首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a 24-hr radiolabel microassay developed in our laboratory that measures [3H]glucose uptake in residual Candida, we have identified the effector cells responsible for in vitro inhibition of Candida albicans growth as mainly polymorphonuclear neutrophils (PMN) and monocytes within the human peripheral blood cells. Highly purified T cells and large granular lymphocytes (LGL) that mediate natural killer activity which were obtained by Percoll density gradient centrifugation were found to have no innate activity against C. albicans. The LGL could not be activated by interferon-alpha, interferon-gamma or interleukin 2 to inhibit Candida growth although their K562 tumor cytotoxic activity was readily enhanced by these cytokines. Stimulation with heat-killed C. albicans also did not activate fungal growth inhibitory function in LGL and the supernatant of these activated LGL had no direct fungicidal activity. However, the activated LGL supernatant had the capability to enhance PMN function against C. albicans growth. Addition of recombinant human tumor necrosis factor, affinity-purified interferon-alpha, or interferon-gamma to PMN caused increased antifungal activity in PMN. However, antibodies to these cytokines had only a partial adverse effect on the ability of the activated LGL supernatant to stimulate PMN anti-Candida function. Therefore, the activated LGL supernatant appeared to contain a potent stimulator of PMN function which is as yet unidentified. These data indicate that LGL did not directly mediate anti-Candida activity but could indirectly influence C. albicans growth by activating PMN against the fungi through the release of a specific PMN-activating factor. Our findings therefore add another role to LGL which is the regulation of PMN function, the consequence of which is regulation of fungal immunity.  相似文献   

2.
Neutrophils (PMNs) constitute the main mechanism of host defense against acute invasive and disseminated candidiasis. Recent studies have demonstrated that tumor necrosis factor-alpha (TNFalpha), interleukin-6 (IL-6) and granulocyte colony-stimulating factor (G-CSF) play an important role in the recruitment of PMNs at the site of invasive Candida infection. In the absence of either TNFalpha or IL-6, the course of experimental disseminated candidiasis is more severe, due to defective PMN recruitment. Treatment of mice with recombinant G-CSF (rG-CSF) leads to a significantly reduced mortality during disseminated candidiasis. The outgrowth of Candida albicans from the organs of rG-CSF-treated mice is significantly decreased. Treatment with the combination of rG-CSF and fluconazole has an additive effect on the reduction of fungal load in the organs. In subacute or chronic disseminated Candida infection, rG-CSF is less effective, indicating that neutrophil recruitment and activation are crucial in acute, life-threatening candidiasis, whereas other host defense mechanisms control the outcome of less overwhelming invasive Candida infection.  相似文献   

3.
We investigated the effects of human interleukin 10 (IL-10) on the antibacterial and antifungal activities of human neutrophils (PMNs) against Staphylococcus aureus and Candida albicans. Incubation of PMNs from healthy volunteers with 20-100 ng/ml of IL-10 at 37 degrees C for 1 h suppressed phagocytosis of serum-opsonized S. aureus (P=0.02) and blastoconidia of C. albicans (P<0.01). In contrast, 2-100 ng/ml of IL-10 had no effect on superoxide anion production upon stimulation with phorbol myristate acetate, N-formylmethionyl leucyl phenylalanine, C. albicans blastoconidia or pseudohyphae; neither did it significantly affect conidiocidal or bactericidal activities of PMNs. However, 20-100 ng/ml of IL-10 significantly decreased PMN-induced damage of C. albicans pseudohyphae (P=0.008). The suppression of phagocytic activity of PMNs against S. aureus and blastoconidia of C. albicans as well as the impairment of PMN-induced hyphal damage may have important implications for understanding the immunosuppressive profile of IL-10 in clinical usage.  相似文献   

