首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Surface immobilization of biomolecules is a fundamental step in several experimental techniques such as surface plasmon resonance analysis and microarrays. Oxime ligation allows reaching chemoselective protein immobilization with the retention of native-like conformation by proteins. Beside the need for chemoselective ligation of molecules to surface/particle, equally important is the controlled release of the immobilized molecules, even after a specific binding event. For this purpose, we have designed and assessed in an SPR experiment a peptide linker able to (i) anchor a given protein (enzymes, receptors, or antibodies) to a surface in a precise orientation and (ii) release the immobilized protein after selective enzymatic cleavage. These results open up the possibility to anchor to a surface a protein probe leaving bioactive sites free for interaction with substrates, ligands, antigens, or drugs and successively remove the probe-ligand complex by enzymatic cleavage. This peptide linker can be considered both an improvement of SPR analysis for macromolecular interaction and a novel strategy for drug delivery and biomaterial developments.  相似文献   

2.
Various activated supports (cyanogen bromide, glutaraldehyde, epoxy-chelates, primary amino) were evaluated for the immobilization of IgG anti-horseradish peroxidase. Cyanogen bromide and glutaraldehyde supports greatly reduced the recognition capacity of the antigen, probably due to the incorrect orientation of the antibody on the support. Hetero-functional epoxy-chelate and immobilization by the sugar chain on primary amino groups had little effect on high recognition of the antigen (near to the theoretically expected value). However, the immobilization by the sugar chain resulted in a higher adsorption rate of horseradish peroxidase, possibly due to a favourable orientation on a flexible spacer arm). Antibodies immobilized on aminated surfaces showed two major drawbacks. Firstly, the biological activity of the immobilized antibody sharply decreased over several days when stored at low ionic strength, although this effect could be partially reversed by incubation at high ionic strength. Secondly, a high level of non-specific proteins adsorption on the support surface was observed. Both problems could be successfully resolved by controlling the coating of the support with aldehyde-aspartic-dextran. We propose that the loss of biological activity was related to the ionic adsorption of the immobilized antibody on the support surface, leading to a blocking of the recognition areas. This optimized protocol was applied to the immobilization of IgG anti-horseradish peroxidase from rabbit on magnetic nano-particles. A 10 microg preparation of nano-particles was able to capture more than 75% of the 0.1 microgram of recombinant horseradish peroxidase present in 10 L of crude protein extract (1g/L) from Escherichia coli.  相似文献   

3.
Antibody immobilization on a solid surface is inevitable in the preparation of immunochips/sensors. Antibody-binding proteins such as proteins A and G have been extensively employed to capture antibodies on sensor surfaces with right orientations, maintaining their full functionality. Because of their synthetic versatility and stability, in general, small molecules have more advantages than proteins. Nevertheless, no small molecule has been used for oriented and specific antibody immobilization. Here is described a novel strategy to immobilize an antibody on various sensor surfaces by using a small antibody-binding peptide. The peptide binds specifically to the Fc domain of immunoglobulin G (IgG) and, therefore, affords a properly oriented antibody surface. Surface plasmon resonance analysis indicated that a peptide linked to a gold chip surface through a hydrophilic linker efficiently captured human and rabbit IgGs. Moreover, antibodies captured by the peptide exhibited higher antigen binding capacity compared with randomly immobilized antibodies. Peptide-mediated antibody immobilization was successfully applied on the surfaces of biosensor substrates such as magnetic particles and glass slides. The antibody-binding peptide conjugate introduced in this work is the first small molecule linker that offers a highly stable and specific surface platform for antibody immobilization in immunoassays.  相似文献   

4.
The performance of immunosensors is highly dependent on the amount of immobilized antibodies and their remaining antigen binding capacity. In this work, a method for immobilization of antibodies on a two-dimensional carboxyl surface has been optimized using quartz crystal microbalance biosensors. We show that successful immobilization is highly dependent on surface pKa, antibody pI, and pH of immobilization buffer. By the use of EDC/sulfo-NHS (1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride/N-hydroxysulfosuccinimide) activation reagents, the effect of the intrinsic surface pKa is avoided and immobilization at very low pH is therefore possible, and this is important for immobilization of acidic proteins. Antigen binding capacity as a function of immobilization pH was studied. In most cases, the antigen binding capacity followed the immobilization response. However, the antigen-to-antibody binding ratio differed between the antibodies investigated, and for one of the antibodies the antigen binding capacity was significantly lower than expected from immobilization in a certain pH range. Tests with anti-Fc and anti-Fab2 antibodies on different antibody surfaces indicated that the orientation of the antibodies on the surface had a profound effect on the antigen binding capacity of the immobilized antibodies.  相似文献   

