首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 325 毫秒
1.
Perfusion of isolated rat hearts with Na-free medium resulted in an immediate increase in contractile force followed by a decline and complete loss of contractile force within 25 s. The recovery of the contractile force upon reperfusion was only partial if the duration of Na-free perfusions was 10 min or longer. Ca binding and uptake activities of mitochondria obtained from hearts perfused with Na-free medium did not change significantly. However, Ca binding and uptake activities of microsomes were depressed after 5 min of perfusion. The critical concentration of Na in the perfusion medium for inducing these changes was found to be less than 35 mM. The microsomal Ca-ATPase activity was decreased after 10 min of Na-free perfusion. Only partial recovery of microsomal Ca uptake was observed upon reperfusion of hearts preperfused with Na-free medium for 20 min or longer whereas Ca-ATPase activity in these hearts did not recover at all. These results suggest that the defect in the microsomal Ca transport may be secondary to the development of contractile failure and may partially be associated with the inability of Na-depleted hearts to recover fully their contractile force.  相似文献   

2.
Apoptosis or programmed cell death is a genetically controlled response for cells to commit suicide and is associated with DNA fragmentation or laddering. The common inducers of apoptosis include oxygen free radicals/oxidative stress and Ca2+ which are also implicated in the pathogenesis of myocardial ischemic reperfusion injury. To examine whether ischemic reperfusion injury is mediated by apoptotic cell death, isolated perfused rat hearts were subjected to 15, 30 or 60 min of ischemia as well as 15 min of ischemia followed by 30, 60, 90 or 120 min of reperfusion. At the end of each experiment, the heart was processed for the evaluation of apoptosis and DNA laddering. Apoptosis was studied by visualizing the apoptotic cardiomyocytes by direct fluorescence detection of digoxigenin-labeled genomic DNA using APOPTAG® in situ apoptosis detection kit. DNA laddering was evaluated by subjecting the DNA obtained from the hearts to 1.8% agarose gel electrophoresis and photographed under UV illumination. The results of our study revealed apoptotic cells only in the 90 and 120 min reperfused hearts as demonstrated by the intense fluorescence of the immunostained digoxigenin-labeled genomic DNA when observed under fluorescence microscopy. None of the ischemic hearts showed any evidence of apoptosis. These results were corroborated with the findings of DNA fragmentation which showed increased ladders of DNA bands in the same reperfused hearts representing integer multiples of the internucleosomal DNA length (about 180 bp). The presence of apoptotic cells and DNA fragmentation in the myocardium were completely abolished by subjecting the myocardium to repeated short-term ischemia and reperfusion which also reduced the ischemic reperfusion injury as evidenced by better recovery of left ventricular performance in the preconditioned myocardium. The results of this study indicate that reperfusion of ischemic heart, but not ischemia, induces apoptotic cell death and DNA fragmentation which can be inhibited by myocardial adaptation to ischemia.  相似文献   

3.
Although ischemia-reperfusion (I/R) has been shown to affect subcellular organelles that regulate the intracellular Ca2+ concentration ([Ca2+]i), very little information regarding the Ca2+ handling ability of cardiomyocytes obtained from I/R hearts is available. To investigate changes in [Ca2+]i due to I/R, rat hearts in vitro were subjected to 10-30 min of ischemia followed by 5-30 min of reperfusion. Cardiomyocytes from these hearts were isolated and purified; [Ca2+]i was measured by employing fura-2 microfluorometry. Reperfusion for 30 min of the 20-min ischemic hearts showed attenuated cardiac performance, whereas basal [Ca2+]i as well as the KCl-induced increase in [Ca2+]i and isoproterenol (Iso)-induced increase in [Ca2+]i in cardiomyocytes remained unaltered. On the other hand, reperfusion of the 30-min ischemic hearts for different periods revealed marked changes in cardiac function, basal [Ca2+]i, and Iso-induced increase in [Ca2+]i without any alterations in the KCl-induced increase in [Ca2+]i or S(-)-BAY K 8644-induced increase in [Ca2+]i. The I/R-induced alterations in cardiac function, basal [Ca2+]i, and Iso-induced increase in [Ca2+]i in cardiomyocytes were attenuated by an antioxidant mixture containing superoxide dismutase and catalase as well as by ischemic preconditioning. The observed changes due to I/R were simulated in hearts perfused with H2O2 for 30 min. These results suggest that abnormalities in basal [Ca2+]i as well as mobilization of [Ca2+]i upon beta-adrenoceptor stimulation in cardiomyocytes are dependent on the duration of ischemic injury to the myocardium. Furthermore, Ca2+ handling defects in cardiomyocytes appear to be mediated through oxidative stress in I/R hearts.  相似文献   

