首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Macronuclear gene-sized molecules of hypotrichs.   总被引:7,自引:1,他引:6       下载免费PDF全文
The macronuclear genome of hypotrichous ciliates consists of DNA molecules of gene-sized length. A macronuclear DNA molecule contains a single coding region. We have analyzed the many hypotrich macronuclear DNA sequences sequenced by us and others. No highly conserved promoter sequences nor replication initiation sequences have been identified in the 5' nor in the 3' non-translated regions, suggesting that promoter function in hypotrichs may differ from other eukaryotes. The macronuclear genes are intron-poor; approximately 19% of the genes sequenced to date have one to three introns. Not all macronuclear DNA molecules may be transcribed; some macronuclear molecules may not have any coding function. Codon bias in hypotrichs is different in many respects from other ciliates and from other eukaryotes.  相似文献   

5.
6.
t-loops at trypanosome telomeres   总被引:14,自引:0,他引:14  
Mammalian telomeres form large duplex loops (t-loops) that may sequester chromosome ends by invasion of the 3' TTAGGG overhang into the duplex TTAGGG repeat array. Here we document t-loops in Trypanosoma brucei, a kinetoplastid protozoan with abundant telomeres due to the presence of many minichromosomes. These telomeres contained 10-20 kb duplex TTAGGG repeats and a 3' TTAGGG overhang. Electron microscopy of psoralen/UV cross-linked DNA revealed t-loops in enriched telomeric restriction fragments and at the ends of isolated minichromosomes. In mammals, t-loops are large (up to 25 kb), often comprising most of the telomere. Despite similar telomere lengths, trypanosome t-loops were much smaller (approximately 1 kb), indicating that t-loop sizes are regulated. Coating of non-cross-linked minichromosomes with Escherichia coli single-strand binding protein (SSB) often revealed 3' overhangs at both telomeres and several cross-linked minichromosomes had t-loops at both ends. These results suggest that t-loops and their prerequisite 3' tails can be formed on the products of both leading and lagging strand synthesis. We conclude that t-loops are a conserved feature of eukaryotic telomeres.  相似文献   

7.
Replication at the telomeres of the Streptomyces linear plasmid pSLA2   总被引:13,自引:6,他引:7  
The Streptomyces linear plasmid pSLA2 initiates DNA replication bidirectionally towards its telomeres from a site located near the centre of the molecule; at the telomeres, the recessed ends of lagging strands are filled in by non-displacing DNA synthesis. Here, we report experiments that test three proposed mechanisms for lagging-strand fill-in. We present data inconsistent with recombinational or terminal hairpin models for the formation of full-length duplex pSLA2 DNA. Instead, we find that deletions in short, distantly separated homologous palindromes in the leading-strand 3' overhang prevent propagation of linear pSLA2 DNA, implicating a mechanism of palindrome-mediated leading-strand fold-back in telomere replication. We further show that circularized pSLA2 DNA molecules are opened in vivo precisely at the terminal nucleotides of telomeres, generating functional linear replicons containing native telomeres covalently bound to a protein at their 5' DNA termini. Together, our results support a model in which pairing of multiple widely separated pSLA2 palindromes anchors the 3' end of the leading-strand overhang to a site near the overhang's base — providing a recognition site for terminal-protein-primed DNA synthesis and subsequent endonucleolytic processing. Thus, the replication of Streptomyces plasmid telomeres may have features in common with the mechanism proposed for telomere replication in autonomous parvoviruses.  相似文献   

8.
The genome of the protozoan Trypanosoma brucei contains a set of about 100 minichromosomes of about 50 to 150 kb in size. The small size of these chromosomes, their involvement in antigenic variation, and their mitotic stability make them ideal candidates for a structural analysis of protozoan chromosomes and their telomeres. We show that a subset of the minichromosomes is composed predominantly of simple-sequence DNA, with over 90% of the length of the minichromosome consisting of a tandem array of 177-bp repeats, indicating that these molecules have limited protein-coding capacity. Proceeding from the tip of the telomere to a chromosome internal position, a subset of the minichromosomes contained the GGGTTA telomere repeat, a 29-bp telomere-derived repeat, a region containing 74-bp G + C-rich direct repeats separated by approximately 155 bp of A + T-rich DNA that has a bent character, and 50 to 150 kb of the 177-bp repeat. Several of the minichromosome-derived telomeres did not encode protein-coding genes, indicating that the repertoire of telomeric variant cell surface glycoprotein genes is restricted to some telomeres only. The telomere organization in trypanosomes shares striking similarities to the organization of telomeres and subtelomeres in humans, yeasts, and plasmodia. An electron microscopic analysis of the minichromosomes showed that they are linear molecules without abnormal structures in the main body of the chromosome. The structure of replicating molecules indicated that minichromosomes probably have a single bidirectional origin of replication located in the body of the chromosome. We propose a model for the structure of the trypanosome minichromosomes.  相似文献   