5.
The possibility of using multiple antigenic peptides (MAP) not only for the production and characterisation of antibodies but also for their purification by affinity chromatography, has been explored with two different tetrametic MAPs synthesised starting from a tetradentate lysine core. Recognition selectivity and specificity of the mulltimeric antigents were retained after immobilization on preactivated affinity supports, allowing convenient antibody purification directly from crude sera in a single chromatographic step. Since antibodies raised against MAPs recognise very frequently the N-terminal portion of the peptide antigen, results suggest that only a limited number of peptide chains remains covalently linked to the solid phase, leaving the others uncoupled and free to interact fully with the antibody. Recovery of antibody immunoreactivity from affinity purifications on MAP-columns was much higher than that obtained from columns prepared by immobilizing at the same density the corresponding linear peptide antigen. The purity of thus obtained antibodies is also far superior, as detected by SDS-PAGE analysis. Retention of the multimeric peptide recognition properties for the corresponding antibodies after immobilization on solid supports suggests that production, characteriszation, and even the affinity purification of anti-peptide antibodies, could be carried out simply and conveniently via the synthesis of a single multimeric antigen, without additional steps.  相似文献   

6.
The use of polyclonal antibodies to screen random peptide phage display libraries often results in the recognition of a large number of peptides that mimic linear epitopes on various proteins. There appears to be a bias in the use of this technology toward the selection of peptides that mimic linear epitopes. In many circumstances the correct folding of a protein immunogen is required for conferring protection. The use of random peptide phage display libraries to identify peptide mimics of conformational epitopes in these cases requires a strategy for overcoming this bias. Conformational epitopes on the hydatid vaccine EG95 have been shown to result in protective immunity in sheep, whereas linear epitopes are not protective. In this paper we describe a strategy that results in the purification of polyclonal antibodies directed against conformational epitopes while eliminating antibodies directed against linear epitopes. These affinity purified antibodies were then used to select a peptide from a random peptide phage display library that has the capacity to mimic conformational epitopes on EG95. This peptide was subsequently used to affinity purify monospecific antibodies against EG95.  相似文献   

7.
The immobilization of an antibody is one of the key technologies that are used to enhance the sensitivity and efficiency of the detection of target molecules in immunodiagnosis and immunoseparation. Recombinant antibody fragments such as VHH, scFv and Fabs produced by microorganisms are the next generation of ligand antibodies as an alternative to conventional whole Abs due to a smaller size and the possibility of site-directed immobilization with uniform orientation and higher antigen-binding activity in the adsorptive state. For the achievement of site-directed immobilization, affinity peptides for a certain ligand molecule or solid support must be introduced to the recombinant antibody fragments. In this mini-review, immobilization technologies for the whole antibodies (whole Abs) and recombinant antibody fragments onto the surfaces of plastics are introduced. In particular, the focus here is on immobilization technologies of recombinant antibody fragments utilizing affinity peptide tags, which possesses strong binding affinity towards the ligand molecules. Furthermore, I introduced the material-binding peptides that are capable of direct recognition of the target materials. Preparation and immobilization strategies for recombinant antibody fragments linked to material-binding peptides (polystyrene-binding peptides (PS-tags) and poly (methyl methacrylate)-binding peptide (PMMA-tag)) are the focus here, and are based on the enhancement of sensitivity and a reduction in the production costs of ligand antibodies. This article is part of a Special Issue entitled: Recent advances in molecular engineering of antibody.  相似文献   

8.
Fu J  Reinhold J  Woodbury NW 《PloS one》2011,6(4):e18692

Background

Chemistry and particularly enzymology at surfaces is a topic of rapidly growing interest, both in terms of its role in biological systems and its application in biocatalysis. Existing protein immobilization approaches, including noncovalent or covalent attachments to solid supports, have difficulties in controlling protein orientation, reducing nonspecific absorption and preventing protein denaturation. New strategies for enzyme immobilization are needed that allow the precise control over orientation and position and thereby provide optimized activity.

Methodology/Principal Findings

A method is presented for utilizing peptide ligands to immobilize enzymes on surfaces with improved enzyme activity and stability. The appropriate peptide ligands have been rapidly selected from high-density arrays and when desirable, the peptide sequences were further optimized by single-point variant screening to enhance both the affinity and activity of the bound enzyme. For proof of concept, the peptides that bound to β-galactosidase and optimized its activity were covalently attached to surfaces for the purpose of capturing target enzymes. Compared to conventional methods, enzymes immobilized on peptide-modified surfaces exhibited higher specific activity and stability, as well as controlled protein orientation.