4.
Although G-CSF has been shown to increase neutrophil (polymorphonuclear leukocyte, PMN) recruitment into the lung during pulmonary infection, relatively little is known about the local chemokine profiles associated with this enhanced PMN delivery. We investigated the effects of G-CSF and PMN recruitment on the pulmonary chemokine response to intratracheal LPS. Rats pretreated twice daily for 2 days with an s.c. injection of G-CSF (50 microg/kg) were sacrificed at either 90 min or 4 h after intratracheal LPS (100 microg) challenge. Pulmonary recruitment of PMNs was not observed at 90 min post LPS challenge. Macrophage inflammatory protein-2 (MIP-2) and cytokine-induced neutrophil chemoattractant (CINC) concentrations in bronchoalveolar lavage (BAL) fluid were similar in animals pretreated with or without G-CSF at this time. G-CSF pretreatment enhanced pulmonary recruitment of PMNs (5-fold) and greatly reduced MIP-2 and CINC levels in BAL fluid at 4 h after LPS challenge. In vitro, the presence of MIP-2 and CINC after LPS stimulation of alveolar macrophages was decreased by coculturing with circulating PMNs but not G-CSF. G-CSF had no direct effect on LPS-induced MIP-2 and CINC mRNA expression by alveolar macrophages. Pulmonary recruited PMNs showed a significant increase in cell-associated MIP-2 and CINC. Cell-associated MIP-2 and CINC of circulating PMNs were markedly increased after exposure of these cells to the BAL fluid of LPS-challenged lungs. These data suggest that recruited PMNs are important cells in modulating the local chemokine response. G-CSF augments PMN recruitment and, thereby, lowers local chemokine levels, which may be one mechanism resulting in the subsidence of the host proinflammatory response.  相似文献   

5.
Peripheral blood polymorphonuclear neutrophils (PMN) from mice immunized with Blastomyces dermatitidis and then stimulated locally (intraperitoneally, ip) with B. dermatitidis antigen had enhanced killing of B. dermatitidis in vitro (54.4 +/- 19.49 of inoculum) compared to nonimmune mice (32.7 +/- 8.7%; P less than 0.02), nonimmune mice given antigen ip (30.6 +/- 14.0%; P less than 0.05), or immune mice not given antigen ip (15.4 +/- 9.9%; P less than 0.01). Peripheral blood PMN from all four groups had marked killing ability against Candida albicans (91.8-99.3% of inoculum). That the killing of B. dermatitidis was due to PMNs was demonstrated by lack of killing by isolated peripheral blood mononuclear cells from all four groups. A local immune reaction can result in enhancement of PMN fungicidal activity, and this is reflected even in peripheral blood PMN. We hypothesize this is an important component of normal host defenses against fungal infection, and likely other microbial infections. Enhancement of PMN microbicidal function by the soluble mediators presumed to be responsible for the effects observed may be an approach to immunomodulating therapy or prophylaxis of infection.  相似文献   

6.
This study was designed to determine whether anti-fungal activity in human polymorphonuclear neutrophils (PMN) might be under the regulation of cytokines such as tumor necrosis factor (TNF) and interferon-gamma (IFN-gamma). By using a radiolabel microassay developed in our laboratory that makes use of the incorporation of [3H]glucose into residual candida, we demonstrated that PMN were better able to inhibit Candida albicans growth in vitro than peripheral blood lymphocytes (PBL). PMN from normal volunteers added to C. albicans for 24 hr at 37 degrees C in a 96-well microplate inhibited fungal growth almost completely at the 300:1 effector/target ratio and frequently at 100:1. Significant activity was still detected at 10:1. In contrast, PBL from the same donors had less activity than PMN at all the ratios tested and lost all function at the 30:1 ratio. TNF and IFN-gamma added to the PMN/candida cultures additionally enhanced PMN to inhibit candida growth. Both cytokines effectively activated PMN down to 0.1 to 0.01 U/ml, and neither cytokine interfered directly with fungal growth, even up to 1000 U/ml. Concentrations of TNF and IFN-gamma below the level that enhanced PMN function when added together to PMN acted synergistically to significantly enhance their anti-fungal activity. Therefore, TNF and IFN-gamma which are active on lymphoid cells, also appear to have the ability to directly activate PMN, and the synergistic action of the two cytokines at low doses that may be below the toxic range may prove to be of clinical importance in protection of immunocompromised host against opportunistic infections.  相似文献   

7.
Candida albicans is a leading cause of biofilm-related infections. As Candida biofilms are recalcitrant to host defenses, we sought to determine the effects of interferon-γ and granulocyte colony-stimulating factor, two pro-inflammatory cytokines, on the antifungal activities of human polymorphonuclear neutrophils (PMNs) against C. albicans biofilms, using an in vitro biofilm model. Priming of PMNs by these cytokines augmented fungal damage of planktonic cells; however, priming of PMNs did not have the same effect against Candida biofilms. Biofilm phenotype appears to play an important role in protecting C. albicans from the innate immune system.  相似文献   

