首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In vitro effects of dihydroergotoxine, dihydroergosine, dihydroergotamine, alpha-dihydroergocriptine (ergot alkaloids), diazepam, methyl-beta-Carboline-3-carboxilate (beta-CCM), flumazenil (benzodiazepines), gamma-amino butyric acid (GABA) and thiopental (barbiturate) were studied on mouse brain (cerebrum minus cerebral cortex) benzodiazepine binding sites labeled with 3H-flunitrazepam. Specific, high affinity (affinity constant, Kd = 57.7 8.6 nM) binding sites for 3H-flunitrazepam on mouse brain membranes were identified. All benzodiazepine drugs inhibited 3H-flunitrazepam binding with nanomolar potencies. In contrast to benzodiazepines, all ergot drugs, GABA and thiopental produced an enhancement of 3H-flunitrazepam binding to its binding site at the GABAA receptor of the mouse brain. The rank order of potency was: neurotransmitter (GABA) > dihydroergotoxine > thiopental > alpha-dihydroergocriptine > dihydroergosine > dihydroergotamine. The results suggest that dihydrogenated ergot derivatives do not bind to the brain benzodiazepine binding sites labeled with 3H-flunitrazepam. However, an enhancement of 3H-flunitrazepam binding by all ergot drugs tested, clearly identifies an allosteric interaction with the benzodiazepine binding sites of GABAA receptors.  相似文献   

2.
A diaryltriazine, LY81067, effectively protects against pentylenetetrazole- and picrotoxin-induced convulsions in mice, with ED50 values of 5.7 and 5.8 mg/kg i.p., respectively. LY81067 enhances the binding of both 3H-GABA and 3H-flunitrazepam to specific sites in rat brain membranes. The degree of enhancement by LY81067 varies from one brain region to another and is different for the binding of 3H-GABA and 3H-flunitrazepam. In cortical membranes, LY81067 increases the affinity of 3H-GABA for both high and low affinity sites and increases the number of sites. LY81067 increases the affinity of 3H-flunitrazepam for its binding sites without greatly increasing the number of sites. Like the pyrazolopyridines, the enhancement of 3H-flunitrazepam binding by LY81067 is dependent on chloride or related anions and is reversed by picrotoxin, suggesting that LY81067 exerts its anticonvulsant effects by binding to or near picrotoxin binding sites. The differential effects of LY81067 on the enhancements of 3H-GABA and 3H-flunitrazepam binding in several brain regions suggest extensive multiplicity of GABA/benzodiazepine/picrotoxin/anioin receptor complexes.  相似文献   

3.
W F Herblin 《Life sciences》1986,38(6):507-514
Membranes prepared from rat cerebral cortex were irradiated with short-wave UV light in the presence of flunitrazepam (FZ). This photo-affinity labeling (PAL) drastically reduces the potency of FZ binding to these membranes, but the binding of 3H-beta-carboline-3-carboxylate ethyl ester (3H-BCCE) was found to be essentially unchanged. 3H-BCCE binding was therefore determined in the presence of an antagonist (BCCE itself), an agonist (FZ) and a compound reported to discriminate between multiple benzodiazepine sites (CL 218,872). The results with BCCE are consistent with a single population of sites, but FZ binds to some of the sites with a reduced affinity (KI = 30 nM) and to the remaining sites with a very low affinity (KI approximately equal to 1 microM). CL 218,872 shows a reduced affinity but appears to interact with all of the sites. Taken together, these results indicate that the binding domains for BCCE and FZ are not identical, and that CL 218,872 interacts more strongly with the antagonist domain.  相似文献   

4.
It has been shown that the 15-day stressing of rats by means of stochastic footshock combined with light flashes leads to a relatively stable "behavioral depression". Twenty-four hours after the last exposure to stress crude synaptosomes isolated from the whole brain demonstrated an increase in the KD of 3H-dihydroalprenolol specific binding and a lowering of the Bmax of 3H-WB-4101 specific binding sites. Specific binding of 3H-flunitrazepam changes inconclusively: the decrease in the KD is followed by a reduction in the concentration of receptors. Specific binding of 3H-imipramine by brain membranes remains unchanged under the above conditions.  相似文献   