Conclusions/Significance

A simple method for immobilizing enzymes through specific interactions with peptides anchored on surfaces has been developed. This approach will be applicable to the immobilization of a wide variety of enzymes on surfaces with optimized orientation, location and performance, and provides a potential mechanism for the patterned self-assembly of multiple enzymes on surfaces.  相似文献   

9.
Antimicrobial peptides (AMPs) have recently gained attention as potentially valuable diagnostic and therapeutic agents. The utilization of these peptides for diagnostic purposes relies on the ability to immobilize them on the surface of a detection platform in a predictable and reliable manner that facilitates target binding. The method for attachment of peptides to a solid support is guided by peptide length, amino acid composition, secondary structure, and the nature of the underlying substrate. While immobilization methods that target amine groups of amino acid sequences are widely used, they can result in heterogeneous conjugation at multiple sites on a peptide and have direct implications for peptide presentation and function. Using two types of commercial amine‐reactive microtiter plates, we described the effects of analogous immobilization chemistries on the surface attachment of AMPs and their differential binding interaction with Gram‐specific bacterial biomarkers, lipopolysaccharide and lipoteichoic acid. As might be expected, differences in overall binding affinities were noted when comparing AMPs immobilized on the two types of plates. However, the two‐amine‐targeted linking chemistries also affected the specificity of the attached peptides; lipopolysaccharide generally demonstrated a preference for peptides immobilized on one type of plate, while (when observed at all) lipoteichoic acid bound preferentially to AMPs immobilized on the other type of plate. These results demonstrate the potential for tuning not only the binding affinities but also the specificities of immobilized AMPs by simple alterations in linking strategy. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

10.
在免疫分析和生物芯片中,抗原-抗体特异性结合被广泛应用,其中抗体的固定化是研发高效诊断和分离工具的关键环节。生物分子工程、材料化学与交联剂化学的进步极大地促进了抗体固定化技术的发展。 抗体可以通过物理吸附、共价偶联和亲和相互作用固定到不同类型的固相表面。 抗体固定化的目标是以一种正确的空间取向将抗体固定到固相表面,在完全保留抗体构象和活性的同时最大化抗原的结合能力,这对固相化抗体的分析性能至关重要。 对固定抗体到固相载体表面的各种最新方法进行了阐述,包括物理吸附法,通过羧基、氨基、巯基、糖基和点击化学的共价结合法以及基于生物亲和作用的固定法,并对固定化抗体的表征方法进行了归纳,最后对抗体固定化方法的发展方向进行了展望。  相似文献   

11.
Development of immunobiosensor detector surfaces involves the immobilization of active antibodies on the capture surface without any significant loss of antigen binding activity. An atomic force microscope (AFM) was used to directly evaluate specific interactions between pesticides and antibodies on a biosensor surface. Oriented immobilization of antibodies against two herbicide molecules 2,4-dichlorophenoxyacetic acid (2,4-D) and atrazine, on gold, was carried out to create the active immunobiosensor surfaces. The adhesive forces between immobilized antibodies and their respective antigens were measured by force spectroscopy using hapten-carrier protein functionalized AFM cantilevers. Relative functional affinity (avidity) measurements of the antibodies carried out prior to immobilization, well correlated with subsequent AFM force measurement observations. Analysis showed that immobilization had not compromised the reactivity of the surface immobilized antibody molecules for antigen nor was there any change in their relative quality with respect to each other. The utility of the immunoreactive surface was further confirmed using a Surface Plasmon Resonance (SPR) based detection system. Our study indicates that AFM can be utilized as a convenient immunobiosensing tool for confirming the presence and also assessing the strength of antibody-hapten interactions on biosensor surfaces under development.  相似文献   

12.
Antibodies (Ab) are commonly used in affinity chromatography (AC) as a versatile and specific means of isolating target molecules from complex mixtures. A number of procedures have been developed to immobilize antibodies on the solid matrix. Some of these methods couple the antibody via chemical groups that may be important for specific recognition of antigen, resulting in loss of functionality in a proportion of the antibodies. In other methods, the outcome of immobilization is coupling via unique sites in the Fc region of the antibody molecule, ensuring orientation of the antibody combining sites (Fab) towards the mobile phase. This review discusses the advantages and disadvantages of the various methods available for immobilization and outlines protocols for site-directed, covalent coupling of the antibody to the solid phase that essentially retains the activity of the antibody.  相似文献   