4.
The possible relationship of the atractyloside-sensitive adenine nucleotide translocase activity, oxidative phosphorylation, and the recovery of ventricular contractility following reperfusion of the ischemic isolated rat heart was studied. Five minutes of total global ischemia without reperfusion produced a significant depression in adenine nucleotide translocase in subsarcolemmal mitochondria (SLM), whereas a minimum of 10 min ischemia was required to observe a significant depression in interfibrillar mitochondria (IFM). Increasing durations of ischemia resulted in a progressively larger depression in translocase activity, with a maximum depression of approximately 75% seen in both populations following 20 min ischemia. In contrast, oxidative phosphorylation was totally unaffected in either mitochondrial population following up to 20 min of ischemia. We assessed whether translocase activity or oxidative phosphorylation were related to contractile recovery in hearts reperfused following various durations of ischemia. In SLM, translocase activity was further depressed following reperfusion compared with pre-reperfusion ischemic values, whereas with IFM only reperfusion following 5 min ischemia produced a further depression in translocase values. Oxidative phosphorylation rates of SLM and IFM were significantly depressed following reperfusion of ischemic hearts, although SLM exhibited a generally higher sensitivity in this regard. In reperfused hearts, an overall significant relationship was found between oxidative phosphorylation rate and adenine translocase activity as well as between translocase activity and post-reperfusion contractile recovery. These data show that ischemia can produce a significant depression in translocase activity in the absence of any change in oxidative phosphorylation. The results also suggest that the depression in mitochondrial ADP/ATP translocase and subsequent inhibition of oxidative phosphorylation in the reperfused heart may represent one of the important contributory mechanisms involved in cardiac failure and injury during acute ischemia and reperfusion.  相似文献   

5.
Recent studies have demonstrated that increased expression of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) 2a improves myocardial contractility and Ca2+ handling at baseline and in disease conditions, including myocardial ischemia-reperfusion (I/R). Conversely, it has also been reported that pharmacological inhibition of SERCA might improve postischemic function in stunned hearts or in isolated myocardium following I/R. The goal of this study was to test how decreases in SERCA pump level/activity affect cardiac function following I/R. To address this question, we used a heterozygous SERCA2a knockout (SERCA2a+/-) mouse model with decreased SERCA pump levels and studied the effect of myocardial stunning (20-min ischemia followed by reperfusion) and infarction (30-min ischemia followed by reperfusion) following 60-min reperfusion. Our results demonstrate that postischemic myocardial relaxation was significantly impaired in SERCA2a+/- hearts with both stunning and infarction protocols. Interestingly, postischemic recovery of contractile function was comparable in SERCA2a+/- and wild-type hearts subjected to stunning. In contrast, following 30-min ischemia, postischemic contractile function was reduced in SERCA2a+/- hearts with significantly larger infarction. Rhod-2 spectrofluorometry revealed significantly higher diastolic intracellular Ca2+ in SERCA2a+/- hearts compared with wild-type hearts. Both at 30-min ischemia and 2-min reperfusion, intracellular Ca2+ levels were significantly higher in SERCA2a+/- hearts. Electron paramagnetic resonance spin trapping showed a similar extent of postischemic free-radical generation in both strains. These data provide direct evidence that functional SERCA2a level, independent of oxidative stress, is crucial for postischemic myocardial function and salvage during I/R.  相似文献   

