首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Egg activation in cross-fertilization between Xenopus eggs and Cynops sperm may be caused by a protease activity against Boc-Gly-Arg-Arg-MCA in the sperm acrosome. To determine the role of the sperm protease in fertilization, the protease was purified from Cynops sperm using several chromatographic techniques. We found that purified sperm protease readily hydrolyzes Boc-Gly-Arg-Arg-MCA and Z-Arg-Arg-MCA, that protease activity was inhibited by the trypsin inhibitors aprotinin and leupeptin, and that not only the purified protease, but also cathepsin B, induces activation in Xenopus eggs. We inseminated unfertilized Xenopus eggs with homologous sperm in the presence of various peptidyl MCA substrates or protease inhibitors and demonstrated that trypsin inhibitors or MCA substrates containing Arg-Arg-MCA reversibly inhibited fertilization of both fully jellied and denuded eggs. Sperm motility was not affected by the reagents. An extract obtained from Xenopus sperm showed hydrolytic activity against Boc-Gly-Arg-Arg-MCA, Z-Arg-Arg-MCA, and Arg-MCA. These results suggest that the tryptic protease in Xenopus sperm is involved in fertilization, most likely by participating in egg activation.  相似文献   

3.
J Wagner  Y X Li  J Pearson    J Keizer 《Biophysical journal》1998,75(4):2088-2097
In the preceding paper Fontanilla and Nuccitelli (Biophysical Journal 75:2079-2087 (1998)) present detailed measurements of the shape and speed of the fertilization Ca2+ wave in Xenopus laevis eggs. In order to help interpret their results, we develop here a computational technique based on the finite element method that allows us to carry out realistic simulations of the fertilization wave. Our simulations support the hypothesis that the physiological state of the mature egg is bistable, i.e., that its cytoplasm can accommodate two alternative physiological Ca2+ concentrations: a low concentration characteristic of the prefertilization state and a greatly elevated concentration characteristic of the state following the passage of the wave. We explore this hypothesis by assuming that the bistability is due to the release and re-uptake properties of the endoplasmic reticulum (ER) as determined by inositol trisphosphate (IP3) receptor/Ca2+ channels and sarcoendoplasmic reticulum calcium ATPase (SERCA) pumps. When combined with buffered diffusion of Ca2+ in the cytoplasm, our simulations show that inhomogeneities in the Ca2+ release properties near the plasma membrane are required to explain the temporal and spatial dependences of the shape and speed of these waves. Our results are consistent with an elevated IP3 concentration near the plasma membrane in the unfertilized egg that is augmented significantly near the site of fertilization. These gradients are essential in determining the concave shape of the Ca2+ fertilization wave front.  相似文献   

4.
Substitution of trans-proline at three positions in ubiquitin (residues 19, 37 and 38) produces significant context-dependent effects on protein stability (both stabilizing and destabilizing) that reflect changes to a combination of parameters including backbone flexibility, hydrophobic interactions, solvent accessibility to polar groups and intrinsic backbone conformational preferences. Kinetic analysis of the wild-type yeast protein reveals a predominant fast-folding phase which conforms to an apparent two-state folding model. Temperature-dependent studies of the refolding rate reveal thermodynamic details of the nature of the transition state for folding consistent with hydrophobic collapse providing the overall driving force. Br?nsted analysis of the refolding and unfolding rates of a family of mutants with a variety of side chain substitutions for P37 and P38 reveals that the two prolines, which are located in a surface loop adjacent to the C terminus of the main alpha-helix (residues 24-33), are not significantly structured in the transition state for folding and appear to be consolidated into the native structure only late in the folding process. We draw a similar conclusion regarding position 19 in the loop connecting the N-terminal beta-hairpin to the main alpha-helix. The proline residues of ubiquitin are passive spectators in the folding process, but influence protein stability in a variety of ways.  相似文献   

5.
Injection of eggs of various species with an extract of sperm cytoplasm stimulates intracellular Ca(2+) release that is spatially and temporally like that occurring at fertilization, suggesting that Ca(2+) release at fertilization may be initiated by a soluble factor from the sperm. Here we investigate whether the signalling pathway that leads to Ca(2+) release in response to sperm extract injection requires the same signal transduction molecules as are required at fertilization. Eggs of the ascidian Ciona intestinalis were injected with the Src-homology 2 domains of phospholipase C gamma or of the Src family kinase Fyn (which act as specific dominant negative inhibitors of the activation of these enzymes), and the effects on Ca(2+) release at fertilization or in response to injection of a sperm extract were compared. Our findings indicate that both fertilization and sperm extract injection initiate Ca(2+) release by a pathway requiring phospholipase C gamma and a Src family kinase. These results support the hypothesis that, in ascidians, a soluble factor from the sperm cytoplasm initiates Ca(2+) release at fertilization, and indicate that the activating factor from the sperm may be a regulator, directly or indirectly, of a Src family kinase in the egg.  相似文献   

