首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The variation in base composition at the three codon sites in relation to gene expressivity, the latter estimated by the Codon Adaptation Index, has been studied in a sample of 1371 Escherichia coli genes. Correlation and regression analyses show that increasing expression levels are accompanied by higher frequencies of base G at first, of base A at second and of base C at third codon positions. However, correlation between expressivity and base compositional biases at each codon site was only significant and positive at first codon position. The preference for G-starting codons as gene expression level increases is discussed in terms of translational optimization.  相似文献   

2.
A complete translation system has been assembled from pure initiation, elongation and termination factors as well as pure aminoacyl-tRNA synthetases. In this system, ribosomes perform repeated rounds of translation of short synthetic mRNAs which allows the time per translational round (the recycling time) to be measured. The system has been used to study the influence of release factor RF3 and of ribosome recycling factor RRF on the rate of recycling of ribosomes. In the absence of both RF3 and RRF, the recycling time is approximately 40 s. This time is reduced to approximately 30 s by the addition of RF3 alone and to approximately 15 s by the addition of RRF alone. When both RF3 and RRF are added to the translation system, the recycling time drops to <6 s. Release factor RF3 is seen to promote RF1 cycling between different ribosomes. The action of RRF is shown to depend on the concentration of elongation factor-G. Even in the presence of RRF, ribosomes do not leave the mRNA after termination, but translate the same mRNA several times. This shows that RRF does not actively eject mRNA from the terminating ribosome. It is proposed that terminating ribosomes become mobile on mRNA and ready to enter the next translation round only after two distinct steps, catalysed consecutively by RF3 and RRF, which are slow in the absence of these factors.  相似文献   

3.
4.
Peptidyl-tRNA dissociation from ribosomes is an energetically costly but apparently inevitable process that accompanies normal protein synthesis. The drop-off products of these events are hydrolysed by peptidyl-tRNA hydrolase. Mutant selections have been made to identify genes involved in the drop-off of peptidyl-tRNA, using a thermosensitive peptidyl-tRNA hydrolase mutant in Escherichia coli. Transposon insertions upstream of the frr gene, which encodes RF4 (ribosome release or recycling factor), restored growth to this mutant. The insertions impaired expression of the frr gene. Mutations inactivating prfC, encoding RF3 (release factor 3), displayed a similar phenotype. Conversely, production of RF4 from a plasmid increased the thermosensitivity of the peptidyl-tRNA hydrolase mutant. In vitro measurements of peptidyl-tRNA release from ribosomes paused at stop signals or sense codons confirmed that RF3 and RF4 were able to stimulate peptidyl-tRNA release from ribosomes, and showed that this action of RF4 required the presence of translocation factor EF2, known to be needed for the function of RF4 in ribosome recycling. When present together, the three factors were able to stimulate release up to 12-fold. It is suggested that RF4 may displace peptidyl-tRNA from the ribosome in a manner related to its proposed function in removing deacylated tRNA during ribosome recycling.  相似文献   

5.
J E McCarthy  W Sebald  G Gross  R Lammers 《Gene》1986,41(2-3):201-206
The cDNA sequences encoding mature human interleukin 2 (IL2) and beta-interferon (INF beta), respectively, were fused with various translational initiation regions and inserted into two different types of expression vector. The relative levels of expression of the two genes and the functional stability of their respective mRNAs were examined in vivo in Escherichia coli hosts. The addition of the 30-bp sequence, found immediately upstream of the E. coli atpE gene Shine-Dalgarno (SD) sequence, to the translational initiation regions of IL2 and INF beta increased the expression of both these genes by a factor of 6-10. Thus this sequence, which naturally acts within the E. coli atp operon to enhance the translational initiation frequency of the atpE gene, can increase the expression of other genes in E. coli. It may exemplify a specific type of recognition signal for the E. coli translational apparatus.  相似文献   