13.
Antigens immobilized on solid supports may be used to detect or purify their corresponding antibodies (Ab) from serum. Direct immobilization of antigens on support surfaces (through short spacer arms) may promote interesting stabilizing effects on the immobilized antigen. However, the proximity of the support may prevent the interaction of some fractions of polyclonal Ab with some regions of the antigen (those placed in close contact with the support surface). Horseradish peroxidase (HRP) was immobilized on agarose by different protocols of multipoint covalent immobilization involving different regions of the antigen surface. Glyoxyl-agarose, BrCN-agarose, and glutaraldehyde-agarose were used as activated supports. Each HRP-immobilized preparation was much more stable than the soluble enzyme, but it was only able to adsorb up to 60-70% of a mixture of polyclonal anti-HRP antibodies. On the other hand, HRP was also immobilized on agarose through a very long, flexible, and hydrophilic spacer arm (dextran). This immobilized HRP was hardly stabilized, but it was able to adsorb 100% of the polyclonal anti-HRP. The absence of steric hindrances seems to play a critical role favoring the complete recognition of all classes of polyclonal Ab. Another solution to achieve a complete adsorption of polyclonal Ab on immobilized-stabilized antigens has been also reached by using a mixture of the differently immobilized and stabilized HRP-agarose preparations. In this case, an improved storage and operational stabilities of the immobilized antigens can be combined with the complete adsorption of any class of antibody.  相似文献   

14.
The major histocompatibility complex class I molecules are receptors for intracellular peptides, both of self and non-self origin. When non-self peptides (eg., pathogen derived) are bound to the class I molecules, they form ligands for T cell receptors resulting in antigen specific lysis of the infected cells by cytotoxic T lymphocytes. Therefore, an understanding of the process of antigen recognition requires the precise definition of the structural features of the bimolecular complex formed by a single well defined antigenic peptide bound to the class I molecule. A strategy using antibodies was developed to probe the structural features of the H-2Kb containing a defined peptide in the antigen cleft. We report that the binding surface area of a Kb specific monoclonal antibody (28-13-3s) includes residues in the alpha 1 (Gly56 and Glu58) and alpha 2 (Trp167) helices of Kb thus, binding across the antigen binding groove. When cells treated with the antigenic peptide of vesicular stomatitis virus, N52-59, and its alanine substituted analogs were tested for 28-13-3s binding, it was found that position 1 of the peptide also forms a part of the antibody binding site. This finding strongly supports the positioning of the N-terminus of N52-59 proximal to pocket A, thus, assuming an orientation parallel to the alpha 1 helix.  相似文献   

15.
Chiari M  Cretich M  Corti A  Damin F  Pirri G  Longhi R 《Proteomics》2005,5(14):3600-3603
Microarraying peptides is a powerful proteomics technique for studying molecular recognition events. Since peptides have small molecular mass, they are not easily accessible when adsorbed onto solid supports. Moreover, peptides can lack a well-defined three-dimensional structure, and therefore a correct orientation is essential to promote the interaction with their target. In this work, we investigated the suitability as a peptide array substrate of a glass slide coated with a copolymer of N,N-dimethylacrylamide, N,N-acryloyloxysuccinimide, and [3-(methacryloyl-oxy)propyl]trimethoxysilyl. This polymeric surface was used as substrate for peptides in the characterization of linear antigenic sites of human chromogranin A, a useful tissue and serum marker for neuroendocrine tumors and a precursor of many biologically active peptides. The microarray support provided sufficient accessibility of the ligand, with no need for a spacer, as the polymer chains prevent interaction of immobilized peptides with substrate. In addition, the polymeric surface constitutes an aqueous micro-environment in which linear epitopes are freely exposed despite peptide random orientation. The results reported in this article are in accordance with those obtained in conventional ELISA assays using biotinylated and non-biotinylated peptides.  相似文献   

16.
Peptide microarrays displaying biologically active small synthetic peptides in a high-density format provide an attractive technology to probe complex samples for the presence and/or function of protein analytes. We present a new approach for manufacturing functional peptide microarrays for molecular immune diagnostics. Our method relies on the efficiency of site-specific solution-phase coupling of biotinylated synthetic peptides to NeutrAvidin (NA) and localized microdispensing of peptide-NA-complexes onto activated glass surfaces. Antibodies are captured in a sandwich manner between surface immobilized peptide probes and fluorescence-labeled secondary antibodies. Our work includes a total of 54 peptides derived from immunodominant linear epitopes of the T7 phage capsid protein, Herpes simplex virus glycoprotein D, c-myc protein, and three domains of the Human coronavirus polymerase polyprotein and their cognate mAbs. By using spacer molecules of different type and length for NA-mediated peptide presentation, we show that the incorporation of a minimum spacer length is imperative for antibody binding, whereas the peptide immobilization direction has only secondary importance for antibody affinity and binding. We further demonstrate that the peptide array is capable of detecting low-picomolar concentrations of mAbs in buffered solutions and diluted human serum with high specificity.  相似文献   