9.
Telomeres containing vertebrate-type DNA repeats can be stably maintained in Saccharomyces cerevisiae cells. We show here that telomerase is required for growth of yeast cells containing these vertebrate-type telomeres. When present at the chromosome termini, these heterologous repeats elicit a DNA damage response and a certain deprotection of telomeres. The data also show that these phenotypes are due only to the terminal localization of the vertebrate repeats because if they are sandwiched between native yeast repeats, no phenotype is observed. Indeed and quite surprisingly, in this latter situation, telomeres are of virtually normal lengths, despite the presence of up to 50% of heterologous repeats. Furthermore, the presence of the distal vertebrate-type repeats can cause increased problems of the replication fork. These results show that in budding yeast the integrity of the 3' overhang is required for proper termination of telomere replication as well as protection.  相似文献   

10.
A J Varshavsky  O Sundin  M Bohn 《Cell》1979,16(2):453-466
Examination of DNA fragments produced from either formaldehyde-fixed or unfixed SV40 minichromosomes by multiple-cut restriction endonucleases has led to the following major results: Exhaustive digestion of unfixed minichromosomes with Hae III generated all ten major limit-digest DNA fragments as well as partial cleavage products. In striking contrast to this result, Hae III acted on formaldehyde-fixed minichromosomes to yield only one of the limit-digest fragments, F, which is located in the immediate vicinity of the origin of replication, spanning nucleotides 5169 and 250 on the DNA sequence map of Reddy et al. (1978). This 300 base pair (bp) fragment was released as naked DNA from formaldehyde-fixed, Hae III-digested minichromosomes following treatment either by pronase-SDS or by SDS alone. In the latter case, the remainder of the minichromosome retained its compact configuration as assayed by both sedimentational and electrophoretic methods. In minichromosomes, the F fragment is therefore not only accessible to Hae III at its ends, but is also neither formaldehyde cross-linked into any SDS-resistant nucleoprotein structure nor topologically "locked" within the compact minichromosomal particle. This same fragment was preferentially produced during the early stages of digestion of unfixed minichromosomes with Hae III, and its final yield in the exhaustive Hae III digest was significantly higher than that of other limit-digest fragments. Similar results were obtained upon digestion of either unfixed or formaldehyde-fixed minichromosomes with Alu I. In particular, of approximately twenty major limit-digest DNA fragments, only two fragments (F and P, encompassing nucleotides 5146 to 190, and 190 to 325, respectively) were produced by Alu I from the formaldehyde-fixed minichromosomes. All other restriction endonucleases tested (Mbo I, Mbo II, Hind III, Hin II+III and Hinf I), for which there are no closely spaced recognition sequences in the above mentioned regions of the SV40 genome, did not produce any significant amount of limit-digest DNA fragments from formaldehyde-fixed minichromosomes. These findings, taken together with our earlier data on the preferential exposure of the origin of replication in SV40 minichromosomes (Varshavsky, Sundin and Bohn, 1978), strongly suggest that a specific region of the "late" SV40 DNA approximately 400 bp long is uniquely exposed in the compact minichromosome. It is of interest that, in addition to the origin of replication, this region contains binding sites for T antigen (Tjian, 1977), specific tandem repeated sequences and apparently also the promoters for synthesis of late SV40 mRNAs (Fiers et al., 1978; Reddy et al., 1978).  相似文献   

