首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Genes of the Polycomb group (PcG) are part of a cellular memory system that maintains appropriate inactive states of Hox gene expression in Drosophila. Here, we investigate the role of PcG genes in postembryonic development of the Drosophila CNS. We use mosaic-based MARCM techniques to analyze the role of these genes in the persistent larval neuroblasts and progeny of the central brain and thoracic ganglia. We find that proliferation in postembryonic neuroblast clones is dramatically reduced in the absence of Polycomb, Sex combs extra, Sex combs on midleg, Enhancer of zeste or Suppressor of zeste 12. The proliferation defects in these PcG mutants are due to the loss of neuroblasts by apoptosis in the mutant clones. Mutation of PcG genes in postembryonic lineages results in the ectopic expression of posterior Hox genes, and experimentally induced misexpression of posterior Hox genes, which in the wild type causes neuroblast death, mimics the PcG loss-of-function phenotype. Significantly, full restoration of wild-type-like properties in the PcG mutant lineages is achieved by blocking apoptosis in the neuroblast clones. These findings indicate that loss of PcG genes leads to aberrant derepression of posterior Hox gene expression in postembryonic neuroblasts, which causes neuroblast death and termination of proliferation in the mutant clones. Our findings demonstrate that PcG genes are essential for normal neuroblast survival in the postembryonic CNS of Drosophila. Moreover, together with data on mammalian PcG genes, they imply that repression of aberrant reactivation of Hox genes may be a general and evolutionarily conserved role for PcG genes in CNS development.  相似文献   

3.
4.
5.
The relatively simple central nervous system (CNS) of the Drosophila embryo provides a useful model system for investigating the mechanisms that generate and pattern complex nervous systems. Central to the generation of different types of neurons by precursor neuroblasts is the initial specification of neuroblast identity and the Drosophila segment polarity genes, genes that specify regions within a segment or repeating unit of the Drosophila embryo, have emerged recently as significant players in this process. During neurogenesis the segment polarity genes are expressed in the neuroectodermal cells from which neuroblasts delaminate and they continue to be expressed in neuroblasts and their progeny. Loss-of-function mutations in these genes lead to a failure in the formation of neuroblasts and/or specification of neuroblast identity. Results from several recent studies suggest that regulatory interactions between segment polarity genes during neurogenesis lead to an increase in the number of neuroblasts and specification of different identities to neuroblasts within a population of cells. BioEssays 21:472–485, 1999. © 1999 John Wiley & Sons, Inc.  相似文献   

6.
This study describes the structure and function of pox neuro (poxn), a gene previously isolated by virtue of a conserved domain, the paired box, which it shares with the segmentation genes paired and gooseberry. Its expression pattern has been analyzed, particularly during development of the PNS. We propose that poxn is a "neuroblast identity" gene acting in both the PNS and the CNS on the basis of the following evidence. Its expression is restricted to four neuronal precursors in each hemisegment: two neuronal stem cells (neuroblasts) in the CNS, and two sensory mother cells (SMCs) in the PNS. The SMCs that express poxn produce the poly-innervated external sense organs of the larva. In poxn- embryos, poly-innervated sense organs are transformed into mono-innervated. Conversely, ectopic expression of poxn in embryos transformed with a heat-inducible poxn gene can switch mono-innervated to poly-innervated sense organs. Expression of poxn in the wing disc is restricted to the SMCs of the poly-innervated sense organs, suggesting that poxn also determines the lineage of poly-innervated adult sense organs.  相似文献   

7.
Cell diversity in the Drosophila central nervous system (CNS) is primarily generated by the invariant lineage of neural precursors called neuroblasts. We used an enhancer trap screen to identify the ming gene, which is transiently expressed in a subset of neuroblasts at reproducible points in their cell lineage (i.e. in neuroblast 'sublineages'), suggesting that neuroblast identity can be altered during its cell lineage. ming encodes a predicted zinc finger protein and loss of ming function results in precise alterations in CNS gene expression, defects in axonogenesis and embryonic lethality. We propose that ming controls cell fate within neuroblast cell lineages.  相似文献   

8.
9.
Rhombomeres are regarded as the manifestation of innate segmentation within the vertebrate CNS. To investigate developmental changes occurring in the CNS and PNS, a series of chick embryos were immunostained with several monoclonal antibodies. The HNK-1-immunoreactivity (IR) appeared in rhombomeres (r) 3 and r5 around stage 15, when r2 and r4 were not stained. This alternate pattern is similar to the Krox-20 gene expression in the mouse embryo. At levels of r2 and r4, HNK-1+ neural crest cell masses were attached to the CNS forming cranial sensory ganglia. In these rhombomeres, an accumulation of neuroepithelial cells near the cranial nerve root and early development of neuroblasts in the basal plate were observed. The above observations seem to suggest that the alternate HNK-1-IR in rhombomeres might be related to the expression of cell adhesion molecules, and therefore also to the adhesion of the cranial ganglion precursors to the CNS, which takes place every other rhombomere in the preotic region. Thus, the alternate pattern of the HNK-1-IR seems to be related to the morphogenesis of preotic branchial nerves.  相似文献   

