首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
At a nonpermissive temperature, the group D temperature-sensitive mutants of Newcastle disease virus strain Australia-Victoria (AV) are defective in plaque formation, in inducing infected cells to fuse, and in incorporating the cleaved fusion glycoprotein, F1 + F2, into virus particles. In this study, the F protein of AV, expressed in chicken embryo cells, was able to complement these mutants in a plaque assay, identifying the F gene as the gene containing the group D temperature-sensitive lesions. The F genes of mutants D1, D2, and D3 were found to contain single mutations relative to the AV sequence, clustered within a predicted amphipathic alpha helix (AAH) adjacent to the hydrophobic amino terminus of F1. These mutant F proteins were inefficiently processed at the permissive temperature, a problem that was exacerbated at the nonpermissive temperature. Surprisingly, the AV F protein was also found to be partially temperature sensitive in processing. Its AAH is predicted to contain a break in the helix close to the D mutation sites, which are themselves predicted to further weaken the helix at this point. Interestingly, six revertants of the group D mutants were found to have an additional lesion in the AAH, repairing both the AV and mutant helices, resulting in a predicted perfect helix. The F protein of these revertants had overcome both the processing defects of the mutants and the temperature sensitivity of AV, indicating that the AAH region is critical for F protein processing. The lesions of a second group of revertants were localized within F2, suggesting an interaction with the F1 AAH region containing the original lesion.  相似文献   

2.
Summary Streptomycin-independent revertants were selected from streptomycin-dependent mutants. Twenty-five out of 150 such revertants were temperature sensitive. Ribosomal proteins from 18 temperature-sensitive and 10 temperature-insensitive revertants were analysed by SDS-polyacrylamide gel electrophoresis. Seventeen of the former but none of the latter category showed an alteration of protein S4. The mutated rpsD allele of 6 temperature-sensitive revertants was transduced into a rpsL + strain. In all cases an increased suppressibility of T4 amber phages was observed. Such suppressibility was not observed in the original rpsD, rpsL strains. All 18 temperature-sensitive mutants were disturbed in the processing of 17s to 16s RNA at non-permissive temperature and the accumulated 17s RNA was degraded. Temperature-insensitive rpsD revertants could be isolated, which had gained a second alteration in S4. Such revertants, which had lost the temperature-sensitive property, were also unable to suppress growth of T4 amber phages.It is concluded that temperature-sensitive growth, inability to process 17s RNA and to assemble 30S ribosomes at non-permissive temperature as well as increased translational ambiguity are highly correlated properties in rpsD mutants.  相似文献   

3.
As reported in the accompanying paper, a number of mutants of the ColVBtrp plasmid that can not be maintained stably in the host cell of Escherichia coli have been isolated. Each of the mutated plasmids has been transferred to an isogenic Col minus strain, and the resulting Col+ strains were studied to examine the effects of plasmid mutations on some properties of the host bacteria. Many of the strains harboring a mutated plasmid were thus found to be temperature sensitive; they failed to grow and divide normally at high temperatures. Some of them formed "filaments" under these conditions. These abnormal growth characteristics were accompanied by an increased susceptibility to sodium deoxycholate and methylene blue, suggesting that the cytoplasmic membrane has been altered. Moreover, studies of temperature-independent revertants obtained from two of these temperature-sensitive Col+ strains suggested that a single mutation on the plasmid is responsible for the pleiotropic effects exerted on the host cell. The bearing of these findings on the mode of replication and segregated of stringent-type plasmids such as ColVBtrp in the host bacteria is discussed.  相似文献   