6.
Ca(+) loading during reperfusion after myocardial ischemia is linked to reduced cardiac function. Like ischemic preconditioning (IPC), a volatile anesthetic given briefly before ischemia can reduce reperfusion injury. We determined whether IPC and sevoflurane preconditioning (SPC) before ischemia equivalently improve mechanical and metabolic function, reduce cytosolic Ca(2+) loading, and improve myocardial Ca(2+) responsiveness. Four groups of guinea pig isolated hearts were perfused: no ischemia, no treatment before 30-min global ischemia and 60-min reperfusion (control), IPC (two 2-min occlusions) before ischemia, and SPC (3.5 vol%, two 2-min exposures) before ischemia. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured at the left ventricular (LV) free wall with the fluorescent probe indo 1. Ca(2+) responsiveness was assessed by changing extracellular [Ca(2+)]. In control hearts, initial reperfusion increased diastolic [Ca(2+)] and diastolic LV pressure (LVP), and the maximal and minimal derivatives of LVP (dLVP/dt(max) and dLVP/dt(min), respectively), O(2) consumption, and cardiac efficiency (CE). Throughout reperfusion, IPC and SPC similarly reduced ischemic contracture, ventricular fibrillation, and enzyme release, attenuated rises in systolic and diastolic [Ca(2+)], improved contractile and relaxation indexes, O(2) consumption, and CE, and reduced infarct size. Diastolic [Ca(2+)] at 50% dLVP/dt(min) was right shifted by 32-53 +/- 8 nM after 30-min reperfusion for all groups. Phasic [Ca(2+)] at 50% dLVP/dt(max) was not altered in control but was left shifted by -235 +/- 40 nM [Ca(2+)] after IPC and by -135 +/- 20 nM [Ca(2+)] after SPC. Both SPC and IPC similarly reduce Ca(2+) loading, while augmenting contractile responsiveness to Ca(2+), improving postischemia cardiac function and attenuating permanent damage.  相似文献   

7.
To examine the role of changes in calcium transport by subcellular particles in the pathogenesis of contractile failure due to oxygen lack, both mitochondrial and microsomal fractions were obtained from the isolated hypoxic rat hearts and their calcium binding and uptake abilities were determined by the Millipore filtration technique. The contractile force decreased by about 40, 60 and 70% of the control within 5, 10 and 30 min respectively, of perfusing the heart with hypoxic medium containing glucose. In hearts perfused for 10 min with hypoxic medium containing glucose, calcium binding and uptake by the microsomal fraction decreased significantly. However, mitochondrial calcium binding, but not uptake, decreased significantly on perfusing the hearts with hypoxic medium containing glucose for 20 to 30 min when the microsomal calcium transport was markedly depressed. Reduction in contractile force, calcium binding and uptake by the microsomal fraction as well as calcium binding by mitochondria of hearts made hypoxic for 30 min recovered towards normal upon reperfusion with control medium for 15 min. On the other hand, omitting glucose from the hypoxic medium significantly decreased calcium binding by mitochondrial and microsomal fractions within 10 min of perfusion in comparison to the control and accelerated the effects of hypoxia upon contractile force and microsomal calcium uptake. In contrast to the hypoxic hearts, the mitochondrial calcium uptake decreased significantly and the magnitude of depression in the microsomal calcium binding was appreciably greater in hearts made to fail to a comparable degree upon perfusion with substrate-free medium. The observed defects in calcium transporting properties of microsomal and mitochondrial membranes appear secondary to the contactile failure in hypoxic hearts.  相似文献   

8.
The aim of this study was to evaluate the additive protective efficiency of ischemic preconditioning when used in combination with conventional clinically relevant cardioprotective methods of hypothermia or hypothermic cardioplegia during sustained global ischemia.Isolated rat hearts were aorta-perfused with Krebs-Henseleit buffer and were divided into six groups (n = 10 each). Group I: Ischemia at 34°C for 60 min; Group PC+I: preconditioned (PC) ischemia at 34°C, 2 episodes of 5 min ischemia and 10 min reperfusion at 34°C followed by I; Group HI: hypothermic ischemia at 10°C for 60 min; Group PC+HI: preconditioned (PC) hypothermic ischemia, 2 episodes of 5 min ischemia and 10 min reperfusion at 34°C followed by HI; Group CPL+HI: single dose of 'Plegisol' cardioplegia followed by HI; Group PC+CPL+HI: preconditioned hypothermic cardioplegia, followed by CPL+HI. At the end of 60 min ischemia, all the hearts were reperfused at 34°C for 30 min when post-ischemic recovery in left ventricular contractile function and coronary vascular dynamics was computed and compared.There was a significant depression in the post-ischemic recovery of developed pressure (Pmax), positive derivative of pressure (+dp/dt), negative derivative of pressure (-dp/dt) and heterometric autoregulation (HA) of contractile force in all the groups, with no major differences between the groups. Left ventricular end-diastolic pressure (LVEDP) was significantly elevated after I at 34°C. Preconditioning (PC+I) prevented the rise in the LVEDP and this was accompanied by a significant reduction in the release of purine metabolises in the coronary effluents, particularly adenosine, during the immediate reperfusion period. Hypothermia (HI) provided essentially the same level of metabolic and mechanical preservation as offered by PC+I. Combination of hypothermia with preconditioning (PC+HI) or cardioplegia (PC+CPL+HI), did not further enhance the preservation. Post-ischemic recovery in the regional contractile function (segment shortening, %SS) followed nearly identical pattern to global (Pmax) recovery. Post-ischemic recovery in coronary flow (CF) was significantly reduced and coronary vascular resistance (CVR) was significantly increased in all the groups. Myogenic autoregulation (transient and sustained) was generally enhanced indicating increased vascular reactivity. Preconditioning did not alter the time-course of these changes.Preconditioned ischemia (34°C) preserved left ventricular diastolic functions and prevented the contracture development after sustained ischemia reperfusion at 34°C. This protective effect of preconditioning was possibly mediated by the reduction in the breakdown of purine metabolises. Hypothermia alone or in combination with crystalloid cardioplegia prevented the irreversibility of the ischemic injury but produced contractile and vascular stunning which was not improved by ischemic preconditioning. The results of this study indicate that preconditioning when combined with hypothermia or hypothermic cardioplegia offered no significant additional protection.  相似文献   