10.
The Drosophila embryo provides a useful model system to study the mechanisms that lead to pattern and cell diversity in the central nervous system (CNS). The Drosophila CNS, which encompasses the brain and the ventral nerve cord, develops from a bilaterally symmetrical neuroectoderm, which gives rise to neural stem cells, called neuroblasts. The structure of the embryonic ventral nerve cord is relatively simple, consisting of a sequence of repeated segmental units (neuromeres), and the mechanisms controlling the formation and specification of the neuroblasts that form these neuromeres are quite well understood. Owing to the much higher complexity and hidden segmental organization of the brain, our understanding of its development is still rudimentary. Recent investigations on the expression and function of proneural genes, segmentation genes, dorsoventral-patterning genes and a number of other genes have provided new insight into the principles of neuroblast formation and patterning during embryonic development of the fly brain. Comparisons with the same processes in the trunk help us to understand what makes the brain different from the ventral nerve cord. Several parallels in early brain patterning between the fly and the vertebrate systems have become evident.  相似文献   

11.
In Drosophila embryonic CNS, the multipotential stem cells called neuroblasts (NBs) divide by self-renewing asymmetric division and generate bipotential precursors called ganglion mother cells (GMCs). GMCs divide only once to generate two distinct post-mitotic neurons. The genes and the pathways that confer a single division potential to precursor cells or how neurons become post-mitotic are unknown. It has been suggested that the homeodomain protein Prospero (Pros) when localized to the nucleus, limits the stem-cell potential of precursors. Here we show that nuclear Prospero is phosphorylated, where it binds to chromatin. In NB lineages such as MP2, or GMC lineages such as GMC4-2a, Pros allows the one-division potential, as well as the post-mitotic status of progeny neurons. These events are mediated by augmenting the expression of Cyclin E in the precursor and repressing the expression in post-mitotic neurons. Thus, in the absence of Pros, Cyclin E is downregulated in the MP2 cell. Consequently, MP2 fails to divide, instead, it differentiates into one of the two progeny neurons. In progeny cells, Pros reverses its role and augments the downregulation of Cyclin E, allowing neurons to exit the cell cycle. Thus, in older pros mutant embryos Cyclin E is upregulated in progeny cells. These results elucidate a long-standing problem of division potential of precursors and post-mitotic status of progeny cells and how fine-tuning cyclin E expression in the opposite direction controls these fundamental cellular events. This work also sheds light on the post-translational modification of Pros that determines its cytoplasmic versus nuclear localization.  相似文献   

12.
Mouse cerebellar granule cells showed two types of migration behavior in microexplant cultures. They first migrated along their neurites, showing the typical contact guidance, and then oriented themselves at right angles to the parallel neurites, thus exhibiting the 'perpendicular contact guidance' (Nakatsuji, N. and Nagata, I. 1989 Development, 106, 441-447). To study whether other neurons have the capacity to show similar 'perpendicular contact guidance', we cultured dissociated neuroblasts from various parts of CNS or PNS on parallel neurite bundles. The PNS neuroblasts always extended their processes parallel to the neurite bundle. In contrast, almost all kinds of CNS neuroblasts tested oriented their processes both perpendicular and parallel to the neurite bundles that were all free of glia. Time-lapse video recording revealed that neuroblasts migrated in both directions. Thus, CNS neuroblasts possess the capacity to migrate and extend their processes at right angles to the substratum of heterotypic neurite bundles, which may play an important role in histogenesis of the CNS during development.  相似文献   

