inoculated with Vibrio fischeri cells present in the ambient seawater. Although they are induced for luminescence in the light organ, these symbiotic strains are characteristically non-visibly luminous (NVL) when grown in laboratory culture. The more typical visibly luminous (VL) type of V. fischeri co-occurs in Hawaiian seawater with these NVL strains; thus, two phenotypically distinct groups of this species potentially have access to the symbiotic niche, yet only the NVL ones are found there. In laboratory inoculation experiments, VL strains, when presented in pure culture, showed the same capability for colonizing the light organ as NVL strains. However, in experiments with mixed cultures composed of both VL and NVL strains, the VL ones were unable to compete with the NVL ones and did not persist within the light organ as the symbiosis became established. In addition, NVL strains entered light organs that had already been colonized by VL strains and displaced them. The mechanism underlying the symbiotic competitiveness exhibited by NVL strains remains unknown; however, it does not appear to be due to a higher potential for siderophore activity. While a difference in luminescence phenotype between VL and NVL strains in culture is not likely to be significant in the symbiosis, it has helped identify two distinct groups of V. fischeri that express different colonization capabilities in the squid light organ. This competitive difference provides a useful indication of important traits in light organ colonization.  相似文献   

5.
J Graf  P V Dunlap    E G Ruby 《Journal of bacteriology》1994,176(22):6986-6991
Vibrio fischeri is found both as a free-living bacterium in seawater and as the specific, mutualistic light organ symbiont of several fish and squid species. To identify those characteristics of symbiosis-competent strains that are required for successful colonization of the nascent light organ of juvenile Euprymna scolopes squids, we generated a mutant pool by using the transposon Mu dI 1681 and screened this pool for strains that were no longer motile. Eighteen independently isolated nonmotile mutants that were either flagellated or nonflagellated were obtained. In contrast to the parent strain, none of these nonmotile mutants was able to colonize the juvenile squid light organ. The flagellated nonmotile mutant strain NM200 possessed a bundle of sheathed polar flagella indistinguishable from that of the wild-type strain, indicating that the presence of flagella alone is not sufficient for colonization and that it is motility itself that is required for successful light organ colonization. This study identifies motility as the first required symbiotic phenotype of V. fischeri.  相似文献   

6.
7.
Vibrio fischeri, a luminescent marine bacterium, specifically colonizes the light organ of its symbiotic partner, the Hawaiian squid Euprymna scolopes. In a screen for V. fischeri colonization mutants, we identified a strain that exhibited on average a 10-fold decrease in colonization levels relative to that achieved by wild-type V. fischeri. Further characterization revealed that this defect did not result from reduced luminescence or motility, two processes required for normal colonization. We determined that the transposon in this mutant disrupted a gene with high sequence identity to the pgm (phosphoglucomutase) gene of Escherichia coli, which encodes an enzyme that functions in both galactose metabolism and the synthesis of UDP-glucose. The V. fischeri mutant grew poorly with galactose as a sole carbon source and was defective for phosphoglucomutase activity, suggesting functional identity between E. coli Pgm and the product of the V. fischeri gene, which was therefore designated pgm. In addition, lipopolysaccharide profiles of the mutant were distinct from that of the parent strain and the mutant exhibited increased sensitivity to various cationic agents and detergents. Chromosomal complementation with the wild-type pgm allele restored the colonization ability to the mutant and also complemented the other noted defects. Unlike the pgm mutant, a galactose-utilization mutant (galK) of V. fischeri colonized juvenile squid to wild-type levels, indicating that the symbiotic defect of the pgm mutant is not due to an inability to catabolize galactose. Thus, pgm represents a new gene required for promoting colonization of E. scolopes by V. fischeri.  相似文献   