4.
The Caulobacter crescentus histidine kinase genes pleC and divJ have been implicated in the regulation of polar morphogenesis and cell division, respectively. Mutations in pleC also potentiate the cell division phenotype of divJ mutations. To investigate the involvement of the PleC kinase in motility and cell cycle regulation, we carried out a pseudoreversion analysis of the divJ332 allele, which confers a temperature-sensitive motility (Mot-) phenotype. All cold-sensitive pseudorevertants with a Mot+ phenotype at 37 degrees C and a cold-sensitive swarm phenotype in soft agar at 24 degrees C contained extragenic suppressors that were null mutations mapping to pleC. Instead of a cell division defect at the nonpermissive temperature, however, revertants displayed a cold-sensitive defect in chemotaxis (Che-). In addition, the mutant cells were also supermotile, a phenotype previously associated only with mutations in the response regulator gene pleD that block the loss of motility. We also found that the Mot- defect of pleC mutants is suppressed by a pleD301/pleD+ merodiploid and results in a similar, supermotile, cold-sensitive Che- phenotype. These results implicate signal transduction pathways mediated by PleC-DivK and DivJ-PleD in the regulation of chemotaxis as well as motility. We discuss these findings and the observation that although the PleC kinase does not play an indispensable role in cell division, a temperature-sensitive allele of pleC (pleC319) has severely reduced viability under stringent growth conditions.  相似文献   

5.
S Mochida  H Tsuchiya  K Mori    A Kaji 《Journal of bacteriology》1991,173(8):2600-2607
Rts1 is a multiphenotype drug resistance factor, and one of its phenotypes is temperature-sensitive growth (Tsg) of host bacteria. A 3.65-kb fragment from Rts1 DNA was shown to cause the Tsg phenotype in host cells. This tsg fragment was split by a restriction enzyme, HincII, into four fragments. Two of these fragments were called HincII-S (short) and HincII-L (long), respectively. Each of these two fragments conferred the Tsg phenotype, indicating that, in fact, these two independent regions were responsible for the Tsg phenotype. The HincII-S 783-bp and HincII-L 1,479-bp fragments were sequenced. The region in the HincII-S fragment to which the Tsg phenotype was attributed was narrowed to a 146-bp (nucleotides 1 to 146) fragment by various restriction enzyme digestions. Further digestion of the 146-bp fragment with Bal 31 suggested that the 116-bp (nucleotides 9 to 124) fragment is the minimum sequence required for Tsg. On the other hand, in the HincII-L fragment, a fragment of 249 bp (nucleotides 1210 to 1458) and a fragment of 321 bp (nucleotides 1942 to 2262) contained separate temperature-sensitive growth activity. None of three tsg fragments contained open reading frames. The 249-bp fragment had very weak Tsg activity, while the 321-bp fragment had no Tsg activity. On the other hand, when these two fragments were together in the pUC19 vector, they exhibited very strong Tsg activity equivalent to that of the original 1,479-bp fragment. In addition, two of the 249-bp fragments gave similar, strong Tsg activity. The HincII-L 1,479-bp fragment contained an open reading frame for kanamycin resistance which was found between nucleotides 1423 and 2238. This kanamycin resistance gene sequence was different from that of the reported kanamycin resistance gene of Tn903 at 12 positions which were deduced to change seven amino acids.  相似文献   

6.
Summary A large number of Caulobacter mutants resistant to DNA or RNA phages were isolated. These phage-resistant mutants exhibited phenotypic variations with respect to cell motility and sensitivity to other phages.The majority of the mutants was resistant to both DNA and RNA phages tested. In addition, these mutants were either motile or non-motile. The analysis of spontaneous revertants from these mutants indicated that a single mutation is involved in these phenotypic variations. Other mutants were resistant to RNA phages and only to a certain DNA phage tested, and were also motile or non-motile.Several temperature-sensitive phage-resistant mutants were also isolated. One of them, CB13 ple-801, exhibited the wild type phenotype when grown at 25°C. However, at a higher temperature (35°C), the mutant cells became non-motile and resistant to both DNA and RNA phages. These phenotypes seem to be attributed to the concommitant loss of flagella, pili and phage receptors. In other respects (cell growth and morphology, and asymmetric stalk formation), CB13 ple-801 was normal at 35°C. The spontaneous revertants from CB13 ple-801 simultaneously regained the wild type phenotypes in all respects.It is suggested that a single mutation pleiotropically affects the formation of flagella, pili and phage receptors.  相似文献   