6.
7.
8.
Homozygous deletion or mutation in the survival motor neuron (SMN)1 gene causes proximal spinal muscular atrophy (SMA), whereas SMN2 acts as a modifying gene that can influence the severity of SMA. It has been suggested that restoration of the SMN protein level in neuronal cells may prevent cell loss and may be helpful for treatment of SMA. Recent studies indicate that the ubiquitin/proteasome pathway is a major system for proteolysis of intracellular proteins. In this study, we investigate whether SMN protein is degraded via the ubiquitin/proteasome pathway. Primary fibroblasts were established from the skin biopsies of SMA patients and the effect of a proteasome inhibitor MG132 and lysosome inhibitor NH(4)Cl on SMN protein level was examined. We found that MG132, but not NH(4)Cl, significantly increased the amount and nuclear accumulation of SMN protein in SMA patient's fibroblasts. Immunoprecipitation/western blot analysis indicated that SMN protein was ubiquitinated in cells. In vitro protein ubiquitination assay also demonstrated that SMN protein could be conjugated with ubiquitin. Taken together, we have provided clear evidences that degradation of SMN protein is mediated via the ubiquitin/proteasome pathway and suggest that proteasome inhibitors may up-regulate SMN protein level and may be useful for the treatment of SMA.  相似文献   

9.
The REtsAF cell line expresses a temperature-sensitive mutant of the SV40 large tumor antigen. At restrictive temperature (39.5 degrees C), the cells undergo p53-mediated apoptosis, which can be inhibited by Bcl-2. Here, we show that Z-VAD-fmk, a caspase inhibitor, can suppress the Bcl-2-dependent cell survival at 39.5 degrees C. This result suggests that a caspase-like activity can act as an inhibitor of apoptosis in this model, downstream of Bcl-2. Our results also suggest that this activity may be up-regulated by Bcl-2 and may be responsible for cleavage of the tumor suppressor Rb protein.  相似文献   

10.
11.
The latent membrane protein 1 (LMP1) of the Epstein-Barr virus is a constitutively active receptor essential for B lymphocyte transformation by the Epstein-Barr virus. It is a short-lived protein, but the proteolytic pathway involved in its degradation is not known. The ubiquitin pathway is a major system for specific protein degradation in eukaryotes. Most plasma membrane substrates of the pathway are internalized upon ubiquitination and delivered for degradation in the lysosome/vacuole. Here we show that LMP1 is a substrate of the ubiquitin pathway and is ubiquitinated both in vitro and in vivo. However, in contrast to other plasma membrane substrates of the ubiquitin system, it is degraded mostly by the proteasome and not by lysosomes. Degradation is independent of the single Lys residue of the protein; a lysine-less mutant LMP1 is degraded in a ubiquitin- and proteasome-dependent manner similar to the wild type protein. Degradation of both wild type and lysine-less protein is sensitive to fusion of a Myc tag to the N terminus of LMP1. In addition, deletion of as few as 12 N-terminal amino acid residues stabilizes the protein. These findings suggest that the first event in LMP1 degradation is attachment of ubiquitin to the N-terminal residue of the protein. We present evidence suggesting that phosphorylation is also required for degradation of LMP1.  相似文献   

12.
The ubiquitin-mediated proteolysis of the Cdk2 inhibitor p27(Kip1) plays a central role in cell cycle progression, and enhanced degradation of p27(Kip1) is associated with many common cancers. Proteolysis of p27(Kip1) is triggered by Thr187 phosphorylation, which leads to the binding of the SCF(Skp2) (Skp1-Cul1-Rbx1-Skp2) ubiquitin ligase complex. Unlike other known SCF substrates, p27(Kip1) ubiquitination also requires the accessory protein Cks1. The crystal structure of the Skp1-Skp2-Cks1 complex bound to a p27(Kip1) phosphopeptide shows that Cks1 binds to the leucine-rich repeat (LRR) domain and C-terminal tail of Skp2, whereas p27(Kip1) binds to both Cks1 and Skp2. The phosphorylated Thr187 side chain of p27(Kip1) is recognized by a Cks1 phosphate binding site, whereas the side chain of an invariant Glu185 inserts into the interface between Skp2 and Cks1, interacting with both. The structure and biochemical data support the proposed model that Cdk2-cyclin A contributes to the recruitment of p27(Kip1) to the SCF(Skp2)-Cks1 complex.  相似文献   