8.
Inactivation of the sapABCDF genes results in a loss of virulence in several bacterial pathogens of animals and plants. The role of this locus in the growth physiology of Vibrio fischeri, and in the symbiotic colonization of the squid Euprymna scolopes was investigated. In rich medium, a V. fischeri sapA insertion mutant grew at only 85% the rate of its wild-type parent. While a similar effect has been attributed to a potassium-transport defect in sap mutants of enteric bacteria, the V. fischeri mutant grew more slowly regardless of the potassium concentration of the medium. Similarly, the growth-rate defect was independent of the source of either carbon, nitrogen, or phosphorous, indicating that the V. fischeri sap genes do not encode functions required for the transport of a specific form of any of these nutrients. Finally, while a delay in colonizing the nascent light organ of the squid could be accounted for by the lower growth rate of the mutant, a small but statistically significant reduction in its final population size in the host, but not in medium, suggests that the sap genes play another role in the symbiosis. All of these phenotypic defects could be genetically complemented in trans by the sapABCDF genes, but not by the sapA gene alone, indicating that the insertion in sapA is polar to the four downstream genes in the locus. Thus, while the sap locus is important to the normal growth of V. fischeri, it plays different physiological roles in growth and tissue colonization than it does in enteric pathogens.  相似文献   

9.
The nascent light-emitting organ of newly hatched juveniles of the Hawaiian sepiolid squid Euprymna scolopes is specifically colonized by cells of Vibrio fischeri that are obtained from the ambient seawater. The mechanisms that promote this specific, cooperative colonization are likely to require a number of bacterial and host-derived factors and activities, only some of which have been described to date. A characteristic of many host-pathogen associations is the presence of bacterial mechanisms that allow attachment to specific tissues. These mechanisms have been well characterized and often involve bacterial fimbriae or outer membrane proteins (OMPs) that act as adhesins, the expression of which has been linked to virulence regulators such as ToxR in Vibrio cholerae. Analogous or even homologous mechanisms are probably operative in the initiation and persistence of cooperative bacterial associations, although considerably less is known about them. We report the presence in V. fischeri of ompU, a gene encoding a 32.5-kDa protein homolog of two other OMPs, OmpU of V. cholerae (50.8% amino acid sequence identity) and OmpL of Photobacterium profundum (45.5% identity). A null mutation introduced into the V. fischeri ompU resulted in the loss of an OMP with an estimated molecular mass of about 34 kDa; genetic complementation of the mutant strain with a DNA fragment containing only the ompU gene restored the production of this protein. The expression of the V. fischeri OmpU was not significantly affected by either (i) iron or phosphate limitation or (ii) a mutation that renders V. fischeri defective in the synthesis of a homolog of the OMP-regulatory protein ToxR. The ompU mutant grew normally in complex nutrient media but was more susceptible to growth inhibition in the presence of either anionic detergents or the antimicrobial peptide protamine sulfate. Interestingly, colonization experiments showed that the ompU null mutant initiated a symbiotic association with juvenile light organ tissue with only about 60% of the effectiveness of the parent strain. When colonization did occur, it proceeded more slowly and resulted in an approximately fourfold-smaller bacterial population. Surprisingly, there was no evidence that in a mixed infection with its parent, the ompU-defective strain had a competitive disadvantage, suggesting that the presence of the parent strain provided a shared compensatory activity. Thus, the OmpU protein appears to play a role in the normal process by which V. fischeri initiates its colonization of the nascent light organ of juvenile squids.  相似文献   

10.
11.
12.
To successfully colonize and persist within a host niche, bacteria must properly regulate their gene expression profiles. The marine bacterium Vibrio fischeri establishes a mutualistic symbiosis within the light organ of the Hawaiian squid, Euprymna scolopes. Here, we show that the repressor NagC of V. fischeri directly regulates several chitin- and N-acetyl-D-glucosamine-utilization genes that are co-regulated during productive symbiosis. We also demonstrate that repression by NagC is relieved in the presence of N-acetyl-D-glucosamine-6-phosphate, the intracellular form of N-acetyl-D-glucosamine. We find that gene repression by NagC is critical for efficient colonization of E. scolopes. Further, our study shows that NagC regulates genes that affect the normal dynamics of host colonization.  相似文献   