9.
This report demonstrates that mice deficient in Flt-1 failed to establish ischemic preconditioning (PC)-mediated cardioprotection in isolated working buffer-perfused ischemic/reperfused (I/R) hearts compared to wild type (WT) subjected to the same PC protocol. WT and Flt-1+/- mice were divided into four groups: (1) WT I/R, (2) WT + PC, (3) Flt-1+/- I/R, and (4) Flt-1+/- + PC. Group 1 and 3 mice were subjected to 30 min of ischemia followed by 2 h of reperfusion and group 2 and 4 mice were subjected to four episodes of 4-min global ischemia followed by 6 min of reperfusion before ischemia/reperfusion. For both wild-type and Flt-1+/- mice, the postischemic functional recovery for the hearts was lower than the baseline, but the recovery for the knockout mice was less compared to the WT mice even in preconditioning. The myocardial infarction and apoptosis were higher in Flt-1+/- compared to wild-type I/R. Flt-1+/- KO mice demonstrated pronounced inhibition of the expression of iNOS, p-AKT & p-eNOS. Significant inhibition of STAT3 & CREB were also observed along with the inhibition of HO-1 mRNA. Results demonstrate that Flt-1+/- mouse hearts are more susceptible to ischemia/reperfusion injury and also document that preconditioning is not as effective as found in WT and therefore suggest the importance of VEGF/Flt-1 signaling in ischemic/reperfused myocardium.  相似文献   

10.
Extracellular ATP is known to augment cardiac contractility by increasing intracellular Ca2+ concentration ([Ca2+]i) in cardiomyocytes; however, the status of ATP-mediated Ca2+ mobilization in hearts undergoing ischemia-reperfusion (I/R) has not been examined previously. In this study, therefore, isolated rat hearts were subjected to 10-30 min of global ischemia and 30 min of reperfusion, and the effect of extracellular ATP on [Ca2+]i was measured in purified cardiomyocytes by fura-2 microfluorometry. Reperfusion for 30 min of 20-min ischemic hearts, unlike 10-min ischemic hearts, revealed a partial depression in cardiac function and ATP-induced increase in [Ca2+]i; no changes in basal [Ca2+]i were evident in 10- or 20-min I/R preparations. On the other hand, reperfusion of 30-min ischemic hearts for 5, 15, or 30 min showed a marked depression in both cardiac function and ATP-induced increase in [Ca2+]i and a dramatic increase in basal [Ca2+]i. The positive inotropic effect of extracellular ATP was attenuated, and the maximal binding characteristics of 35S-labeled adenosine 5'-[gamma-thio]triphosphate with crude membranes from hearts undergoing I/R was decreased. ATP-induced increase in [Ca2+]i in cardiomyocytes was depressed by verapamil and Cibacron Blue in both control and I/R hearts; however, this response in I/R hearts, unlike control hearts, was not affected by ryanodine. I/R-induced alterations in cardiac function and ATP-induced increase in [Ca2+]i were attenuated by treatment with an antioxidant mixture and by ischemic preconditioning. The observed changes due to I/R were simulated in hearts perfused with H2O2. The results suggest an impairment of extracellular ATP-induced Ca2+ mobilization in I/R hearts, and this defect appears to be mediated through oxidative stress.  相似文献   