6.
Protein release factors act like tRNA analogues in decoding translational stop signals. Statistical analysis of the sequences at translational stop sites and functional studies with particular signals indicate this mimicry involves an increase in the length of the signal in the mRNA. The base following the stop codon (+4 base) is of particular interest because it has a strong influence on the competitiveness of the stop signal at recoding sites, suggesting it might form part of the release factor recognition element. Site-directed crosslinking from the +4 base showed that it is in close proximity to the Escherichia coli release factor-2 in a termination complex, a prerequisite for the +4 base being part of the recognition element. Fingerprinting analysis indicates that crosslinking to the release factor occurred from both +1 and +4 positions of the stop signal in the same RNA molecule. This provides more evidence that the +4 base may be an integral part of the decoding signature in the mRNA during the termination phase of protein biosynthesis.  相似文献   

7.
8.
The termination of protein synthesis in Escherichia coli requires two codon-specific factors termed RF1 and RF2. RF1 mediates UAA- and UAG-directed termination, while RF2 mediates UAA- and UGA-directed termination. The genes encoding these factors have been isolated and sequenced, and RF2 was found to be encoded in two separate reading frames. The map position of RF1 has been reported as 27 min on the E. coli chromosome, while the RF2 map position has not yet been identified. In this study, two new and independent methods for gene mapping, using pulsed field gel electrophoresis and an ordered bacteriophage library spanning the entire chromosome, were used to localize the map position of the RF2 gene. In addition, the location of the RF1 gene was more precisely defined. The RF2 gene is located at 62.3 min on the chromosome, while the RF1 gene is located at 26.7 min. This approach to mapping cloned genes promises to be a rapid and simple means for determining the gene order of the genome.  相似文献   

9.
Najafabadi HS  Lehmann J  Omidi M 《Gene》2007,387(1-2):150-155
Different organisms use synonymous codons with different preferences. Several measures have been introduced to compute the extent of codon usage bias within a gene or genome, among which the codon adaptation index (CAI) has been shown to be well correlated with mRNA levels of Escherichia coli. In this work an error adaptation index (eAI) is introduced, which estimates the level at which a gene can tolerate the effects of mistranslations. It is shown that the eAI has a strong correlation with CAI, as well as with mRNA levels, which suggests that the codons of highly expressed genes are selected so that mistranslation would have the minimum possible effect on the structure and function of the related proteins.  相似文献   

10.
Release factors RF1 and RF2 recognize stop codons present at the A-site of the ribosome and activate hydrolysis of peptidyl-tRNA to release the peptide chain. Interactions with RF3, a ribosome-dependent GTPase, then initiate a series of reactions that accelerate the dissociation of RF1 or RF2 and their recycling between ribosomes. Two regions of Escherichia coli RF1 and RF2 were identified previously as involved in stop codon recognition and peptidyl-tRNA hydrolysis. We show here that removing the N-terminal domain of RF1 or RF2 or exchanging this domain between the two factors does not affect RF specificity but has different effects on the activity of RF1 and RF2: truncated RF1 remains highly active and able to support rapid cell growth, whereas cells with truncated RF2 grow only poorly. Transplanting a loop of 13 amino acid residues from RF2 to RF1 switches the stop codon specificity. The interaction of the truncated factors with RF3 on the ribosome is defective: they fail to stimulate guanine nucleotide exchange on RF3, recycling is not stimulated by RF3, and nucleotide-free RF3 fails to stabilize the binding of RF1 or RF2 to the ribosome. However, the N-terminal domain seems not to be required for the expulsion of RF1 or RF2 by RF3:GTP.  相似文献   

11.
E S Poole  C M Brown    W P Tate 《The EMBO journal》1995,14(1):151-158
A statistical analysis of > 2000 Escherichia coli genes suggested that the base following the translational stop codon might be an important feature of the signal for termination. The strengths of each of 12 possible 'four base stop signals' (UAAN, UGAN and UAGN) were tested in an in vivo termination assay that measured termination efficiency by its direct competition with frameshifting. Termination efficiencies varied significantly depending on both the stop codon and the fourth base, ranging from 80 (UAAU) to 7% (UGAC). For both the UAAN and UGAN series, the fourth base hierarchy was U > G > A approximately C. UAG stop codons, which are used rarely in E. coli, showed efficiencies comparable with UAAN and UGAN, but differed in that the hierarchy of the fourth base was G > U approximately A > C. The rate of release factor selection varied 30-fold at UGAN stop signals, and 10-fold for both the UAAN and UAGN series; it correlated well with the frequency with which the different UAAN and UGAN signals are found at natural termination sites. The results suggest that the identity of the base following the stop codon determines the efficiency of translational termination in E. coli. They also provide a rationale for the use of the strong UAAU signal in highly expressed genes and for the occurrence of the weaker UGAC signal at several recording sites.  相似文献   