11.
The intranuclear distribution of telomere DNA-binding protein and telomerase RNA in hypotrichous ciliates was revealed by indirect fluorescent antibody staining and in situ hybridization. The Oxytricha telomere protein colocalized with DNA, both being dispersed throughout the macronucleus except for numerous spherical foci that contained neither DNA nor the protein. Surprisingly, the telomerase RNA was concentrated in these foci; therefore, much of telomerase does not colocalize with telomeres. These foci persist through the cell cycle. They may represent sites of assembly, transport or stockpiling of telomerase and other ribonucleoproteins. During S phase, the macronuclear DNA replication machinery is organized into a disc-shaped structure called the replication band. Telomerase RNA is enriched in the replication band as judged by fluorescence intensity. We conclude that the localization of a subfraction of telomerase is coordinated with semiconservative DNA replication.  相似文献   

12.
Practical applications of minichromosomes, generated by de novo composition or by truncation of natural chromosomes, rely on stable transmission of these chromosomes. Functional centromeres, telomeres and replication origins are recognized as prerequisites for minichromosome stability. However, it is not yet clear whether, and if yes, to what degree the chromatin content has a qualitative or quantitative impact on stable chromosome transmission. A small translocation chromosome, which arose after X-irradiation of a reconstructed field bean karyotype, comprised approximately 5% of the haploid metaphase complement and was found to consist of three pieces of duplicated chromatin and a wild-type centromere. This chromosome was stably transmitted through all meristematic and pollen grain mitoses but was frequently lost during meiosis (66% loss in hemizygous and 33% in homozygous condition). This minichromosome was only a little smaller than stably segregating translocation chromosomes (comprising approximately 6% of the genome) of a euploid field bean karyotype. The duplications specific for this minichromosome did not influence meiotic segregation when associated with non-duplicated chromatin of other chromosomes. In comparison with minichromosomes of other species, the possibility of a lower size limit for a stable chromosome transmission must therefore be considered which might be based, for instance, on insufficient lateral support of centromeres or on insufficient bivalent stability due to the incapability of chiasma formation.  相似文献   

13.
The minichromosome Ch16 of the fission yeast Schizosaccharomyces pombe is derived from the centromeric region of chromosome III. We show that Ch16 and a shorter derivative, Ch12, made by gamma-ray cleavage, are linear molecules of 530 and 280 kilobases, respectively. Each minichromosome has two novel telomeres, as shown by genomic Southern hybridization with an S. pombe telomere probe. Comparison by hybridization of the minichromosomes and their chromosomal counterparts showed no signs of gross rearrangement. Cosmid clones covering the ends of the long arms of Ch16 and Ch12 were isolated, and subcloned fragments that contained the breakage sites were identified. They are apparently unique in the genome. By hybridization and Bal 31 digestion, the ends appear to consist of the broken-end sequences directly associated with short stretches (about 300 base pairs) of new DNA that hybridizes to a cloned S. pombe telomere. They do not contain the telomere-adjacent repeated sequences that are present in the normal chromosomes. The sizes of the short telomeric stretches are roughly the same as those of the normal chromosomes. Our results show that broken chromosomal ends in S. pombe can be healed by the de novo addition of the short telomeric repeats. The formation of Ch16 must have required two breakage-healing events, whereas a single cleavage-healing event in the long arm of Ch16 yielded Ch12.  相似文献   

14.
Mammalian telomeres contain a duplex TTAGGG-repeat tract terminating in a 3' single-stranded overhang. TRF2 protein has been implicated in remodeling telomeres into duplex lariats, termed t-loops, in vitro and t-loops have been isolated from cells in vivo. To examine the features of the telomeric DNA essential for TRF2-promoted looping, model templates containing a 500 bp double-stranded TTAGGG tract and ending in different single-stranded overhangs were constructed. As assayed by electron microscopy, looped molecules containing most of the telomeric tract are observed with TRF2 at the loop junction. A TTAGGG-3' overhang of at least six nucleotides is required for loop formation. Termini with 5' overhangs, blunt ends or 3' termini with non-telomeric sequences at the junction are deficient in loop formation. Addition of non-telomeric sequences to the distal portion of a 3' overhang beginning with TTAGGG repeats only modestly diminishes looping. TRF2 preferentially localizes to the junction between the duplex repeats and the single-stranded overhang. Based on these findings we suggest a model for the mechanism by which TRF2 remodels telomeres into t-loops.  相似文献   