13.
Chitin, a polymer of N-acetylglucosamine (GlcNAc), is noted as the second most abundant biopolymer in nature. Chitin serves many functions for marine bacteria in the family Vibrionaceae ("vibrios"), in some instances providing a physical attachment site, inducing natural genetic competence, and serving as an attractant for chemotaxis. The marine luminous bacterium Vibrio fischeri is the specific symbiont in the light-emitting organ of the Hawaiian bobtail squid, Euprymna scolopes. The bacterium provides the squid with luminescence that the animal uses in an antipredatory defense, while the squid supports the symbiont's nutritional requirements. V. fischeri cells are harvested from seawater during each host generation, and V. fischeri is the only species that can complete this process in nature. Furthermore, chitin is located in squid hemocytes and plays a nutritional role in the symbiosis. We demonstrate here that chitin oligosaccharides produced by the squid host serve as a chemotactic signal for colonizing bacteria. V. fischeri uses the gradient of host chitin to enter the squid light organ duct and colonize the animal. We provide evidence that chitin serves a novel function in an animal-bacterial mutualism, as an animal-produced bacterium-attracting synomone.  相似文献   

14.
The sepiolid squid Euprymna scolopes forms a bioluminescent mutualism with the luminous bacterium Vibrio fischeri, harboring V. fischeri cells in a complex ventral light organ and using the bacterial light in predator avoidance. To characterize the contribution of V. fischeri to the growth and development of E. scolopes and to define the long-term effects of bacterial colonization on light organ morphogenesis, we developed a mariculture system for the culture of E. scolopes from hatching to adulthood, employing artificial seawater, lighting that mimicked that of the natural environment, and provision of prey sized to match the developmental stage of E. scolopes. Animals colonized by V. fischeri and animals cultured in the absence of V. fischeri (aposymbiotic) grew and survived equally well, developed similarly, and reached sexual maturity at a similar age. Development of the light organ accessory tissues (lens, reflectors, and ink sac) was similar in colonized and aposymbiotic animals with no obvious morphometric or histological differences. Colonization by V. fischeri influenced regression of the ciliated epithelial appendages (CEAs), the long-term growth of the light organ epithelial tubules, and the appearance of the cells composing the ciliated ducts, which exhibit characteristics of secretory tissue. In certain cases, aposymbiotic animals retained the CEAs in a partially regressed state and remained competent to initiate symbiosis with V. fischeri into adulthood. In other cases, the CEAs regressed fully in aposymbiotic animals, and these animals were not colonizable. The results demonstrate that V. fischeri is not required for normal growth and development of the animal or for development of the accessory light organ tissues and that morphogenesis of only those tissues coming in contact with the bacteria (CEAs, ciliated ducts, and light organ epithelium) is altered by bacterial colonization of the light organ. Therefore, V. fischeri apparently makes no major metabolic contribution to E. scolopes beyond light production, and post-embryonic development of the light organ is essentially symbiont independent. J. Exp. Zool. 286:280-296, 2000.  相似文献   

15.
Schleicher TR  Nyholm SV 《PloS one》2011,6(10):e25649
The beneficial symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium, Vibrio fischeri, provides a unique opportunity to study host/microbe interactions within a natural microenvironment. Colonization of the squid light organ by V. fischeri begins a lifelong association with a regulated daily rhythm. Each morning the host expels an exudate from the light organ consisting of 95% of the symbiont population in addition to host hemocytes and shed epithelial cells. We analyzed the host and symbiont proteomes of adult squid exudate and surrounding light organ epithelial tissue using 1D- and 2D-polyacrylamide gel electrophoresis and multidimensional protein identification technology (MudPIT) in an effort to understand the contribution of both partners to the maintenance of this association. These proteomic analyses putatively identified 1581 unique proteins, 870 proteins originating from the symbiont and 711 from the host. Identified host proteins indicate a role of the innate immune system and reactive oxygen species (ROS) in regulating the symbiosis. Symbiont proteins detected enhance our understanding of the role of quorum sensing, two-component signaling, motility, and detoxification of ROS and reactive nitrogen species (RNS) inside the light organ. This study offers the first proteomic analysis of the symbiotic microenvironment of the adult light organ and provides the identification of proteins important to the regulation of this beneficial association.  相似文献   