8.
Caveolin-1 present in immune cells may be involved in regulation of the inflammatory response. Here, using caveolin-1-null (Cav-1(-/-)) mice, we addressed the role of caveolin-1 in polymorphonuclear neutrophils (PMNs) in regulating PMN activation-mediated lung injury. In lungs of wild-type (Cav-1(+/+)) mice perfused at constant flow with Krebs-Henseleit solution, addition of Cav-1(+/+) PMNs (4 x 10(6) cells) into the perfusate followed by their activation with formyl-Met-Leu-Phe (fMLP, 1.0 muM) plus platelet-activating factor (1.0 nM) increased pulmonary microvessel filtration coefficient by 150% and wet-to-dry lung weight ratio by 50% as well as PMN accumulation in lungs. These responses were markedly reduced in lungs perfused with Cav-1(-/-) PMNs followed by addition of the same activating agents. fMLP-stimulated adhesion of Cav-1(-/-) PMNs to pulmonary microvascular endothelial cells and migration of Cav-1(-/-) PMNs across endothelial monolayers were also impaired compared with Cav-1(+/+) PMNs. Cav-1(-/-) PMNs showed 50-80% reduction in PMA- or fMLP-stimulated superoxide production compared with Cav-1(+/+) PMNs. In addition, Cav-1(-/-) PMNs had decreased migratory activity (50%) and adhesion to fibrinogen (40%) in response to fMLP. Rac1 and Rac2 were activated in Cav-1(+/+) PMNs after stimulation of fMLP but not in Cav-1(-/-) PMNs. Exogenous expression of caveolin-1 in COS-phox cells augmented the fMLP-induced Rac1 activation and superoxide production, indicating a direct role of caveolin-1 in the mechanism of superoxide production. Thus caveolin-1 expression in PMNs plays a key role in mediating PMN activation, adhesion, and transendothelial migration and in PMN activation-induced lung inflammation and vascular injury.  相似文献   

9.
The purpose of this study was to examine whether the adhesion of polymorphonuclear leukocytes (PMNs) to endothelial cells and/or reactive oxygen species (ROS) released from PMNs are responsible for inducing angiogenesis. Angiogenesis was assessed by tube formation using endothelial cells obtained from bovine thoracic aorta (BAECs) grown on a layer of collagen type I. Addition of PMNs to BAECs weakly induced angiogenesis. The angiogenesis induced by PMNs alone was further enhanced by treatment of the PMNs with N-formyl-methionyl-leucyl-phenylalanine (FMLP), a selective activator of PMN. The involvement of PMN adhesion to BAECs via adhesion molecules in angiogenesis was investigated by using monoclonal antibodies against E-selectin and intercellular adhesion molecule-1 (ICAM-1). These antibodies blocked both the PMN adhesion to BAECs and the enhancement of angiogenesis induced by FMLP-treated PMNs. Furthermore, the enhancement of angiogenesis by FMLP-treated PMNs was blocked by catalase, a scavenging enzyme of H2O2, but not by superoxide dismutase (SOD). These results suggest that PMNs induce angiogenesis in vitro, and that the mechanism of stimulation of angiogenesis by PMNs may involve the adherence of PMNs to endothelial cells via E-selectin and ICAM-1, and H2O2, but not superoxide. Thus, activated PMNs in pathological states may not only induce tissue injury, but may also function as regulators of angiogenesis.  相似文献   

10.
To identify potent new antifungal agents, the Candida cell growth inhibitory activities of six lactoferrin (Lf) peptides consisting of 6-25 amino acid residues (peptide 1, FKCRRWQWRMKKLGAPSITCVRRAF lactoferricin B; peptide 2, FKCRRWQWRM; peptide 2', FKARRWQWRM; peptide 3, GAPSITCVRRAF; peptide 4, RRWQWR; and peptide 5, RWQWRM) were examined. Of these, peptide 2 strongly suppressed the multiplication of Candida cells, but other peptides showed only weak activities. In two strains of C. albicans, the minimum inhibitory concentration 100 of peptide 2 (17.3+/-2.2 microM and 17.5+/-2.4 microM) was close to that of miconazole (13.0+/-1.7 microM and 13.1+/-1.6 microM) but markedly different from that of amphotericin B (0.52+/-0.09 microM and 0.56+/-0.11 microM). The suppression of Candida cell growth was additively increased by a combination of peptide 2 with amphotericin B and miconazole. Peptides 1, 3, 4 and 5 and Lf suppressed iron uptake by Candida cells, inversely correlated with their Candida cell growth inhibition activities. However, iron uptake was not inhibited by peptide 2. In addition, peptide 2 upregulated Candida cell killing activity of polymorphonuclear leukocytes (PMN) increasing their superoxide generation, protein kinase C activity, p38 MAPK activity and the expression of p47phox. These results indicated that the main antimicrobial activity of the Lf peptides is dependent on the N-terminal half of Lf and that the PMN upregulatory activity of peptide 2 and additive function of peptide 2 with antifungal drugs are useful for prophylaxis and control of candidiasis.  相似文献   