12.
13.
Factors affecting competition between termination and elongation in vivo during translation of the fdhF selenocysteine recoding site (UGA) were studied with wild-type and modified fdhF sequences. Altering sequences surrounding the recoding site UGA without affecting RNA secondary structure indicated that the kinetics of stop signal decoding have a significant influence on selenocysteine incorporation efficiency. The UGA in the wild-type fdhF sequence remains 'visible' to the factor and forms a site-directed cross-link when mRNA stem-loop secondary structure is absent, but not when it is present. The timing of the secondary structure unfolding during translation may be a critical feature of competition between release factor 2 and tRNA(Sec) for decoding UGA. Increasing the cellular concentration of either of these decoding molecules for termination or selenocysteine incorporation showed that they were able to compete for UGA by a kinetic competition that is dynamic and dependent on the Escherichia coli growth rate. The tRNA(Sec)-mediated decoding can compete more effectively for the UGA recoding site at lower growth rates, consistent with anaerobic induction of fdhF expression.  相似文献   

14.
W Tate  B Greuer    R Brimacombe 《Nucleic acids research》1990,18(22):6537-6544
An RNA synthesized in vitro was positioned on the Escherichia coli ribosome at the P site with tRNAala, and with a termination codon, UAA, as the next codon in the A site. Such a complex bound stoichiometric amounts of release factor 2 (RF-2); a corresponding RNA with UAC in place of UAA was not a template for the factor. An RNA containing 4-thio-UAA in place of the UAA supported binding of RF-2, and this has allowed site-directed crosslinking from the first position of the termination codon to answer two long standing questions about the termination of protein biosynthesis, the position of the termination codon and its proximity to the release factor during codon recognition. An RF-2.mRNA crosslinked product was detected, indicating the release factor and the termination codon are in close physical contact during the codon recognition event of termination. The 4-thio-U crosslinked also to the ribosome but only to the 30S subunit, and the proteins and the rRNA site concerned were identified. RF-2 decreased significantly the crosslinking to the ribosomal components, but no new crosslink sites were found. If the stop codon was deliberately displaced from the decoding site by one codon's length then a different pattern of crosslinking in particular to the rRNA resulted. These observations are consistent with a model of codon recognition by RF-2 at the decoding site, without a major shift in position of the codon.  相似文献   

15.
R Martin  M Weiner    J Gallant 《Journal of bacteriology》1988,170(10):4714-4717
In Escherichia coli, nonsense suppression at UAA codons is governed by the competition between a suppressor tRNA and the translational release factors RF1 and RF2. We have employed plasmids carrying the genes for RF1 and RF2 to measure release factor preference at UAA codons at 13 different sites in the lacI gene. We show here that the activity of RF1 and RF2 varies according to messenger context. RF1 is favored at UAA codons which are efficiently suppressed. RF2 is preferred at poorly suppressed sites.  相似文献   

16.
17.
The termination of protein synthesis in bacteria requires two codon-specific release factors, RF-1 and RF-2. A gene for a third factor, RF-3, that stimulates the RF-1 and RF-2 activities has been isolated from the gram-negative bacteria Escherichia coli and Dichelobacter nodosus. In this work, we isolated the RF-3 gene from Salmonella typhimurium and compared the three encoded RF-3 proteins by immunoblotting and intergeneric complementation and suppression. A murine polyclonal antibody against E. coli RF-3 reacted with both S. typhimurium and D. nodosus RF-3 proteins. The heterologous RF-3 genes complemented a null RF-3 mutation of E. coli regardless of having different sequence identities at the protein level. Additionally, multicopy expression of either of these RF-3 genes suppressed temperature-sensitive RF-2 mutations of E. coli and S. typhimurium by restoring adequate peptide chain release. These findings strongly suggest that the RF-3 proteins of these gram-negative bacteria share common structural and functional domains necessary for RF-3 activity and support the notion that RF-3 interacts functionally and/or physically with RF-2 during translation termination.  相似文献   