11.
12.
The effects of ischemic preconditioning (IP) on changes in cardiac performance and sarcoplasmic reticulum (SR) function due to Ca(2+) paradox were investigated. Isolated perfused hearts were subjected to IP (three cycles of 3-min ischemia and 3-min reperfusion) followed by Ca(2+)-free perfusion and reperfusion (Ca(2+) paradox). Perfusion of hearts with Ca(2+)-free medium for 5 min followed by reperfusion with Ca(2+)-containing medium for 30 min resulted in a dramatic decrease in the left ventricular (LV) developed pressure and a marked increase in LV end-diastolic pressure. Alterations in cardiac contractile activity due to Ca(2+) paradox were associated with depressed SR Ca(2+)-uptake, Ca(2+)-pump ATPase, and Ca(2+)-release activities as well as decreased SR protein contents for Ca(2+)-pump and Ca(2+) channels. All these changes due to Ca(2+) paradox were significantly prevented in hearts subjected to IP. The protective effects of IP on Ca(2+) paradox changes in cardiac contractile activity as well as SR Ca(2+)-pump and Ca(2+)-release activities were lost when the hearts were treated with 8-(p-sulfophenyl)-theophylline, an adenosine receptor antagonist; KN-93, a specific Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) inhibitor; or chelerythrine chloride, a protein kinase C (PKC) inhibitor. These results indicate that IP rendered cardioprotection by preventing a depression in SR function in Ca(2+) paradox hearts. Furthermore, these beneficial effects of IP may partly be mediated by adenosine receptors, PKC, and CaMK II.  相似文献   

13.
Diabetics suffer from an increased incidence of myocardial infarction and are less likely to survive an ischemic insult. Since L-propionylcarnitine (LPC) has been shown to protect against ischemic/reperfusion injury, we hypothesized that LPC may be of even greater benefit to the diabetic heart. Diabetes was induced by i.v. streptozotocin, 60 mg/kg; duration: 12 wks. The chronic effect of LPC was determined by daily i.p. injections (100 mg/kg) for 8 wks. The acute effects of LPC were determined by adding it to the perfusion medium (5 mM) of control and diabetic hearts. Initial cardiac contractile performance of isolated perfused working hearts was assessed by varying left atrial filling pressure. Hearts were then subjected to 90 min of low flow global ischemia followed by 30 min reperfusion. Chronic LPC treatment had no effect on initial cardiac performance in either control or diabetic hearts. Acute addition of LPC to the perfusion medium enhanced pump performance of control hearts, but had no effect in diabetic hearts. Both acute and chronic LPC significantly improved the ability of control and diabetic hearts to recover cardiac contractile performance after ischemia and reperfusion, however, chronic treatment was more effective in diabetic hearts.  相似文献   

14.
To investigate the localization of the earliest damage in ischemic and ischemic-reperfused myocardium, anesthetized rats were subjected to coronary occlusion for 15, 30, 45, or 90 min. One-half of the animals in each group had no reperfusion, whereas the other half was reperfused for 14 min. With the use of histological methods, preferentially in the periphery of the area at risk, localized zones were detected that lacked the hypoxia-specific increase in NADH fluorescence. The extent of these areas displaying injured tissue was found to be significantly smaller in the ischemic-nonreperfused hearts than in the ischemic-reperfused organs (15-min ischemia: 0.22 +/- 0.12% vs. 43.0 +/- 5.0%; 30-min ischemia: 5.7 +/- 2.7% vs. 64.6 +/- 2.9%; 45-min ischemia: 5.6 +/- 1.2% vs. 66.0 +/- 7.5%; 90-min ischemia: 39.3 +/- 5.5% vs. 86.7 +/- 1.8% of the area at risk). The results point to a localized initiation of the damage close to the surrounding oxygen-supplied tissue during ischemia and an expansion of this injury by intercellular actions into yet-intact areas upon reperfusion.  相似文献   