13.
Within euarthropods, the morphological and molecular mechanisms of early nervous system development have been analysed in insects and several representatives of chelicerates and myriapods, while data on crustaceans are fragmentary. Neural stem cells (neuroblasts) generate the nervous system in insects and in higher crustaceans (malacostracans); in the remaining euarthropod groups, the chelicerates (e.g. spiders) and myriapods (e.g. millipedes), neuroblasts are missing. In the latter taxa, groups of neural precursors segregate from the neuroectoderm and directly differentiate into neurons and glial cells. In all euarthropod groups, achaete–scute homologues are required for neuroblast/neural precursor group formation. In the insects Drosophila melanogaster and Tribolium castaneum achaete–scute homologues are initially expressed in clusters of cells (proneural clusters) in the neuroepithelium but expression becomes restricted to the future neuroblast. Subsequently genes such as snail and prospero are expressed in the neuroblasts which are required for asymmetric division and differentiation. In contrast to insects, malacostracan neuroblasts do not segregate into the embryo but remain in the outer neuroepithelium, similar to vertebrate neural stem cells. It has been suggested that neuroblasts are present in another crustacean group, the branchiopods, and that they also remain in the neuroepithelium. This raises the questions how the molecular mechanisms of neuroblast selection have been modified during crustacean and insect evolution and if the segregation or the maintenance of neuroblasts in the neuroepithelium represents the ancestral state. Here we take advantage of the recently published Daphnia pulex (branchiopod) genome and identify genes in Daphnia magna that are known to be required for the selection and asymmetric division of neuroblasts in the fruit fly D. melanogaster. We unambiguously identify neuroblasts in D. magna by molecular marker gene expression and division pattern. We show for the first time that branchiopod neuroblasts divide in the same pattern as insect and malacostracan neuroblasts. Furthermore, in contrast to D. melanogaster, neuroblasts are not selected from proneural clusters in the branchiopod. Snail rather than ASH is the first gene to be expressed in the nascent neuroblasts suggesting that ASH is not required for the selection of neuroblasts as in D. melanogaster. The prolonged expression of ASH in D. magna furthermore suggests that it is involved in the maintenance of the neuroblasts in the neuroepithelium. Based on these and additional data from various representatives of arthropods we conclude that the selection of neural precursors from proneural clusters as well as the segregation of neural precursors represents the ancestral state of neurogenesis in arthropods. We discuss that the derived characters of malacostracans and branchiopods – the absence of neuroblast segregation and proneural clusters – might be used to support or reject the possible groupings of paraphyletic crustaceans.  相似文献   

14.
15.
In vertebrates, the sensory neurons of the epibranchial (EB) ganglia transmit somatosensory signals from the periphery to the CNS. These ganglia are formed during embryogenesis by the convergence and condensation of two distinct populations of precursors: placode-derived neuroblasts and neural crest- (NC) derived glial precursors. In addition to the gliogenic crest, chondrogenic NC migrates into the pharyngeal arches, which lie in close proximity to the EB placodes and ganglia. Here, we examine the respective roles of these two distinct NC-derived populations during development of the EB ganglia using zebrafish morphant and mutants that lack one or both of these NC populations. Our analyses of mutant and morphant zebrafish that exhibit deficiencies in chondrogenic NC at early stages reveal a distinct requirement for this NC subpopulation during early EB ganglion assembly and segmentation. Furthermore, restoration of wildtype chondrogenic NC in one of these mutants, prdm1a, is sufficient to restore ganglion formation, indicating a specific requirement of the chondrogenic NC for EB ganglia assembly. By contrast, analysis of the sox10 mutant, which lacks gliogenic NC, reveals that the initial assembly of ganglia is not affected. However, during later stages of development, EB ganglia are dispersed in the sox10 mutant, suggesting that glia are required to maintain normal EB ganglion morphology. These results highlight novel roles for two subpopulations of NC cells in the formation and maintenance of EB ganglia: chondrogenic NC promotes the early-stage formation of the developing EB ganglia while glial NC is required for the late-stage maintenance of ganglion morphology.  相似文献   

16.
Group B Sox-domain proteins encompass a class of conserved DNA-binding proteins expressed from the earliest stages of metazoan CNS development. In all higher organisms studied to date, related Group B Sox proteins are co-expressed in the developing CNS; in vertebrates there are three (Sox1, Sox2 and Sox3) and in Drosophila there are two (SoxNeuro and Dichaete). It has been suggested there may be a degree of functional redundancy in Sox function during CNS development. We describe the CNS phenotype of a null mutation in the Drosophila SoxNeuro gene and provide the first direct evidence for both redundant and differential Sox function during CNS development in DROSOPHILA: In the lateral neuroectoderm, where SoxNeuro is uniquely expressed, SoxNeuro mutants show a loss or reduction of achaete expression as well as a loss of many correctly specified lateral neuroblasts. By contrast, in the medial neuroectoderm, where the expression of SoxNeuro and Dichaete overlaps, the phenotypes of both single mutants are mild. In accordance with an at least partially redundant function in that region, SoxNeuro/Dichaete double mutant embryos show a severe neural hypoplasia throughout the central nervous system, as well as a dramatic loss of achaete expressing proneural clusters and medially derived neuroblasts. However, the finding that Dichaete and SoxN exhibit opposite effects on achaete expression within the intermediate neuroectoderm demonstrates that each protein also has region-specific unique functions during early CNS development in the Drosophila embryo.  相似文献   

