首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent results confirm that long‐term expression of therapeutic transgenes can be achieved by using a transposon‐based system in primary stem cells and in vivo. Transposable elements are natural DNA transfer vehicles that are capable of efficient genomic insertion. The latest generation, Sleeping Beauty transposon‐based hyperactive vector (SB100X), is able to address the basic problem of non‐viral approaches – that is, low efficiency of stable gene transfer. The combination of transposon‐based non‐viral gene transfer with the latest improvements of non‐viral delivery techniques could provide a long‐term therapeutic effect without compromising biosafety. The new challenges of pre‐clinical research will focus on further refinement of the technology in large animal models and improving the safety profile of SB vectors by target‐selected transgene integration into genomic “safe harbors.” The first clinical application of the SB system will help to validate the safety of this approach.  相似文献   

2.
3.
Modelling of human disease in genetically engineered pigs provides unique possibilities in biomedical research and in studies of disease intervention. Establishment of methodologies that allow efficient gene insertion by non-viral gene carriers is an important step towards development of new disease models. In this report, we present transgenic pigs created by Sleeping Beauty DNA transposition in primary porcine fibroblasts in combination with somatic cell nuclear transfer by handmade cloning. Göttingen minipigs expressing green fluorescent protein are produced by transgenesis with DNA transposon vectors carrying the transgene driven by the human ubiquitin C promoter. These animals carry multiple copies (from 8 to 13) of the transgene and show systemic transgene expression. Transgene-expressing pigs carry both transposase-catalyzed insertions and at least one copy of randomly inserted plasmid DNA. Our findings illustrate critical issues related to DNA transposon-directed transgenesis, including coincidental plasmid insertion and relatively low Sleeping Beauty transposition activity in porcine fibroblasts, but also provide a platform for future development of porcine disease models using the Sleeping Beauty gene insertion technology.  相似文献   

4.
HMGB1 is a cofactor in mammalian base excision repair   总被引:4,自引:0,他引:4  
Deoxyribose phosphate (dRP) removal by DNA polymerase beta (Pol beta) is a pivotal step in base excision repair (BER). To identify BER cofactors, especially those with dRP lyase activity, we used a Pol beta null cell extract and BER intermediate as bait for sodium borohydride crosslinking. Mass spectrometry identified the high-mobility group box 1 protein (HMGB1) as specifically interacting with the BER intermediate. Purified HMGB1 was found to have weak dRP lyase activity and to stimulate AP endonuclease and FEN1 activities on BER substrates. Coimmunoprecipitation experiments revealed interactions of HMGB1 with known BER enzymes, and GFP-tagged HMGB1 was found to accumulate at sites of oxidative DNA damage in living cells. HMGB1(-/-) mouse cells were slightly more resistant to MMS than wild-type cells, probably due to the production of fewer strand-break BER intermediates. The results suggest HMGB1 is a BER cofactor capable of modulating BER capacity in cells.  相似文献   

5.
Sleeping Beauty (SB) is the first synthetic DNA transposon that was shown to be active in a wide variety of species. Here, we review studies from the last two decades addressing both basic biology and applications of this transposon. We discuss how host–transposon interaction modulates transposition at different steps of the transposition reaction. We also discuss how the transposon was translated for gene delivery and gene discovery purposes. We critically review the system in clinical, pre-clinical and non-clinical settings as a non-viral gene delivery tool in comparison with viral technologies. We also discuss emerging SB-based hybrid vectors aimed at combining the attractive safety features of the transposon with effective viral delivery. The success of the SB-based technology can be fundamentally attributed to being able to insert fairly randomly into genomic regions that allow stable long-term expression of the delivered transgene cassette. SB has emerged as an efficient and economical toolkit for safe and efficient gene delivery for medical applications.  相似文献   

6.
7.
Sleeping Beauty (SB) is the most active Tc1/mariner-like transposon in vertebrate species. Each of the terminal inverted repeats (IRs) of SB contains two transposase-binding sites (DRs). This feature, termed the IR/DR structure, is conserved in a group of Tc1-like transposons. The DNA-binding region of SB transposase, similar to the paired domain of Pax proteins, consists of two helix-turn-helix subdomains (PAI + RED = PAIRED). The N-terminal PAI subdomain was found to play a dominant role in contacting the DRs. Transposase was able to bind to mutant sites retaining the 3' part of the DRs; thus, primary DNA binding is not sufficient to determine the specificity of the transposition reaction. The PAI subdomain was also found to bind to a transpositional enhancer-like sequence within the left IR of SB, and to mediate protein-protein interactions between transposase subunits. A tetrameric form of the transposase was detected in solution, consistent with an interaction between the IR/DR structure and a transposase tetramer. We propose a model in which the transpositional enhancer and the PAI subdomain stabilize complexes formed by a transposase tetramer bound at the IR/DR. These interactions may result in enhanced stability of synaptic complexes, which might explain the efficient transposition of Sleeping Beauty in vertebrate cells.  相似文献   