5.
The subcutaneous implantation of an estradiol pellet (10 mg) into female rats induced a hypophyseal hyperplasia with hyperprolactinaemia. Examination of neurotransmitter receptors in the hippocampus, striatum and cerebral cortex one month after the implantation revealed that estrogenization was associated with: an increased density of 3H-domperidone binding sites (D2 receptors) in the striatum and reduced numbers of 3H-serotonin high affinity sites (5-HT1 receptors) in the hippocampus and of 3H-muscimol binding sites (GABA receptors) in the hippocampus, striatum and cerebral cortex. In contrast, the characteristics of 3H-spiperone binding to 5-HT2 receptors (in the cerebral cortex) and those of 3H-flunitrazepam binding to benzodiazepine sites (in the three brain regions examined) were not significantly different in estrogenized and in control female rats. However, the enhancing effect of GABA on 3H-flunitrazepam binding was markedly reduced in brain membranes from estrogenized animals. The respective roles of estradiol and prolactin in mediating these changes in neurotransmitter receptors are discussed notably with regard to the regional heterogeneity of estradiol binding capacity in the rat brain.  相似文献   

6.
The hypnotic drug quazepam and its active metabolite 2-oxo-quazepam (2-oxo-quaz) are two benzodiazepines (BZ) containing a trifluoroethyl moiety on the ring nitrogen at position 1, characterized by their preferential affinity for Type I BZ recognition sites. In the present study we characterized the binding of 3H-2-oxo-quaz in discrete areas of the human brain. Saturation analysis demonstrated specific and saturable binding of 3H-2-oxo-quaz to membrane preparations from human cerebellum. Hill plot analysis of displacement curves of 3H-flunitrazepam (3H-FNT) binding by 2-oxo-quaz yielded Hill coefficients of approximately 1 in the cerebellum and significantly less than 1 in the cerebral cortex, hippocampus, caudate nucleus, thalamus and pons. Self and cross displacement curves for 3H-FNT and 3H-2-oxo-quaz binding in these brain areas indicated that 2-oxo-quaz binds with different affinities to two populations of binding sites. High affinity binding sites were more abundant in the cerebellum (95% of total sites), cerebral cortex, hippocampus and thalamus, whereas low affinity sites were predominant in the caudate nucleus and pons. Competition studies of 3H-2-oxo-quaz (2 nM) and 3H-FNT (0.5 nM) using unlabelled ligands indicated that compounds which preferentially bind to Type I sites are more potent at displacing 3H-2-oxo-quaz than 3H-FNT from cerebral cortex membrane preparations. The results suggest that 3H-2-oxo-quaz may be used for selectively studying Type I BZ recognition sites in the human brain.  相似文献   

7.
Quazepam and 2-oxo-quazepam are novel benzodiazepines containing a trifluoroethyl substituent on the ring nitrogen at position #1. Detailed competition binding experiments (25 to 30 concs.) at 4 degrees C were undertaken with these compounds versus 3H-flunitrazepam using synaptic membranes from rat cortex or cerebellum. Unlike other benzodiazepines, both quazepam and 2-oxo-quazepam distinguished two populations of 3H-flunitrazepam binding sites in rat cortex which were present in roughly equal proportions and for which the compounds displayed a greater than 20-fold difference in affinity. In cerebellum, no such discrimination of sites was noted for 2-oxo-quazepam, but quazepam did distinguish a small, low affinity (15% of total) population of sites. 3H-2-oxo-quazepam was prepared and used in competition studies to substantiate the conclusion that these compounds discriminate two populations of benzodiazepine sites in rat cortex. This new radioligand was shown to specifically label BZ binding sites with high affinity in a saturable manner. The competition experiments were then conducted using 3H-2-oxo-quazepam at a radioligand concentration sufficiently low (0.5 nM) to ensure that only the higher affinity binding sites which 2-oxo-quazepam discriminates would be occupied. Competition experiments in both cortex and cerebellum under these conditions indicated single site binding for unlabelled quazepam and 2-oxo-quazepam in every instance. This suggests that 3H-2-oxo-quazepam should be a useful new tool for selectively labeling and studying the BZ1 population of benzodiazepine binding sites.  相似文献   

8.
Piracetam at a concentration of 10(-6) M was shown to behave as a noncompetitive inhibitor of 3H-imipramine specific binding to rat brain membranes. At the same time piracetam failed to influence specific binding of 3H-mianserin to membranes of guinea-pig cerebellum, which is indicative of its inability to suppress histamine H1 receptors, a component of 3H-imipramine specific binding sites. At a concentration of 10(-4) M piracetam does not change specific binding of 3H-flunitrazepam to rat hippocampal membranes in the absence of GABA, but in the presence of 5 X 10(-5) M GABA, like atypical tranquilizer mebicar, acts as a competitor of 3H-flunitrasepam binding. Though Ro-15 1788 did not suppress anxyolytic piracetam (and mebicar) effect, our results give evidence of a possible involvement of GABA-benzodiazepine supramolecular complex in the anxiolytic activity of piracetam.  相似文献   