17.
J R Jacobs  Y Hiromi  N H Patel  C S Goodman 《Neuron》1989,2(6):1625-1631
Previous studies described three different classes of glial cells in the developing CNS of the early Drosophila embryo that prefigure and ensheath the major CNS axon tracts. Among these are 6 longitudinal glial cells on each side of each segment that overlie the longitudinal axon tracts. Here we use transformant lines carrying a P element containing a 130 bp sequence from the fushi tarazu gene in front of the lacZ reporter gene to direct beta-galactosidase expression in the longitudinal glia. Using this molecular lineage marker, we show that 1 of the "neuroblasts" in each hemisegment is actually a glioblast, which divides once symmetrically, in contrast to the typical asymmetric neuroblast divisions, producing 2 glial cells, which migrate medially and divide to generate the 6 longitudinal glial cells. As with neuroblasts, mutations in Notch and other neurogenic genes lead to supernumerary glioblasts. The results indicate that the glioblast is similar to other neuroblasts; however, the positionally specified fate of this blast cell is to generate a specific lineage of glia rather than a specific family of neurons.  相似文献   

18.
Neurogenesis in the ventral CNS of Drosophila was studied using staining with toluidine blue and birth dating of cells monitored by incorporation of bromodeoxyuridine into DNA. The ventral CNS of the larva contains sets of neuronal stem cells (neuroblasts) which are thought to be persistent embryonic neuroblasts. Each thoracic neuromere has at least 47 of these stem cells whereas most abdominal neuromeres possess only 6. They occur in stereotyped locations so that the same neuroblast can be followed from animal to animal. The thoracic neuroblasts begin enlarging at 18-26 hr of larval life, DNA synthesis commences by 31-36 hr, and the first mitoses occur shortly thereafter. Mitotic activity continues through the remainder of larval life with the neuroblasts showing a minimum cell cycle time of less than 55 min during the late third larval instar. By 12 hr after pupariation each neuroblast has produced approximately 100 progeny which are collected with it into a discrete packet. The progeny accumulate in an immature, arrested state and only finish their differentiation into mature neurons with the onset of metamorphosis. Most of the abdominal neuroblasts differ from their thoracic counterparts in their minimum cell cycle time (less than 2 hr) and the duration of proliferation (from about 50 to 90 hr of larval life). Neurons produced during the larval stage account for more than 90% of the cells found in the ventral CNS of the adult.  相似文献   

19.
The nervous systems in most bilaterians are centralized, composed of central nervous systems (CNS) and peripheral nervous systems (PNS). Common molecular and cellular patterns of medial nerve cords have been observed in various distantly related bilaterians, suggesting deep homology of CNS. The development patterns of PNS, however, are more diverse than CNS across different phylogenetic lineages and the evolution of PNS so far has been thought to be polygenic. The molecular and cellular programs during the development of PNS among different bilaterian branches are drastically different. For example, vertebrate PNS is essentially derived from neural crest cells and placodes, which are largely vertebrate innovations and do not exist in invertebrates. On the other hand, the lack of common precursor cell types does not necessarily lead to the conclusion of different evolutionary origins. Homology needs to be examined with a deeper and broader scope. In this review, we examined the molecular, cellular and developmental characteristics of PNS in a broad range of bilaterians to summarize our current understanding of variation and potentially conserved themes. These comparisons demonstrate that there exist both migratory and non-migratory neuroblasts in the lateral border of CNS precursors in most model bilaterian animals. These lateral border neuroblasts are specified by conserved gene regulatory network and give rise to sensory neurons, suggesting that lateral border neuroblasts represent the progenitor of PNS and share deep homology among different branches of Bilateria. Future studies are needed to elucidate the evo-devo mechanisms of the lateral neural borders as PNS progenitors.  相似文献   

20.
Adult specific neurons in the central nervous system of holometabolous insects are generated by the postembryonic divisions of neuronal stem cells (neuroblasts). In the ventral nervous system of Drosophila melanogaster, sex-specific divisions by a set of abdominal neuroblasts occur during larval and early pupal stages. Animals mutant for several sex-determining genes were analyzed to determine the genetic regulation of neuroblast commitment to the male or female pattern of division and the time during development when these decisions are made. We have found that the choice of the sexual pathway taken by sex-specific neuroblasts depends on the expression of one of these genes, doublesex (dsx). In the absence of any functional dxs+ products, the sex-specific neuroblasts fail to undergo any postembryonic divisions in male or female larval nervous systems. From the analysis of intersexes generated by dominant alleles of dsx, it has been concluded that the same neuroblasts provide the sex-specific neuroblasts in both male and female central nervous systems. The time when neuroblasts become committed to generate their sex-specific divisions were identified by shifting tra-2ts flies between the male- and female-specifying temperatures at various times during larval development. Neuroblasts become determined to adopt a male or female state at the end of the first larval instar, a time when abdominal neuroblasts enter their first postembryonic S-phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号