16.
The luminous bacterium Vibrio fischeri colonizes a specialized light-emitting organ within its squid host, Euprymna scolopes. Newly hatched juvenile squid must acquire their symbiont from ambient seawater, where the bacteria are present at low concentrations. To understand the population dynamics of V. fischeri during colonization more fully, we used mini-Tn7 transposons to mark bacteria with antibiotic resistance so that the growth of their progeny could be monitored. When grown in culture, there was no detectable metabolic burden on V. fischeri cells carrying the transposon, which inserts in single copy in a specific intergenic region of the V. fischeri genome. Strains marked with mini-Tn7 also appeared to be equivalent to the wild type in their ability to infect and multiply within the host during coinoculation experiments. Studies of the early stages of colonization suggested that only a few bacteria became associated with symbiotic tissue when animals were exposed for a discrete period (3 h) to an inoculum of V. fischeri cells equivalent to natural population levels; nevertheless, all these hosts became infected. When three differentially marked strains of V. fischeri were coincubated with juvenile squid, the number of strains recovered from an individual symbiotic organ was directly dependent on the size of the inoculum. Further, these results indicated that, when exposed to low numbers of V. fischeri, the host may become colonized by only one or a few bacterial cells, suggesting that symbiotic infection is highly efficient.  相似文献   

17.
Vibrio fischeri cells are the sole colonists of a specialized light organ in the mantle cavity of the sepiolid squid Euprymna scolopes. The process begins when the bacteria aggregate in mucus secretions outside the light organ. The cells eventually leave the aggregate, enter the light organ, and encounter a rich supply of peptides. The need to dissociate from mucus and presumably utilize peptides led us to hypothesize that protease activity is integral to the colonization process. Protease activity associated with whole cells of Vibrio fischeri strain ES114 was identified as the product of a putative cell membrane-associated aminopeptidase (PepN). To characterize this activity, the aminopeptidase was cloned, overexpressed, and purified. Initial steady-state kinetic studies revealed that the aminopeptidase has broad activity, with a preference for basic and hydrophobic side chains and k(cat) and K(m) values that are lower and smaller, respectively, than those of Escherichia coli PepN. A V. fischeri mutant unable to produce PepN is significantly delayed in its ability to colonize squid within the first 12 h, but eventually it establishes a wild-type colonization level. Likewise, in competition with the wild type for colonization, the mutant is outcompeted at 12 h postinoculation but then competes evenly by 24 h. Also, the PepN-deficient strain fails to achieve wild-type levels of cells in aggregates, suggesting an explanation for the initial colonization delay. This study provides a foundation for more studies on PepN expression, localization, and role in the early stages of squid colonization.  相似文献   

18.
The symbiosis between marine bioluminescent Vibrio bacteria and the sepiolid squid Euprymna is a model for studying animal-bacterial Interactions. Vibrio symbionts native to particular Euprymna species are competitively dominant, capable of outcompeting foreign Vibrio strains from other Euprymna host species. Despite competitive dominance, secondary colonization events by invading nonnative Vibrio fischeri have occurred. Competitive dominance can be offset through superior nonnative numbers and advantage of early start host colonization by nonnatives, granting nonnative vibrios an opportunity to establish beachheads in foreign Euprymna hosts. Here, we show that nonnative V. fischeri are capable of rapid adaptation to novel sepiolid squid hosts by serially passaging V. fischeri JRM200 (native to Hawaiian Euprymna scolopes) lines through the novel Australian squid host E. tasmanica for 500 generations. These experiments were complemented by a temporal population genetics survey of V. fischeri, collected from E. tasmanica over a decade, which provided a perspective from the natural history of V. fischeri evolution over 15,000-20,000 generations in E. tasmanica. No symbiont anagenic evolution within squids was observed, as competitive dominance does not purge V. fischeri genetic diversity through time. Instead, abiotic factors affecting abundance of V. fischeri variants in the planktonic phase sustain temporal symbiont diversity, a property itself of ecological constraints imposed by V. fischeri host adaptation.  相似文献   