7.
Pseudomonas putida strains with plasmids carrying pleiotropic alk mutations gave rise to alkane-positive "revertants," which differ from wild type. Some had restricted ability to utilize alkane and primary alcohol growth substrates, and others could grow on undecane and dodecanol, which are not utilized by alk+ strains. These revertants showed altered responses to normal inducers of alkA+, alkB+, and alkC+ activities. Some revertants were constitutive for these activities. Constitutive mutants could also be isolated directly from wild type, but they appeared spontaneously at a frequency of less than 2 X 10(-8). Regulatory mutations of all three types, pleiotropic negative, altered inducer specificity, and constitutive, were tightly linked in transduction crosses with a polar alkB mutation. These results demonstrate that the IncP-2 plasmid alk gene cluster constitutes a regulon. They also permit the identification of at least one cistron whose gene product participates in inducer recognition and suggest that the alkABC regulon is not under simple repressor control.  相似文献   

8.
Spontaneous thermoresistant revertants were isolated from Tif1 Ruv- and Tif1 Ruv+ strains of Escherichia coli K-12. They were divided into five groups; backmutants to tif+ and recA structural gene mutants accounted for at least two of these groups. Mutations with an unconditional RecA- phenyotype were detected at a higher frequency in the Tif1 Ruv- strains (65%) than in the Tif1 Ruv+ strains (25%). A third group consisted of revertants exhibiting a RecA- phenotype at low temperature. Revertants with normal recombination ability and UV resistance, but with a thermosensitive defect in propagating lambda bio11 phage, were also isolated (group 4). The alleles responsible for this property were cotransducible with the srl gene, suggesting that they are located at the recA locus. Other revertants, which might carry lex, LEXB, or zab mutations, were UV sensitive and were able to propagate lambda bio11 phage (group 5). The sfi mutation, which suppresses filamentation in the Tif1 and UV-sensitive Lon- strains, does not restore UV resistance of the Ruv- mutant.  相似文献   

9.
Five temperature-sensitive lysis mutants were found to possess very low diaminopimelic acid (Dpm) adding enzyme activity in vitro. Murein synthesis at 42 C was impaired, and uridine-5'-diphosphate-N-acetyl-muramyl-l-Ala- d-Glu (UDP-MurNAc-dipeptide) was accumulated. In the presence of NaCl, the mutants could grow at 42 C. NaCl had no influence on the Dpm adding enzyme activity in vitro. The growth rate of most temperature-resistant revertants was decreased, but their Dpm adding enzyme activity remained very low. Two revertants had a rather normal growth rate. Their Dpm adding enzyme activity was significantly increased, but much lower than in the wild type. The influence of growth rate on the viability of the mutants is discussed.  相似文献   

10.
Mutants of Escherichia coli exhibiting temperature-sensitive repression of the tryptophan operon have been isolated among the revertants of a tryptophan auxotroph, trpS5, that produces an altered tryptophanyl transfer ribonucleic acid (tRNA) synthetase. Unlike the parental strain, these mutants grew in the absence of tryptophan at high but not at low temperature. When grown at 43.5 C with excess tryptophan (repression conditions), they produced 10 times more anthranilate synthetase than when grown at 36 C or lower temperatures. Similar, though less striking, temperature-sensitivity was observed with respect to the formation of tryptophan synthetase. Transduction mapping by phage P1 revealed that these mutants carry a mutation cotransducible with thr at 60 to 80%, in addition to trpS5, and that the former mutation is primarily responsible for the temperature-sensitive repression. These results suggest that the present mutants represent a novel type of mutation of the classical regulatory gene trpR, which probably determines the structure of a protein involved in repression of the tryptophan operon. In agreement with this conclusion, tRNA of several trpR mutants was found to be normal with respect to its tryptophan acceptability. It was also shown that the trpS5 allele, whether present in trpR or trpR(+) strains, produced appreciably higher amounts of anthranilate synthetase than the corresponding trpS(+) strains under repression conditions. This was particularly true at higher temperatures. These results provide further evidence for our previous conclusion that tryptophanyl-tRNA synthetase is somehow involved in repression of this operon.  相似文献   