9.
Premazepam (PRZ) in vitro competitively displaced 3H-diazepam (DIA), 3H-flunitrazepam (FLU) and 3H-RO 15-1788 from their binding sites on rat brain synaptosomes, with a potency intermediate to other benzodiazepines (BDZs), and Hill coefficients near 1 in different brain regions. Incubation at 37 degrees C reduced premazepam's affinity for BDZ receptors to a lower extent than other benzodiazepines and had no effect on the Hill coefficient. The IC50 of PRZ on 3H-RO 15-1788 and 3H-FLU binding was markedly reduced by GABA in rat cortex, like those of reference classical BDZs, but was GABA-independent in the cerebellum. The IC50 of the BDZ antagonist, RO 15-1788 was unaffected by GABA in both brain areas. The possibility that PRZ behaves as a partial agonist in the cortex and as an antagonist in the cerebellum is discussed.  相似文献   

10.
R J Marley  J M Wehner 《Life sciences》1987,40(23):2215-2224
Various populations of mice exhibit differential sensitivity to seizure-inducing agents. The relationship of seizure susceptibility to alterations in the GABA receptor complex was investigated in six different populations of mice consisting of four inbred strains (C57BL, DBA, C3H, and BALB) and two selected lines (long sleep and short sleep). Seizure activity was induced by intraperitoneal administration of the GAD inhibitor, 3-mercaptopropionic acid, and latencies to seizure onset and tonus were measured. In naive mice of the same populations, GABA enhancement of 3H-flunitrazepam binding was measured in extensively washed whole brain membranes at several GABA concentrations. Both differential seizure sensitivity to 3-mercaptopropionic acid and differential enhancement of 3H-flunitrazepam binding by GABA were observed in these six populations of mice. Correlational analyses indicated a positive correlation between the degree of GABA enhancement of 3H-flunitrazepam binding and resistance to the seizure-inducing properties of 3-mercaptopropionic acid. These data suggest that genetic differences in sensitivity to seizure-inducing agents that disrupt the GABAergic system may be related to differences in coupling between the various receptors associated with the GABA receptor complex.  相似文献   

11.
The effects of two anxiolytic beta-carboline derivatives, ZK 93423 and ZK 91296, on the binding of gamma-[3H]aminobutyric acid ([3H]GABA) to brain membrane preparations from rat cerebral cortex were examined. ZK 93423 concentration-dependently enhanced the specific binding of [3H]GABA, with a maximal increase of 45% above control at a 50 microM concentration. A less pronounced increase was induced by diazepam and by the partial agonist ZK 91296. Scatchard plot analysis revealed that the effect of ZK 93423 was due to an increase in the total number of high- and low-affinity GABA binding sites. The action of ZK 93423 was mediated by benzodiazepine recognition sites since it was blocked by the benzodiazepine antagonists Ro 15-1788 and ZK 93426 at concentrations that failed to modify [3H]GABA binding on their own. Moreover the stimulatory effect of ZK 93423 on [3H]GABA binding was also blocked by the beta-carboline inverse agonist ethyl beta-carboline-3-carboxylate. These results are consistent with the view that ZK 93423 and ZK 91296, similarly to benzodiazepines, exert their pharmacological effects by enhancing the GABAergic transmission at the level of the GABA/benzodiazepine receptor complex.  相似文献   

12.
Polyclonal antibodies have been raised against the GABA/benzodiazepine receptor purified to homogeneity from bovine cerebral cortex in deoxycholate and Triton X-100 media. Radioimmunoassay was applied to measure specific antibody production using the 125I-labelled gamma-aminobutyric acid (GABA)/benzodiazepine receptor as antigen. The antibodies specifically immunoprecipitated the binding sites for [3H]muscimol and for [3H]flunitrazepam from purified preparations. In addition, when a 3-[(3-cholamidopropyl)dimethylammonio] 1-propanesulphonate (CHAPS) extract of bovine brain membranes was treated with the antibodies, those sites as well as the [3H]propyl-beta-carboline-3-carboxylate binding, the [35S]t-butylbicyclophosphorothionate binding (TBPS), the barbiturate-enhanced [3H]flunitrazepam binding, and the GABA-enhanced [3H]flunitrazepam binding were all removed together into the immunoprecipitate. Western blot experiments showed that these antibodies recognise the alpha-subunit of the purified GABA/benzodiazepine receptor. These results further support the existence in the brain of a single protein, the GABAA receptor, containing a set of regulatory binding sites for benzodiazepines and chloride channel modulators.  相似文献   