11.
Human neutrophilic polymorphonuclear leukocytes (PMNs) are central to innate immunity and are responsible for clearance of pathogens. PMNs undergo a tightly regulated apoptosis program that allows for timely clearance of PMNs without extravasation of toxic intracellular contents. We investigated the rate of spontaneous apoptosis of human peripheral blood PMNs cultured at basal (37 degrees C) and febrile-range (39.5 degrees C) temperatures (FRT). We found that PMN apoptosis is accelerated at FRT, reaching approximately 90% completion by 8 h at 39.5 degrees C vs 18 h at 37 degrees C based on morphologic criteria. Caspase-8 activation peaked within 15 min of PMN exposure to FRT, and subsequent activation of caspase-3 and -9, cleavage of the BH3 (Bcl-2 homology domain 3) only protein Bid, and mitochondrial release of cytochrome c were also greater in FRT-exposed PMNs. Inhibition of caspase-3, -8, and -9 conferred comparable protection from apoptosis in FRT-exposed PMNs. These results demonstrate that exposure to FRT enhances caspase-8 activation and subsequent mitochondrial-dependent and mitochondrial-independent apoptosis pathways. The PMN survival factors G-CSF, GM-CSF, and IL-8 each prolonged PMN survival at 37 degrees C and 39.5 degrees C, but did not reduce the difference in survival at the two temperatures. In a mouse model of intratracheal endotoxin-induced alveolitis, coexposure to FRT (core temperature approximately 39.5 degrees C) doubled the proportion of bronchoalveolar PMNs undergoing apoptosis compared with euthermic mice. This process may play an important role in limiting inflammation and tissue injury during febrile illnesses.  相似文献   

12.
It has recently been shown that measurable amounts of complement proteins, C6 and in particular C7, are released from human polymorphonuclear leukocytes (PMNs). The aim of the present study was to investigate the impact of opsonized Candida albicans on this release. Stimulation with opsonized C. albicans led to a rapid and sustained increase of C6 and C7 in the cell culture supernatant beginning within 5 min of placing in co-culture, whereas co-culture with unopsonized C. albicans or C. albicans mock-opsonized with inactivated human serum did not affect the release. In contrast, even after stimulation employing opsonized C. albicans, no release of the complement component C8 and only trace amounts of C9 were detected. The presence of the membrane attack complex (MAC) on C. albicans after opsonization was demonstrated by indirect immunofluorescence. Opsonization of C. albicans with human serum deficient in or depleted of a terminal complement component resulted in only minor stimulation of C6 and C7 release, although C3 deposition on the surface of C. albicans was not affected as determined by direct immunofluorescence. Detailed analyses with inactivated or deficient sera showed that detection of C6 and C7 was not due to insufficient washing of the opsonized yeast prior to co-culture and suggest that only a small proportion of these proteins was derived from the membrane bound and then cleaved off MAC. Thus, these findings imply that MAC on the fungal surface may represent an additional trigger for the release of C6 and C7 from PMNs, suggesting a new role for the terminal complement complex (TCC) on target membranes as modulator of PMN functions locally at the site of inflammation.  相似文献   

13.
An acidic fraction of bakers' yeast mannan, WAM025, showed a significant protective effect against Candida albicans infection in mice, but a neutral fraction of the same bakers' yeast mannan, WNM, did not exhibit this effect. Moreover, pretreatment with WAM025 resulted in a marked reduction of proliferation of C. albicans cells in the organs of the infected mice. We investigated the stimulative effect of these mannan fractions on the function of mouse peritoneal phagocytes, and found that mice administered WAM025 showed a greater increase in the number of peritoneal exudate cells, macrophages and polymorphonuclear leucocytes (PMN), than the mice treated with WNM, especially in the proportion of PMN. Peritoneal phagocytes, PMN and macrophages obtained from WAM025-treated mice showed marked candidacidal activity. Of the phagocytes, PMN were responsible for the larger part of the candidacidal activity. The myeloperoxidase activities of PMN and macrophages in WAM025-treated PEC were greater than in untreated macrophages. The myeloperoxidase activity of WAM025-treated PMN was significantly greater than that of WAM025-treated macrophages. This activity paralleled the active oxygen-releasing activity of the phagocytes. On the other hand, the phagocytic activity of phagocytes from mice administered WNM or WAM025 for C. albicans cells was identical to that of untreated phagocytes. WAM025 seems to cause enhance elimination of the pathogen from mice, by increasing the number and candidacidal activity of phagocytic cells.  相似文献   