11.
Some Escherichia coli K-12 lamB mutants, those producing reduced amounts of LamB protein (one-tenth the wild type amount), grow normally on dextrins but transport maltose when present at a concentration of 1 microM at about one-tenth the normal rate. lamB Dex- mutants were found as derivatives of these strains. These Dex- mutants are considerably impaired in the transport of maltose at low concentrations (below 10 microM), and they have a structurally altered LamB protein which is impaired in its interaction with phages lambda and K10 but still interacts with a lambda host range mutant lambda hh*. The Dex- mutants are double lamB mutants carrying one mutation, already present in the parental strains, that reduces LamB synthesis and a second that alters LamB structure. The secondary mutations, present in different independent Dex- mutants, are clustered in the same region of the lamB gene. Dex+ revertants were isolated and analyzed: when the altered LamB protein is made in wild-type amount, due to a reversion of the first mutation, the phenotype reverts to Dex+. However, these Dex+ revertants are still very significantly impaired in maltose transport at low concentrations (below 10 microM).  相似文献   

12.
Tetraploid strains of Saccharomyces cerevisiae carrying different dosages of the CYR1+ gene have been constructed. Adenylate cyclase activity observed in these tetraploid strains was proportional to the dosage of the active CYR1+ gene. Of the 57 mutants requiring adenosine 3',5'-monophosphate for growth at 35 degrees C, two allelic temperature-sensitive cyr1 mutants produced thermolabile adenylate cyclase. Crude extract and plasma membrane fraction of cyr1 mutant cells had no adenylate cyclase activity when assayed with GTP or 5'-guanylyl imidodiphosphate in the presence of Mn2+ or Mg2+. Plasma membrane and Lubrol-soluble plasma membrane fractions obtained from the temperature-sensitive cyr1 mutant were thermolabile compared with those from the wild-type strain. Three cyr1 mutants carried nonsense mutations susceptible to ochre (UAA) suppressors, SUP3 and SUP-o, and had no detectable level of adenylate cyclase activity. It is concluded that the cyr1 mutants carry lesions in the structural gene for adenylate cyclase.  相似文献   

13.
According to the preliminary data, S. typhimurium K-antigen is located in the area of minutes 40-44 on the Salmonella chromosome map. The formation of nonmotile mutants from motile Salmonella strains was induced by the action of nitrosoguanidine. Two main groups of mutants differing in their reaction of agglutination with H- and K-antisera were obtained: Mot-H-K- (motA or motB mutants) and Mot-H-K- (H1- or fla- mutants). The transduction transfer of the sign of motility by phage P22HT to H-K- mutants and to H1- and flaE- mutants led to the restoration of agglutination ability with respect to H- and K-antisera in all Mot+ transductants under study simultaneously. The restoration of H+K+ phenotype was also observed in spontaneous motile revertants obtained from H-K- mutants. Thus, the gene controlling the synthesis of K-antigen in Salmonellae was shown to be incorporated into the Fla operon, the regulatory system of the operon controlling the expression of this gene.  相似文献   

14.
Identification of a gene for alpha-tubulin in Aspergillus nidulans.   总被引:24,自引:0,他引:24  
N R Morris  M H Lai  C E Oakley 《Cell》1979,16(2):437-442
This paper demonstrates that revertants of temperature-sensitive benA (β-tubulin) mutations in Aspergillus nidulans can be used to identify proteins which interact with β-tubulin. Three benomyl-resistant benA (β-tubulin) mutants of Aspergillus nidulans, BEN 9, BEN 15 and BEN 19, were found to be temperature-sensitive (ts?) for growth. Temperature sensitivity co-segregated with benomyl resistance among the progeny of outcrosses of BEN 9, 15 and 19 to a wild-type strain, FGSC#99, indicating that temperature sensitivity was caused by mutations in the benA gene in these strains. Eighteen revertants to ts+ were isolated by selection at the restrictive temperature. Four had back-mutations in the benA gene and fourteen carried extragenic suppressor mutations. Two of the back-mutated strains had β-tubulins which differed from the β-tubulins of their parental strains by one (1?) or two (2?) negative charges on two-dimensional gel electrophoresis. Although the β-tubulins of the extragenic suppressor strains were all electrophoretically identical to those of the parental strains, one of the suppressor strains, BEN 9R7, had an electrophoretic abnormality in α1-tubulin (1+). A heterozygous diploid between this strain and a strain with wild-type α1-tubulin was found to have both wild-type and mutant (1+) α1-tubulins. This experiment rules out post-translational modification as a possible cause of the α1-tubulin abnormality. Thus the suppressor mutation in BEN 9R7 must be in a structural gene for α1-tubulin. We propose that this gene be designated tubA to denote that it is a gene for α1-tubulin in A. nidulans.  相似文献   