13.
In the present study we analysed the effects of S-nitrosocysteine (CysNO) on adult human red blood cell metabolism and observed that metabolic response depended on the degree of cell oxygenation. In particular, glucose metabolised through the pentose phosphate pathway (PPP) was higher in treated erythrocytes than in untreated cells only at high O(2) pressure. Since, following the treatment of intact cells with CysNO, glucose-6-phosphate dehydrogenase (G6PD) and phosphofructokinase (PFK) activities did not evidence any significant alteration, the possibility that the stimulation of PPP was triggered by a CysNO mediated modification of these enzymes was excluded. Intracellular S-nitrosoglutathione (GSNO), detected only in treated red blood cells, may be linked solely to the exposition to the NO donor. A possible rationalisation of the different metabolic behaviour shown by erythrocytes as a function of their oxygenation state is proposed. It takes into account the different route of catabolic degradation observed in vitro for GSNO under aerobic and anaerobic condition.  相似文献   

14.
15.
Ca2+-activatedCl currents (ICl,Ca) wereexamined using fluorescence confocal microscopy to monitorintracellular Ca2+ liberation evoked by flash photolysis ofcaged inositol 1,4,5-trisphosphate (InsP3) involtage-clamped Xenopus oocytes. Currents at +40 mV exhibited asteep dependence on InsP3 concentration([InsP3]), whereas currents at140 mV exhibited a higher threshold and more graded relationshipwith [InsP3]. Ca2+ levelsrequired to half-maximally activate ICl,Ca wereabout 50% larger at 140 mV than at +40 mV, and currents evokedby small Ca2+ elevations were reduced >25-fold. Thehalf-decay time of Ca2+ signals shortened at increasinglypositive potentials, whereas the decay of ICl,Calengthened. The steady-state current-voltage (I-V) relationshipfor ICl,Ca exhibited outward rectification withweak photolysis flashes but became more linear with stronger stimuli.Instantaneous I-V relationships were linear with both strongand weak stimuli. Current relaxations following voltage steps duringactivation of ICl,Ca decayed with half-times that shortened from about 100 ms at +10 mV to 20 ms at 160 mV. We conclude that InsP3-mediated Ca2+liberation activates a single population of Clchannels, which exhibit voltage-dependent Ca2+ activationand voltage-independent instantaneous conductance.

  相似文献   

16.
Two chromosomal loci containing the Corynebacterium glutamicum ATCC 17965 proB and proC genes were isolated by complementation of Escherichia coli proB and proC auxotrophic mutants. Together with a proA gene described earlier, these new genes describe the major C. glutamicum proline biosynthetic pathway. The proB and proA genes, closely linked in most bacteria, are in C. glutamicum separated by a 304-amino-acid open reading frame (unk) whose predicted sequence resembles that of the 2-hydroxy acid dehydrogenases. C. glutamicum mutants that carry null alleles of proB, proA, and proC were constructed or isolated from mutagenized cultures. Single proC mutants are auxotrophic for proline and secrete delta1-pyrroline-5-carboxylate, which are the expected phenotypes of bacterial proC mutants. However, the phenotypes or proB and proA mutants are unexpected. A proB mutant has a pleiotropic phenotype, being both proline auxotrophic and affected in cell morphology. Null proA alleles still grow slowly under proline starvation, which suggests that a proA-independent bypass of this metabolic step exists in C. glutamicum. Since proA mutants are complemented by a plasmid that contains the wild-type asd gene of C. glutamicum, the asd gene may play a role in this bypass.  相似文献   

17.
Ca(2+) is a universal second messenger that is critical for cell growth and is intimately associated with many Ras-dependent cellular processes such as proliferation and differentiation. Ras is a small GTP binding protein that operates as a molecular switch regulating the control of gene expression, cell growth, and differentiation through a pathway from receptors to mitogen-activated protein kinases (MAPKs). A role for intracellular Ca(2+) in the activation of Ras has been previously demonstrated, e.g., via the nonreceptor tyrosine kinase PYK2 and by Ca(2+)/calmodulin-dependent guanine nucleotide exchange factors (GEFs) such as Ras-GRF; however, there is no Ca(2+)-dependent mechanism for direct inactivation. An important advance toward greater understanding of the complex coordination within the Ras-signaling network is the spatio-temporal analysis of signaling events in vivo. Here, we describe the identification of CAPRI (Ca(2+)-promoted Ras inactivator), a Ca(2+)-dependent Ras GTPase-activating protein (GAP) that switches off the Ras-MAPK pathway following a stimulus that elevates intracellular Ca(2+). Analysis of the spatio-temporal dynamics of CAPRI indicates that Ca(2+) regulates the GAP by a fast C2 domain-dependent translocation mechanism.  相似文献   