15.
Macronuclear DNA of hypotrichous ciliates is organized in short gene-sized molecules, each containing all regulatory sequences for autonomous replication and expression. In these organisms the histone genes are not clustered but dispersed on different molecules of various sizes. Two histone H4 genes containing fragments, one of 1.7 kb and one of 2.8 kb, were found in the macronucleus of Stylonychia lemnae. Restriction and sequence data reveal that the two genes-sized pieces are derived from different micronuclear precursors. Both histone H4 genes code for the same protein of 103 aminoacids but differ greatly in their 5'-and 3'-regions.  相似文献   

16.
17.
Telomeres are highly conserved structures essential for maintaining the integrity of eukaryotic genomes. In yeast, ciliates and mammals, the G-rich strand of the telomere forms a 3' overhang on the chromosome terminus. Here we investigate the architecture of telomeres in the dicot plants Silene latifolia and Arabidopsis thaliana using the PENT (primer extension/nick translation) assay. We show that both Arabidopsis and Silene telomeres carry G-overhangs longer than 20-30 nucleotides. However, in contrast to yeast and ciliate telomeres, only half of the telomeres in Silene seedlings possess detectable G-overhangs. PENT reactions using a variety of primers and reaction conditions revealed that the remaining fraction of Silene telomeres carries either no overhangs or overhangs less than 12 nucleotides in length. G-overhangs were observed in Silene seeds and leaves, tissues that lack telomerase activity. These findings suggest that incomplete DNA replication of the lagging strand, rather than synthesis by telomerase, is the primary mechanism for G-overhang synthesis in plants. Unexpectedly, we found that the fraction of telomeres with detectable G-overhangs decreased from 50% in seedlings to 35% in leaves. The difference may reflect increased susceptibility of the G-overhangs to nuclease attack in adult leaves, an event that could act as a precursor for the catabolic processes accompanying leaf senescence  相似文献   

18.
The DNA in a micronucleus undergoes remarkable rearrangements when it develops into a macronucleus after cell mating in the hypotrichous ciliate. A Rab gene was isolated from the macronuclear plasmid mini-library of Euplotes octocarinatus. A micronuclear version of the Rab gene was amplified by polymerase chain reaction (PCR). The macronuclear DNA molecule carrying the Rab gene is 767 bp long and shows characteristics typical of macronuclear chromosomes of hypotrichous ciliates. Three of the five cysteines are encoded by the opal codon UGA. The deduced protein is a 207-amino acid (aa) with a molecular mass of 23 kDa. The protein shares 36% identity with Rab 1 protein of Plasmodium and yeast. Analysis of the sequences indicated that the micronuclear version of the Rab gene contains two internal eliminated sequences, internal eliminated sequence (IES)1 and IES2. IES1 is flanked by a pair of hepta-nucleotide 5'-AAATTTT-3' direct repeats, and IES2 is flanked by 5'-TA-3' direct repeats.  相似文献   

19.
The covalently closed terminal hairpins of the linear duplex-DNA genomes of the orthopoxvirus vaccinia and the leporipoxvirus Shope fibroma virus (SFV) have been cloned as imperfect palindromes within circular plasmids in yeast cells and recombination-deficient Escherichia coli. The viral telomeres inserted within these recombinant plasmids are equivalent to the inverted-repeat structures detected as telomeric replicative intermediates during poxvirus replication in vivo. Although the telomeres of vaccinia and SFV show little sequence homology, the termini from both viral genomes exist as AT-rich terminal hairpins with extrahelical bases and alternate "flip-flop" configurations. Using an in vivo replication assay in which circular plasmid DNA was transfected into poxvirus-infected cells, we demonstrated the efficient replication and resolution of the cloned imperfect palindromes to bona fide hairpin termini. The resulting linear minichromosomes, which were readily purified from transfected cells, were shown by restriction enzyme mapping and by electron microscopy to have intact covalently closed hairpin termini at both ends. In addition, staggered unidirectional deletion derivatives of both the cloned vaccinia and SFV telomeric palindromes localized an approximately 200-base-pair DNA region in which the sequence organization was highly conserved and which was necessary for the resolution event. These data suggest a conserved mechanism of the resolution of poxvirus telomeres.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号