15.
Mutations in Salmonella typhimurium strains lacking nonspecific acid phosphatase mapped in two unlinked loci. One of these, phoP, was cotransducible by phage P22 with purB, whereas the second, phoN, was cotransducible by phage P1 with purA. Mutants with temperature-sensitive nonspecific acid phosphatase activity (measured in whole cells) were also isolated. A phoN mutant with thermolabile whole-cell activity was isolated directly from wild-type LT-2. Several other mutants with temperature-sensitive enzyme activity were also isolated as revertants of phoN mutants. These data suggest that phoN might be a structural locus for nonspecific acid phosphatase. The observation that a mutation resulting in high level of nonspecific acid phosphatase mapped in phoP suggests a possible regulatory role for this locus.  相似文献   

16.
AEM. Adams  D. Botstein 《Genetics》1989,121(4):675-683
A gene whose product is likely to interact with yeast actin was identified by the isolation of pseudorevertants carrying dominant suppressors of the temperature-sensitive (Ts) act1-1 mutation. Of 30 independent revertants analyzed, 29 were found to carry extragenic suppressor mutations and of these, 24/24 tested were found to be linked to each other. This linkage group identifies a new gene SAC6, whose product, by several genetic criteria, is likely to interact intimately with actin. First, although act1-1 sac6 strains are temperature-independent (Ts+), 4/17 sac6 mutant alleles tested are Ts in an ACT1+ background. Moreover, four Ts+ pseudorevertants of these ACT1+ sac6 mutants carry suppressor mutations in ACT1; significantly, three of these are again Ts in a SAC6+ background, and are most likely new act1 mutant alleles. Thus, mutations in ACT1 and SAC6 can suppress each other's defects. Second, sac6 mutations can suppress the Ts defects of the act1-1 and act1-2, but not act1-4, mutations. This allele specificity indicates the sac6 mutations do not suppress by simply bypassing the function of actin at high temperature. Third, act1-4 sac6 strains have a growth defect greater than that due to either of the single mutations alone, again suggesting an interaction between the two proteins. The mutant sac6 gene was cloned on the basis of dominant suppression from an act1-1 sac6 mutant library, and was then mapped to chromosome IV, less than 2 cM from ARO1.  相似文献   

17.
capR (lon) mutants of Escherichia coli K-12 are mucoid and sensitive to ultraviolet (UV) and X-ray radiation as well as to nitrofurantoin. The mutants form filaments after exposure to these agents. capR mutants are also conditionally lethal since they die when plated on complex medium even without UV treatment; this phenomenon is designated "complex medium-induced killing". Furthermore, capR mutants are poorly lysogenized by bacteriophage lambda. Second-site revertants were isolated by plating on media containing nitrofurantoin. All 17 of the independent revertants studied were still mucoid but resistant to UV radiation. Sixteen of the 17 revertants contained a mutation, sulA, that cotransduced with pyrD (21 min). A second locus, sulB, was also found that cotransduced with leu (2 min). Studies with partial diploids (F'pyrD+ sulA+/pyrD36 sulA17 capR9 (lon) demonstrated that sulA+ is dominant to sulA; thus the indicated partial diploid is UV sensitive, whereas the haploid parent is UV resistant. Furthermore, two other phenotypic traits of capR (lon) mutants were reversed by the sul mutation:complex medium-induced killing and the inability of lambda phage to efficiently lysogenize capR strains. On the basis of these and other results, the following model is suggested to explain capR (lon) and sul gene interactions. capR (lon) is a regulator gene for the structural genes sulA+ and sulB+. Depression of both sul operons results in UV sensitivity and decreased ability of lambda to lysogenize, whereas inactivation of either sul+ protein by mutation to sul prevents these phenomena.  相似文献   