14.
We found that the number of peripheral blood polymorphonuclear leukocytes (PMN) dramatically increased in both sarcoma 180 (S-180) and MM-46 mammary carcinoma (MM-46) ascites tumor-bearing mice, and mice required a remarkable resistance to Candida albicans infection via intravenous route. When the resistance was determined by number of cells of C. albicans in the kidney, a significant decrease in the number of fungal cells was observed in the kidneys of infected ascites tumor-bearing mice. An increase of active oxygen levels of PMN from ascites tumor-bearing mice was observed, suggesting that this factor is important in developing of resistance in ascites tumor-bearing mice. Additionally, a culture supernatant of tumor cells co-cultivated with bone-marrow cells in vitro increased the number of granulocytes and macrophages differentiated from the bone-marrow cells.  相似文献   

15.
The effect of gram-negative sepsis (Escherichia coli) on the capacity of polymorphonuclear leucocytes (PMN) to phagocytize and kill Candida albicans was assessed. The PMN's from septic dogs phagocytized C. albicans as well as PMN's from non-septic dogs. The PMN's from septic dogs that phagocytized C. albicans underwent a spontaneous lysis at a much higher rate than PMN's from non-septic dogs. A functional difference in PMN's from normal and septic dogs is indicated.  相似文献   

16.
Activation of the complement cascade with the generation of anaphylatoxins accompanies the inflammatory response elicited by acute myocardial ischemia and reperfusion. Although complement is activated in the interstitium during acute myocardial ischemia, we have studied mechanisms whereby complement might exacerbate ischemia by using a model employing intracoronary injection of C5a in nonischemic hearts. Intracoronary injection of complement component C5a induces transient myocardial ischemia, mediated through the production of the coronary vasoconstrictors thromboxane A2 and peptidoleukotrienes (LTC4, LTD4), and causes sequestration of polymorphonuclear leukocytes (PMN) in the coronary vascular bed. To further investigate the role of the PMN in the C5a-induced vasoconstriction, the left anterior descending coronary artery (LAD) in pigs was perfused at constant pressure and measurements of coronary blood flow, myocardial contractile function (sonomicrometry), arterial/coronary venous blood PMN count, and thromboxane B2 (TxB2) levels were performed. The myocardial response to intracoronary C5a (500 ng) was determined before, during, and after perfusion with blood depleted of PMNs using leukocyte filters (Sepacell R-500, Pall PL-100). In additional animals, the myocardial response to the PMN chemotactic agent, LTB4, and the effects of intracoronary C5a during constant flow perfusion were measured. Control intracoronary injection of C5a decreased flow (41% of baseline) and contractile function (39% of baseline), PMNs were trapped (5.1 x 10(3) cells/microliters), and TxB2 concentration increased in coronary venous blood. The response to C5a during coronary perfusion with arterial blood depleted of PMNs with Sepacell or Pall filters (less than 0.1 x 10(3) cells/microliters) was greatly blunted, with flow and contractile function falling by less than 14 and 8%, respectively, from baseline, and release of TxB2 was greatly attenuated. However, the myocardial ischemia and TxB2 release remained depressed in response to C5a after removal of the filters and perfusion with either arterial blood containing normal levels of PMNs or stored arterial blood never exposed to filters. In contrast, the repeat C5a challenge resulted in equivalent myocardial extraction of PMNs, thus indicating a dissociation of PMN sequestration from the acute ischemic response and release of TxB2. In separate experiments, the intracoronary injection of LTB4 also resulted in a pronounced myocardial extraction of PMNs (8.6 x 10(3) cells/microliters) greater than during C5a, but did not depress coronary flow or function. Perfusion at constant flow greatly diminished the ischemic response to C5a, indicating that vasoconstriction and resultant ischemia is the main cause of the contractile dysfunction. These data indicate that leukocyte filters inhibit the myocardial ischemia and release of TxB2 induced by C5a via mechanisms not related to PMN depletion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
We have reported that human autoantibodies reacting with the polymorphonuclear neutrophil (PMN)-anchored FcgammaRIIIb (CD16) protect these cells from spontaneous apoptosis. In this study, we used anti-CD16 F(ab')(2) to delineate the mechanism(s) whereby the PMN life span is extended. As documented using four methods, CD16 cross-linking impeded spontaneous apoptosis, whereas anti-CD18 F(ab')(2) exerted no effect. Incubation of PMNs with anti-CD16 prevented the up-regulation of beta(2) integrins, particularly CD11b, which is the alpha-chain of complement receptor type 3, but also CD18, which is its beta-chain, as well as CD11a and CD11c. Anti-CD16-conditioned supernatant of PMNs diminished the percentage of annexin V-binding fresh PMNs after another 18 h in culture, whereas the negative control anti-CD18 had no effect. The expression of mRNA for G-CSF and GM-CSF was induced by anti-CD16, followed by the release of G-CSF and GM-CSF in a dose-dependent manner. Anti-G-CSF and anti-GM-CSF mAbs abrogated the antiapoptotic effect of the related growth factors. The delay in apoptosis was accompanied by a down-regulated expression of Bax, and a partial reduction of caspase-3 activity. These data suggest an autocrine involvement of anti-CD16-induced survival factors in the rescue of PMNs from spontaneous apoptosis. Thus, apoptosis of aged PMNs can be modulated by signaling through FcgammaRIIIb, which may occur in patients with PMN-binding anti-FcgammaRIIIb autoantibodies.  相似文献   