15.
Ca(2+)/calmodulin-dependent protein kinase (CaMK) family is responsive to changes in the intracellular Ca(2+) concentration. However, their functions have not been well established in the ischemia/reperfusion heart. The effects of myocardial ischemia on CaMKII, the most strongly expressed form, were investigated using isolated rat hearts. Rat hearts were rendered globally ischemic by stopping perfusion for 15 min, and then reperfused, heart ventricles being analyzed in each phase. Western blotting detected a decrease in the cytosolic and concomitant increase in the particulate fraction of CaMKII following transient ischemia. Redistribution to the cytosol was revealed on reperfusion. Northern blot showed CaMKII gene expression decreased by ischemia. Furthermore, autoradiography and confocal immunohistochemical findings provided autophosphorylation of CaMKII in the cytosol, ischemia causing decrease, with gradual recovery on reperfusion. These results indicate a transient partial translocation of CaMKII accompanied by kinase activity, with residual myocardial CaMKII undergoing autophosphorylation during ischemia and reperfusion, demonstrating two different characteristic dynamics of CaMKII.  相似文献   

16.
Although ischemia-reperfusion(I/R) has been shown to depress cardiac performance and sarcoplasmicreticulum (SR) function, the mechanisms underlying these alterationsare poorly understood. Because lack of oxygen and substrate deprivationare known to occur during the ischemic phase, we examined theeffects of reperfusion on cardiac performance and SR function in heartssubjected to hypoxia and substrate lack. For this purpose, isolated rathearts were perfused with hypoxic and/or glucose-free medium for 30 min and then reperfused with normal medium for 1 h; the SR vesicles were isolated for studying the Ca2+-transport activities.Reperfusion with normal medium of hearts deprived of oxygen or glucoseshowed no changes in cardiac performance and SR function. However,reperfusion of hearts perfused with hypoxic glucose-free medium showed~45% decrease in cardiac contractile activities as well as 23 and64% reduction in SR Ca2+-uptake andCa2+-release activities, respectively, without any changein the level of SR Ca2+-cycling proteins. Depressed SRfunction in these hearts was associated with a reduction inCa2+/calmodulin-dependent protein kinase (CaMK)phosphorylation of the SR Ca2+-cycling proteins and 34%decrease in SR CaMK activity. These changes in cardiac performance, SRfunction, and SR CaMK activity in the hypoxic, glucose-deprived,reperfused hearts were similar to those observed in hearts subjected to30 min of global ischemia and 60 min of reperfusion. Theresults therefore suggest that the lack of both oxygen and substrateduring the ischemic phase may contribute to the I/R-inducedalterations in cardiac performance and SR function. Furthermore, theseabnormalities were associated with reduced SR CaMK activity.

  相似文献   

17.
Triglyceride turnover in reperfused/ischemic rat hearts was investigated. Hearts were initially perfused under aerobic conditions for a 1-h "pulse" perfusion with 1.2 mM [1-14C]palmitate to label the endogenous lipid pools, followed by a 30-min period of no-flow ischemia or a 10-min period of retrograde perfusion (control). Hearts were then reperfused under aerobic conditions with buffer containing 1.2 mM [9,10-3H]palmitate. All buffers contained 11 mM glucose and 500 microunits/ml insulin. Rates of endogenous triglyceride lipolysis and synthesis were measured during reperfusion, whereas rates of exogenous palmitate oxidation were measured both prior to ischemia and during reperfusion following ischemia. During reperfusion of ischemic hearts, a 20% increase in exogenous fatty acid oxidation rates was seen compared with pre-ischemic rates. Despite an initial burst of endogenous fatty acid oxidation, no acceleration of steady state endogenous triglyceride lipolysis was seen compared with their nonischemic hearts. In contrast, a significant increase in triglyceride synthesis was observed. Triglyceride turnover was also measured in a series of hearts reperfused following ischemia in the absence of exogenous fatty acids. A significant enhancement of functional recovery was seen compared with hearts reperfused with 1.2 mM palmitate. In addition, a significant increase in fatty acid oxidation from endogenous triglyceride lipolysis was observed. We conclude that the heart quickly recovers its ability to oxidize exogenous fatty acids during reperfusion and that although triglyceride lipolysis is not accelerated during reperfusion of ischemic hearts in the presence of 1.2 mM palmitate, a significant increase in triglyceride synthesis does occur.  相似文献   