19.
Motility is required for Vibrio fischeri cells to interact with and specifically colonize the light-emitting organ of their host, the squid Euprymna scolopes. To investigate the influence of motility on the expression of the symbiotic phenotype, we isolated mutants of the squid symbiont V. fischeri ES114 that had altered migration abilities. Spontaneous hyperswimmer (HS) mutants, which migrated more rapidly in soft agar and were hyperflagellated relative to the wild type, were isolated and grouped into three phenotypic classes. All of the HS strains tested, regardless of class, were delayed in symbiosis initiation. This result suggested that the hypermotile phenotype alone contributes to an inability to colonize squid normally. Class III HS strains showed the greatest colonization defect: they colonized squid to a level that was only 0.1 to 10% that achieved by ES114. In addition, class III strains were defective in two capabilities, hemagglutination and luminescence, that have been previously described as colonization factors in V. fischeri. Class II and III mutants also share a mucoid colony morphology; however, class II mutants can colonize E. scolopes to a level that was 40% of that achieved by ES114. Thus, the mucoid phenotype alone does not contribute to the greater defect exhibited by class III strains. When squid were exposed to ES114 and any one of the HS mutant strains as a coinoculation, the parent strain dominated the resulting symbiotic light-organ population. To further investigate the colonization defects of the HS strains, we used confocal laser-scanning microscopy to visualize V. fischeri cells in their initial interaction with E. scolopes tissue. Compared to ES114, HS strains from all three classes were delayed in two behaviors involved in colonization: (i) aggregation on host-derived mucus structures and (ii) migration to the crypts. These results suggest that, while motility is required to initiate colonization, the presence of multiple flagella may actually interfere with normal aggregation and attachment behavior. Furthermore, the pleiotropic nature of class III HS strains provides evidence that motility is coregulated with other symbiotic determinants in V. fischeri.  相似文献   

20.
Vibrio fischeri colonizes the squid Euprymna scolopes in a mutualistic symbiosis. Hatchling squid lack these bacterial symbionts, and V. fischeri strains must compete to occupy this privileged niche. We cloned a V. fischeri gene, designated pilA, that contributes to colonization competitiveness and encodes a protein similar to type IV-A pilins. Unlike its closest known relatives, Vibrio cholerae mshA and vcfA, pilA is monocistronic and not clustered with genes associated with pilin export or assembly. Using wild-type strain ES114 as the parent, we generated an in-frame pilA deletion mutant, as well as pilA mutants marked with a kanamycin resistance gene. In mixed inocula, marked mutants were repeatedly outcompeted by ES114 (P < 0.05) but not by an unmarked pilA mutant, for squid colonization. In contrast, the ratio of mutant to ES114 CFUs did not change during 70 generations of coculturing. The competitive defect of pilA mutants ranged from 1.7- to 10-fold and was more pronounced when inocula were within the range estimated for V. fischeri populations in Hawaiian seawater (200 to 2,000 cells/ml) than when higher densities were used. ES114 also outcompeted a pilA mutant by an average of twofold at lower inoculum densities, when only a fraction of the squid became infected, most by only one strain. V. fischeri strain ET101, which was isolated from Euprymna tasmanica and is outcompeted by ES114, lacks pilA; however, 11 other diverse V. fischeri isolates apparently possess pilA. The competitive defect of pilA mutants suggests that cell surface molecules may play important roles in the initiation of beneficial symbioses in which animals must acquire symbionts from a mixed community of environmental bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号