18.
Candida albicans is a common cause of nosocomial infections whose virulence depends on the reversible switch from blastoconidia to hyphal forms. Neutrophils (or polymorphonuclear leukocytes (PMNs)) readily clear blastoconidia by phagocytosis, but filaments are too long to be ingested. Mechanisms regulating immune recognition and response to filamentous fungal pathogens are not well understood, although known risk factors for developing life-threatening infections are neutropenia or defects in the NADPH oxidase system. We show human PMNs generate a respiratory burst response to unopsonized hyphae. Ab specific for beta-glucan, a major component of yeast cell walls, blocks this response, establishing beta-glucan as a key molecular pattern recognized by PMNs in response to C. albicans. This study also elucidates recognition and signaling mechanisms used by PMNs in response to beta-glucan under conditions where phagocytosis cannot occur. Human PMNs adhered to immobilized beta-glucan and released an efficient plasma membrane respiratory burst. Ab blockade of the integrin complement receptor 3 (CD11b/CD18) significantly inhibited both of these functions. Furthermore, we show a role for p38 MAPK and actin but not protein kinase C zeta in generating the respiratory burst to beta-glucan. Taken together, results show that beta-glucan in C. albicans hyphae is accessible to PMNs and sufficient to support an innate immune response.  相似文献   

19.
This study evaluated the phenotypic tests used to differentiate Candida albicans from Candida dubliniensis. A total of 55 isolates from vaginal secretions, oral cavity and hemoculture were studied. They were originally identified as C. albicans, based on their morphological and physiological characteristics. These isolates were tested for colony color development on CHROMagar Candida medium, growth at 45 degrees C on Sabouraud Dextrose agar, lipolytic activity on Tween 80 Agar medium and colony morphology and chlamydoconidia formation on Staib agar medium. Of the 55 isolates studied, seven yielded one or more phenotypic characteristics suggestive of Candida dubliniensis. These isolates were tested by PCR with specific primers for Candida dubliniensis and API ID 32. The seven isolates were confirmed as Candida albicans. All of these finding indicate that DNA based tests should be used for definitive identification of Candida dubliniensis.  相似文献   

20.
The luminol-dependent chemiluminescence (CL) activity of peritoneal exudate cells and blood neutrophils of Syrian hamsters inoculated intraperitoneally with heat-inactivated microbial particles of Candida albicans, (C. albicans), heated irradiated normal cells and native or heated irradiated malignant tumor cells was studied. The inoculation with particles of C. albicans and heated normal cells induced significant activation of CL of peritoneal exudate cells, but did not influence the CL reaction of blood neutrophils. The inoculation of animals with nonheated irradiated tumor cells led to increase of CL response of both peritoneal exudate cells and blood neutrophils. The inoculation with heated irradiated tumor cells did not activate CL of peritoneal exudate cells and led to slight, but long-lasting decrease of CL response of blood neutrophils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号