18.
Iontophoresis of inositol 1, 4, 5-triphosphate into frog (Xenopus laevis) eggs activated early developmental events such as membrane depolarization, cortical contraction, cortical granule exocytosis, and abortive cleavage furrow formation (pseudocleavage). Inositol 1, 4-bisphosphate also triggered these events, but only at doses approximately 100-fold higher, whereas no level of fructose-1, 6-bisphosphate tested activated eggs. Using Ca2+-selective microelectrodes, we observed that activating doses of inositol 1, 4, 5-trisphosphate triggered a Ca2+ release from intracellular stores that was indistinguishable from that previously observed at fertilization (Busa, W. B., and R. Nuccitelli, 1985, J. Cell Biol., 100:1325-1329), whereas subthreshold doses triggered only a localized Ca2+ release at the site of injection. The subthreshold IP3 response could be distinguished from the major Ca2+ release at activation with respect to their dose-response characteristics, relative timing, sensitivity to external Ca2+ levels, additivity, and behavior in the activated egg, suggesting that the Xenopus egg may possess two functionally distinct Ca2+ pools mobilized by different effectors. In light of these differences, we suggest a model for intracellular Ca2+ mobilization by sperm-egg interaction.  相似文献   

19.
The A(2A)-adenosine receptor, a prototypical G(s)-coupled receptor, activates mitogen-activated protein (MAP) kinase in a manner independent of cAMP in primary human endothelial cells. In order to delineate signaling pathways that link the receptor to the regulation of MAP kinase, the human A(2A) receptor was heterologously expressed in Chinese hamster ovary (CHO) and HEK293 cells. In both cell lines, A(2A) agonist-mediated cAMP accumulation was accompanied by activation of the small G protein rap1. However, rap1 mediates A(2A) receptor-dependent activation of MAP kinase only in CHO cells, the signaling cascade being composed of G(s), adenylyl cyclase, rap1, and the p68 isoform of B-raf. This isoform was absent in HEK293 cells. Contrary to CHO cells, in HEK293 cells activation of MAP kinase by A(2A) agonists was not mimicked by 8-bromo-cAMP, was independent of Galpha(s), and was associated with activation of p21(ras). Accordingly, overexpression of the inactive S17N mutant of p21(ras) and of a dominant negative version of mSos (the exchange factor of p21(ras)) blocked MAP kinase stimulation by the A(2A) receptor in HEK 293 but not in CHO cells. In spite of the close homology between p21(ras) and rap1, the S17N mutant of rap1 was not dominant negative because (i) overexpression of rap1(S17N) failed to inhibit A(2A) receptor-dependent MAP kinase activation, (ii) rap1(S17N) was recovered in the active form with a GST fusion protein comprising the rap1-binding domain of ralGDS after A(2A) receptor activation, and (iii) A(2A) agonists promoted the association of rap1(S17N) with the 68-kDa isoform of B-raf in CHO cells. We conclude that the A(2A) receptor has the capacity two activate MAP kinase via at least two signaling pathways, which depend on two distinct small G proteins, namely p21(ras) and rap1. Our observations also show that the S17N version of rap1 cannot be assumed a priori to act as a dominant negative interfering mutant.  相似文献   

20.
We studied the effects of the divalent cation ionophore A23187 on apoptotic signaling in MH1C1 cells. Addition of A23187 caused a fast rise of cytosolic Ca(2+) ([Ca(2+)](c)), which returned close to the resting level within about 40 s. The [Ca(2+)](c) rise was immediately followed by phospholipid hydrolysis, which could be inhibited by aristolochic acid or by pretreatment with thapsigargin in Ca(2+)-free medium, indicating that the Ca(2+)-dependent cytosolic phospholipase A(2) (cPLA(2)) was involved. These early events were followed by opening of the mitochondrial permeability transition pore (PTP) and by apoptosis in about 30% of the cell population. In keeping with a cause-effect relationship between addition of A23187, activation of cPLA(2), PTP opening, and cell death, all events but the [Ca(2+)](c) rise were prevented by aristolochic acid. The number of cells killed by A23187 was doubled by treatment with 0.5 microm MK886 and 5 microm indomethacin, which inhibit arachidonic acid metabolism through the 5-lipoxygenase and cyclooxygenase pathway, respectively. Consistent with the key role of free arachidonic acid, its levels increased within minutes of treatment with A23187; the increase being more pronounced in the presence of MK886 plus indomethacin. Cell death was preceded by cytochrome c release and cleavage of caspase 9 and 3, but not of caspase 8. All these events were prevented by aristolochic acid and by the PTP inhibitor cyclosporin A. Thus, A23187 triggers the apoptotic cascade through the release of arachidonic acid by cPLA(2) in a process that is amplified when transformation of arachidonic acid into prostaglandins and leukotrienes is inhibited. These findings identify arachidonic acid as the causal link between A23187-dependent perturbation of Ca(2+) homeostasis and the effector mechanisms of cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号