13.
The early ontogeny of the central benzodiazepine receptor (BZR) was investigated in human embryos and fetuses between 7 and 26 weeks of gestation. Brain tissue was gained from terminated pregnancies or spontaneous abortions. Binding studies, which were performed with 3H-flunitrazepam (FNZ), revealed that specific benzodiazepine binding is already detectable at an embryonal age of 7 weeks post conceptionem. Binding at this early stage can be displaced potently by clonazepam and the inverse agonist beta-CCE. Additionally, 3H-FNZ binding is enhanced by GABA. Thus, benzodiazepine binding is of the central type. Receptor density increases steeply in whole brain between weeks 8 and 11 of gestation. In frontal cortex receptor density increases gradually between weeks 12 and 26 of gestation. No specific fetal disease entity (including trisomy 21) was consistently associated with exceptionally high or low Bmax-values.  相似文献   

14.
The brain benzodiazepine system has been implicated to be important in both the mechanism, and treatment of ethanol related syndromes. In this report evidence is presented which indicates that "peripheral type" benzodiazepine binding sites are probably more relevant than "central type" receptors for the neurochemical consequences of ethanol dependence and withdrawal states. Utilizing radioreceptor binding techniques 20-50% increases in the binding of [3H]RO-5-4864 (a "peripheral type" ligand) to brain membranes derived from rat cerebral cortex, cerebellum and hippocampus are observed in ethanol dependent rats. These increases persist for 3 days after cessation of ethanol. The number of [3H]RO-5-4864 binding sites in cerebellum returns to normal during 4-7 days after ethanol withdrawal. In all brain areas examined no changes were observed in the "central type" benzodiazepine receptor as judged by [3H]-ethyl-Beta-carboline-3-carboxylate, BCCE binding. Scatchard analysis revealed that the number of [3H]RO-5-4864 binding sites is increased in each brain area while the affinity was unchanged.  相似文献   

15.
The inhibition of flunitrazepam (FNP) binding to rat brain benzodiazepine (BZ) receptors by methyl beta-carboline-3-carboxylate (MCC) was studied. Biphasic dissociation was observed for [3H]FNP and [3H]MCC in cerebral cortex, cerebellum, and hippocampus, although the dissociation of [3H]MCC was much faster. The dissociation rate of [3H]FNP was increased by MCC in the cerebellum, but was not altered in cerebral cortex or hippocampus. [3H]FNP binding stimulated by gamma-aminobutyric acid was enhanced in the presence of MCC in all three regions examined. These results indicate that MCC exerts these effects by interacting with allosteric sites that are different from the FNP recognition sites on the BZ receptors.  相似文献   

16.
The present study was undertaken to identify and characterize in vivo binding sites of selective serotonin reuptake inhibitors (SSRIs) in the mouse brain by using [3H]paroxetine as radioligand. Relatively higher concentration of [3H]paroxetine was detected in the whole brain (minus cerebellum) than in the plasma of mice after the i.v. injection of the radioligand, and the half-life (t1/2) of elimination was much slower. The in vivo specific [3H]paroxetine binding in the mouse brain after the i.v. injection was defined as the difference of particulate-bound radioactivity between the whole brain and cerebellum, and it was dose-dependently attenuated by oral or intraperitoneal administration of fluoxetine (8.68-116 micromol/kg). Furthermore, oral administration of fluvoxamine, fluoxetine, paroxetine and sertraline at the pharmacologically relevant doses reduced significantly (25-94%) in vivo specific [3H]paroxetine binding in the cerebral cortex, striatum, hippocampus, thalamus and midbrain of mice, and their significant decreases were observed up to at least 8 h (fluvoxamine), 24 h (fluoxetine), and 12 h (paroxetine and sertraline) later. The value of area under the curve (AUC) for decrease in [3H]paroxetine binding vs. time in each brain region was largest for fluoxetine among these SSRIs, due to the relatively longer-lasting occupation of brain serotonin transporter. The AUC value in mouse brain after oral administration of each SSRI was 1.2-3.2 times greater in the thalamus and midbrain than in the cerebral cortex, striatum and hippocampus. Thus, the present study has revealed that [3H]paroxetine may be a suitable radioligand for in vivo characterization of brain binding sites and pharmacological effects of SSRIs.  相似文献   