18.
The observations that the Escherichia coli release factor 2 (RF2) crosslinks with the base following the stop codon (+4 N), and that the identity of this base strongly influences the decoding efficiency of stop signals, stimulated us to determine whether there was a more extended termination signal for RF2 recognition. Analysis of the 3' contexts of the 1248 genes in the E.coli genome terminating with UGA showed a strong bias for U in the +4 position and a general bias for A and against C in most positions to +10, consistent with the concept of an extended sequence element. Site-directed crosslinking occurred to RF2 from a thio-U sited at the +4, +5 and +6 bases following the UGA stop codon but not beyond (+7 to +10). Varying the +4 to +6 bases modulated the strength of the crosslink from the +1 invariant U to RF2. A strong selection bias for particular bases in the +4 to +6 positions of certain E. coli UGANNN termination sites correlated in some cases with crosslinking efficiency to RF2 and in vivo termination signal strength. These data suggest that RF2 may recognise at least a hexanucleotide UGA-containing sequence and that particular base combinations within this sequence influence termination signal decoding efficiency.  相似文献   

19.
Rao AR  Varshney U 《The EMBO journal》2001,20(11):2977-2986
Once the translating ribosomes reach a termination codon, the nascent polypeptide chain is released in a factor-dependent manner. However, the P-site-bound deacylated tRNA and the ribosomes themselves remain bound to the mRNA (post-termination complex). The ribosome recycling factor (RRF) plays a vital role in dissociating this complex. Here we show that the Mycobacterium tuberculosis RRF (MtuRRF) fails to rescue Escherichia coli LJ14, a strain temperature-sensitive for RRF (frr(ts)). More interestingly, co-expression of M.tuberculosis elongation factor G (MtuEFG) with MtuRRF rescues the frr(ts) strain of E.coli. The simultaneous expression of MtuEFG is also needed to cause an enhanced release of peptidyl-tRNAs in E.coli by MtuRRF. These observations provide the first genetic evidence for a functional interaction between RRF and EFG. Both the in vivo and in vitro analyses suggest that RRF does not distinguish between the translating and terminating ribosomes for their dissociation from mRNA. In addition, complementation of E.coli PEM100 (fusA(ts)) with MtuEFG suggests that the mechanism of RRF function is independent of the translocation activity of EFG.  相似文献   

20.
Protein synthesis in bacteria is terminated by release factors 1 or 2 (RF1/2), which, on recognition of a stop codon in the decoding site on the ribosome, promote the hydrolytic release of the polypeptide from the transfer RNA (tRNA). Subsequently, the dissociation of RF1/2 is accelerated by RF3, a guanosine triphosphatase (GTPase) that hydrolyzes GTP during the process. Here we show that—in contrast to a previous report—RF3 binds GTP and guanosine diphosphate (GDP) with comparable affinities. Furthermore, we find that RF3–GTP binds to the ribosome and hydrolyzes GTP independent of whether the P site contains peptidyl-tRNA (pre-termination state) or deacylated tRNA (post-termination state). RF3–GDP in either pre- or post-termination complexes readily exchanges GDP for GTP, and the exchange is accelerated when RF2 is present on the ribosome. Peptide release results in the stabilization of the RF3–GTP–ribosome complex, presumably due to the formation of the hybrid/rotated state of the ribosome, thereby promoting the dissociation of RF1/2. GTP hydrolysis by RF3 is virtually independent of the functional state of the ribosome and the presence of RF2, suggesting that RF3 acts as an unregulated ribosome-activated switch governed by its internal GTPase clock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号