18.
Glutathione and the gated potassium channels of Escherichia coli   总被引:8,自引:0,他引:8       下载免费PDF全文
J Meury  A Kepes 《The EMBO journal》1982,1(3):339-343
Glutathione-deficient mutants of Escherichia coli were found to require high potassium concentrations for growth, unless supplemented with glutathione. The unsupplemented mutants exhibited a rapid leak of potassium when transferred to a K+-free medium and a fast K+ turnover at the steady state of K+ accumulation, contrasting with the slow rate of the same processes in the wild-type. The steady-state level of K+ accumulation in low potassium medium increased immediately upon addition of glutathione, even in the absence of protein synthesis. K+-independent revertants were found to possess restored glutathione synthesis. Many properties of the glutathione-deficient mutants were identical with those of the potassium leaky K-B- and K-C- mutants, which, however, have a normal glutathione content. Both types of mutants differ from the wild-type in their response to thiol reagents in that no rapid loss of K+ is observed: they have, however, clear-cut differences under these circumstances. These results suggest that the products of trkB and trkC genes are essential for the formation of the potassium channel and glutathione plays an important role in the gating process.  相似文献   

19.
Virus mutants (NDV(pi)) recovered from L cells persistently infected with Newcastle disease virus (NDV, Herts strain) are temperature-sensitive (ts) at 43 C, although the wild-type virus (NDV(o)) which initiated the persistent infection replicates normally at that temperature. To study the relationship between the ts marker of NDV(pi) and the other properties which distinguish this virus from NDV(o), NDV(pi) ts(+) revertants were selected at the nonpermissive temperature and NDV(o) ts mutants were generated by treating NDV(o) with nitrous acid. Spontaneously-occurring ts mutants in the Herts NDV population were also isolated. The different virus populations were characterized with regard to plaque size, virulence for eggs, and thermal stability of infectivity, hemagglutinin, and neuraminidase. The NDV(pi) ts(+) revertants, although no longer temperature-sensitive, retained NDV(pi) properties, whereas both spontaneously-occurring and mutagen-induced ts mutants remained wild-type in their other properties. These findings showed that the properties which characterized NDV(pi) were independent of the ts marker. However, the ts marker and the other markers of NDV(pi) were coselected during the persistent infection, and the combination of those markers appeared to be important in the outcome of NDV infection of L cells. NDV(pi) replicated productively in L cells, whereas NDV(o), the NDV(pi) ts(+) revertants, and the spontaneously-occurring ts mutants all yielded covert infections in L cells. The role of the selection of ts mutants in persistent infection was confirmed as follows: L cells were persistently infected with NDV(pi) ts(+) revertants and NDV(o) ts mutants. Virus recovered from the persistently infected cultures after eight cell passages was always temperature-sensitive and of smaller plaque size than the parental virus in chicken embryo cell cultures. Similar results were obtained with virus recovered from L-cell cultures persistently infected with two other velogenic strains of NDV, the Texas-GB and Kansas-Man strains. These results strongly suggest that selection of ts mutants during the persistent infection was not random and played a role in establishment or maintenance of the persistent infection, or both.  相似文献   

20.
We have isolated spontaneous temperature-resistant revertants of a temperature-sensitive mutation (rpoD800) in the sigma subunit of E. coli K12 RNA polymerase. These revertants still contained the rpoD800 allele. They were mucoid, and sensitive to ultraviolet light and the radiomimetic agent nitrofurantoin, which are characteristics of lon mutants. One revertant, Tr29, was mapped to the lon region of the chromosome. Lon- rpoD800 double mutants were constructed, and were phenotypically indistinguishable from the spontaneous temperature-resistant revertant. It is the degradation-deficient property of lon mutants that is responsible for the suppression of the temperature-sensitive phenotype. We show that the rpoD800 sigma polypeptide is a substrate for the ion proteolytic system, and that mutations in lon decrease the rate of mutant sigma degradation. The rate of synthesis of mutant sigma was also affected in lon- strains. The net effect of lon-mutations was to increase the concentration of mutant sigma. We conclude that the temperature-sensitive phenotype results from insufficient concentration, rather than altered function, of the mutant protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号