17.
T L Smith 《Life sciences》1987,41(26):2863-2868
[3H]In(1,4,5)P3 specific binding was determined in membrane fragments from various brain regions of adult male C57/BL mice. [3H]In(1,4,5)P3 specific binding was at least 10 times higher in cerebellum than in either striatum, cerebral cortex, hippocampus, or midbrain. Ethanol added in vitro up to 500 mM to cerebellar membrane fragments of control mice had no significant effect on [3H]In(1,4,5)P3 specific binding. In contrast, the maximal number of binding sites (Bmax) for [3H]In(1,4,5)P3 was significantly decreased in cerebella from mice which had been rendered tolerant-dependent to ethanol. KD values for these mice were unchanged when compared to control values.  相似文献   

18.
Differential ontogeny of type 1 and type 2 benzodiazepine receptors   总被引:9,自引:0,他引:9  
The postnatal development of Type 1 and Type 2 benzodiazepine receptors in rat cerebral cortex was studied using CL 218,872, a novel triazolopyridazine. On postnatal day 1 most 3H-flunitrazepam binding sites appeared to be Type 2 receptors, which increased rapidly during the first week of life and reached adult levels by 3–4 weeks of age. Type 1 receptors, on the other hand, represented only a small percentage of the binding sites on postnatal day 1 and did not begin to increase in number until approximately 7–16 days of age. These results demonstrate a differential postnatal development of two sub-populations of benzodiazepine receptors.  相似文献   

19.
The regional distribution of [3H]zolpidem, a novel imidazopyridine hypnotic possessing preferential affinity for the BZD1 (benzodiazepine subtype 1) receptor, has been studied autoradiographically in the rat CNS and compared with that of [3H]flunitrazepam. The binding of [3H]zolpidem to rat brain sections was saturable, specific, reversible, and of high affinity (KD = 6.4 nM). It occurred at a single population of sites whose pharmacological characteristics were similar to those of the benzodiazepine receptors labeled with [3H]flunitrazepam. However, ethyl-beta-carboline-3-carboxylate and CL 218,872 were more potent displacers of [3H]zolpidem than of [3H]flunitrazepam. The autoradiographic brain distribution of [3H]zolpidem binding sites was qualitatively similar to that previously reported for benzodiazepine receptors. The highest levels of [3H]-zolpidem binding sites occurred in the olfactory bulb (glomerular layer), inferior colliculus, ventral pallidum, nucleus of the diagonal band of Broca, cerebral cortex (layer IV), medial septum, islands of Calleja, subthalamic nucleus, and substantia nigra pars reticulata, whereas the lowest densities were found in parts of the thalamus, pons, and medulla. Comparative quantitative autoradiographic analysis of the binding of [3H]zolpidem and [3H]flunitrazepam [a mixed BZD1/BZD2 (benzodiazepine subtype 2) receptor agonist] in the CNS revealed that the relative density of both 3H-labeled ligands differed in several brain areas. Similar levels of binding for both ligands were found in brain regions enriched in BZD1 receptors, e.g., substantia nigra pars reticulata, inferior colliculus, cerebellum, and cerebral cortex lamina IV. The levels of [3H]zolpidem binding were five times lower than those of [3H]flunitrazepam binding in those brain regions enriched in BZD2 receptors, e.g., nucleus accumbens, dentate gyrus, and striatum. Moreover, [3H]zolpidem binding was undetectable in the spinal cord (which contains predominantly BZD2 receptors). Finally, like CL 218,872 and ethyl-beta-carboline-3-carboxylate, zolpidem was a more potent displacer of [3H]flunitrazepam binding in brain regions enriched in BZD1 receptors than in brain areas enriched in BZD2 receptors. The present data add further support to the view that zolpidem, although structurally unrelated to the benzodiazepines, binds to the benzodiazepine receptor and possesses selectivity for the BZD1 receptor subtype.  相似文献   

20.
Participation was studied of central serotonin receptors of the first and second types in behaviour change of animals selected by the character of defensive reaction to man. Serotonin receptors were determined by radioligand method by binding of the brain preparations 3H-serotonin and 3H-spiperone. An increase of C2 receptors number was found in the frontal brain cortex of the tame brown rats in comparison with the aggressive ones. Differences were not found in specific C1-receptor binding in the frontal brain cortex of tame and aggressive brown rats, silver foxes and American minks in various relatively early selection stages. It is supposed that disappearance of aggressive reaction to man at domestication is connected with an increase of C2 receptors number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号