18.
Adenosine-enhanced ischemic preconditioning (APC) extends the cardioprotection of ischemic preconditioning (IPC) by both significantly decreasing myocardial infarct size and significantly enhancing postischemic functional recovery. In this study, the role of adenosine receptors during ischemia-reperfusion was determined. Rabbit hearts (n = 92) were used for Langendorff perfusion. Control hearts were perfused for 180 min, global ischemia hearts received 30-min ischemia and 120-min reperfusion, and IPC hearts received 5-min ischemia and 5-min reperfusion before ischemia. APC hearts received a bolus injection of adenosine coincident with IPC. Adenosine receptor (A(1), A(2), and A(3)) antagonists were used with APC before ischemia and/or during reperfusion. GR-69019X (A(1)/A(3)) and MRS-1191/MRS-1220 (A(3)) significantly increased infarct size in APC hearts when administered before ischemia and significantly decreased functional recovery when administered during both ischemia and reperfusion (P < 0.05 vs. APC). DPCPX (A(1)) administered either before ischemia and/or during reperfusion had no effect on APC cardioprotection. APC-enhanced infarct size reduction is modulated by adenosine receptors primarily during ischemia, whereas APC-enhanced postischemic functional recovery is modulated by adenosine receptors during both ischemia and reperfusion.  相似文献   

19.
Is stunning prevented by ischemic preconditioning?   总被引:2,自引:0,他引:2  
In a model of global ischemia in the isolated perfused rat heart, a 20-min ischemic period followed by 30 min of reperfusion induces a decrease in isovolumic developed pressure (LVDP) and +dP/dtmax to 61 ± 6% and 61 ± 7% of baseline, respectively. Left ventricular end-diastolic pressure (LVEDP) increases to 36 ± 4 mmHg at the end of the reperfusion period. No significant necrotic area as assessed by triphenyltetrazolium chloride (TTC) was detected at the end of the reperfusion period. By an immunohistochemical method using antiactin monoclonal antibodies 10.8 ± 1.9% of unstained cells were detected in the stunned hearts and 10.3 ± 1.2% in control hearts. Preceding the ischemic episode with a cycle of 5 min of ischemia followed by 10 min of reperfusion (ischemic preconditioning) protected contractile function. LVDP and +dP/dtmax now stabilized at 89 ± 5% and 94 ± 5% of baseline respectively. LVEDP was 20 ± 2 mmHg at the end of the reperfusion period. The protection of contractile dysfunction after 20 min of ischemia was achieved also by early reperfusion of low Ca2+-low pH perfusate. With this intervention LVDP stabilized at 87 ± 5% of baseline. LVEDP was 12 ± 2 mmHg at the end of the reperfusion period. A positive inotropic intervention induced by a modified postextrasystolic potentiation protocol at the end of the reperfusion period increases LVDP to levels higher than baseline in the stunned hearts. However, these values were less than those obtained in control hearts. Ischemic preconditioning significantly increased the maximal inotropic response. Therefore, ischemic preconditioning diminishes the contractile dysfunction of early stunning.  相似文献   

20.
Although Ca(2+)/calmodulin-dependent protein kinase II (CaMK II) is known to modulate the function of cardiac sarcoplasmic reticulum (SR) under physiological conditions, the status of SR CaMK II in ischemic preconditioning (IP) of the heart is not known. IP was induced by subjecting the isolated perfused rat hearts to three cycles of brief ischemia-reperfusion (I/R; 5 min ischemia and 5 min reperfusion), whereas the control hearts were perfused for 30 min with oxygenated medium. Sustained I/R in control and IP groups was induced by 30 min of global ischemia followed by 30 min of reperfusion. The left ventricular developed pressure, rate of the left ventricular pressure, as well as SR Ca(2+)-uptake activity and SR Ca(2+)-pump ATPase activity were depressed in the control I/R hearts; these changes were prevented upon subjecting the hearts to IP. The beneficial effects of IP on the I/R-induced changes in contractile activity and SR Ca(2+) pump were lost upon treating the hearts with KN-93, a specific CaMK II inhibitor. IP also prevented the I/R-induced depression in Ca(2+)/calmodulin-dependent SR Ca(2+)-uptake activity and the I/R-induced decrease in the SR CaMK II activity; these effects of IP were blocked by KN-93. The results indicate that IP may prevent the I/R-induced alterations in SR Ca(2+) handling abilities by preserving the SR CaMK II activity, and it is suggested that CaMK II may play a role in mediating the beneficial effects of IP on heart function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号