17.
Novel polymer nanoparticles were prepared for the selective capture of a specific protein from a mixture with high effectiveness. The nanoparticle surface was covered with hydrophilic phosphorylcholine groups and active ester groups for easy immobilization of antibodies. Phospholipid polymers (PMBN) composed of 2-methacryloyloxyethyl phosphorylcholine, n-butyl methacrylate, and p-nitrophenyloxycarbonyl polyethyleneglycol methacrylate, were synthesized for the surface modification of poly( l-lactic acid) nanoparticles. Surface analysis of the nanoparticles using laser-Doppler electrophoresis and X-ray photoelectron spectroscopy revealed that the surface of nanoparticles was covered with PMBN. Protein adsorption was evaluated with regard to the nonspecific adsorption on the nanoparticles that was effectively suppressed by the phosphorylcholine groups. The immobilization of antibodies on nanoparticles was carried out under physiological conditions to ensure specific binding of antigens. The antibody immobilized on the nanoparticles exhibited high activity and strong affinity for the antigen similar to that exhibited by an antibody in a solution. The selective binding of a specific protein as an antigen from a protein mixture was relatively high compared to that observed with conventional antibody-immobilized polymer nanoparticles. In conclusion, nanoparticles having both phosphorylcholine and active ester groups for antibody immobilization have strong potential for use in highly selective separation based on the biological affinities between biomolecules.  相似文献   

18.
A novel antigen preparation--the synthetic C6 peptide, a conserved portion of the variable VlsE antigens of Borrelia burgdorferi--has been evaluated for serodiagnosis of Lyme borreliosis (LB) by an ELISA procedure. Serum specimens were from early and late LB patients, all resident in an endemic area in north-eastern Italy. The specificity of the test approached the 100% and sensitivity was in the order of 63% (early LB) and 100% (late LB); this performance is superior to the preceding generation of Lyme disease tests.  相似文献   

19.
Enzymatic digestion of proteins is a key step in protein identification by mass spectrometry (MS). Traditional solution-based protein digestion methods require long incubation times and are limitations for high throughput proteomics research. Recently, solid phase digestion (e.g. trypsin immobilization on solid supports) has become a useful strategy to accelerate the speed of protein digestion and eliminate autodigestion by immobilizing and isolating the enzyme moieties on solid supports. Monolithic media is an attractive support for immobilization of enzymes due to its unique properties that include fast mass transfer, stability in most solvents, and versatility of functional groups on the surfaces of monoliths. We prepared immobilized trypsin monolithic capillaries for on-column protein digestion, analyzed the digested peptides through LC/FTICR tandem MS, and compared peptide mass fingerprinting by MALDI-TOF-MS. To further improve the digestion efficiency for low abundance proteins, we introduced C4 functional groups onto the monolith surfaces to combine on-column protein enrichment and digestion. Compared with immobilized trypsin monolithic capillaries without C4, the immobilized trypsin-C4 monolith showed improved digestion efficiency. A mechanism for increased efficiency from the combination of sample enrichment and on-column digestion is also proposed in this paper. Moreover, we investigated the effects of organic solvent on digestion and detection by comparing the observed digested peptide sequences. Our data demonstrated that all columns showed good tolerance to organic solvents and maintained reproducible enzymatic activity for at least 30 days.  相似文献   

20.
This work reports on a complementary use of surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation monitoring (QCM-D) technologies to study interactions between a peptide antigen and polyclonal antibodies, in an experimental format suitable for diagnostic assays of autoimmune diseases. In the chosen model, a synthetic peptide from the juxtamembrane region of IA-2 (a type 1 diabetes associated antigen) was immobilized by an optimized chemical protocol applicable to both BIACORE and QCM-D sensors. A thorough study of the peptide immobilization was performed to optimize the signal-to-noise ratio using mixed self-assembled monolayers (SAM) on a gold surface. Introduction of polyethylene glycol (EG6) chains into mixed SAM layers and addition of an anionic surfactant to the human serum reduced non-specific binding without modifying the viscoelasticity properties of the layer. Under our conditions, the antibody SPR detection limit was determined to be 0.2 nM in diluted human serum. This value is in agreement with the reported rank distribution of IA-2 antibodies in diabetic patient sera. Label-free and real-time technologies such as SPR and/or QCM-D could be precious tools in future diagnostic assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号