8.
The use of mutant mice plays a pivotal role in determining the function of genes, and the recently reported germ line transposition of the Sleeping Beauty (SB) transposon would provide a novel system to facilitate this approach. In this study, we characterized SB transposition in the mouse germ line and assessed its potential for generating mutant mice. Transposition sites not only were clustered within 3 Mb near the donor site but also were widely distributed outside this cluster, indicating that the SB transposon can be utilized for both region-specific and genome-wide mutagenesis. The complexity of transposition sites in the germ line was high enough for large-scale generation of mutant mice. Based on these initial results, we conducted germ line mutagenesis by using a gene trap scheme, and the use of a green fluorescent protein reporter made it possible to select for mutant mice rapidly and noninvasively. Interestingly, mice with mutations in the same gene, each with a different insertion site, were obtained by local transposition events, demonstrating the feasibility of the SB transposon system for region-specific mutagenesis. Our results indicate that the SB transposon system has unique features that complement other mutagenesis approaches.  相似文献   

9.
Park CW  Park J  Kren BT  Steer CJ 《Genomics》2006,88(2):204-213
The Sleeping Beauty (SB) transposon (Tn) system is a nonviral gene delivery tool that has widespread application for transfer of therapeutic genes into the mammalian genome. To determine its utility as a gene delivery system, it was important to assess the epigenetic modifications associated with SB insertion into the genome and potential inactivation of the transgene. This study investigated the DNA methylation pattern of an SB Tn as well as the flanking genomic region at insertion sites in the mouse genome. The ubiquitous ROSA26 promoter and an initial part of the eGFP coding sequence in the SB Tn exhibited high levels of CpG methylation in transgenic mouse lines, irrespective of the chromosomal loci of the insertion sites. In contrast, no detectable CpG methylation in the endogenous mouse ROSA26 counterpart was observed in the same animals. Furthermore, significant hypomethylation was detected in neighboring chromosomal sequences of two unique SB Tn insertions compared to wild-type patterns. Taken together, these results suggest that SB Tn insertions into the mouse genome can be discriminated by DNA methylation machinery from an identical endogenous DNA sequence and can profoundly alter the DNA methylation status of the transgene cargo as well as flanking host genomic regions.  相似文献   

10.
The Sleeping Beauty (SB) transposase is the most active transposase in vertebrate cells, and the SB transposon system has been used as a tool for insertional mutagenesis and gene delivery. Previous studies have indicated that the frequency of chromosomal transposition is considerably higher in mouse germ cells than in mouse embryonic stem cells, suggesting the existence of unknown mechanisms that regulate SB transposition. Here, we demonstrated that CpG methylation of the transposon region enhances SB transposition. The transposition efficiencies of a methylated transposon and an unmethylated transposon which had been targeted in the same genomic loci by recombination-mediated cassette exchange in mouse erythroleukemia cells were compared, and at least a 100-fold increase was observed in the methylated transposon. CpG methylation also enhanced transposition from plasmids into the genome. Chromatin immunoprecipitation assays revealed that histone H3 methylated at lysine-9, a hallmark of condensed heterochromatin, was enriched at the methylated transposon, whereas the unmethylated transposon formed a relaxed euchromatin structure, as evidenced by enrichment of acetylated histone H3 and reporter gene expression. Possible roles of heterochromatin formation in the transposition reaction are discussed. Our findings indicate a novel relationship between CpG methylation and transposon mobilization.  相似文献   

11.
Herein, we report that the DNA-dependent protein kinase (DNA-PK) regulates the DNA damage introduced during Sleeping Beauty (SB) element excision and reinsertion in mammalian cells. Using both plasmid- and chromosome-based mobility assays, we analyzed the repair of transposase-induced double-stranded DNA breaks in cells deficient in either the DNA-binding subunit of DNA-PK (Ku) or its catalytic subunit (DNA-PKcs). We found that the free 3' overhangs left after SB element excision were efficiently and accurately processed by the major Ku-dependent nonhomologous-end-joining pathway. Rejoining of broken DNA molecules in the absence of Ku resulted in extensive end degradation at the donor site and greatly increased the frequency of recombination with ectopic templates. Therefore, the major DNA-PK-dependent DNA damage response predominates over more-error-prone repair pathways and thereby facilitates high-fidelity DNA repair during transposon mobilization in mammalian cells. Although transposable elements were not found to be efficiently circularized after transposase-mediated excision, DNA-PK deficiency supported more-frequent transposase-mediated element insertion than was found in wild-type controls. We conclude that, based on its ability to regulate excision site junctional diversity and transposon insertion frequency, DNA-PK serves an important protective role during transpositional recombination in mammals.  相似文献   

12.
13.
High mobility group box 1 (HMGB1) is a chromatin protein that acts as an immunomodulatory cytokine upon active release from myeloid cells. HMGB1 is also an alarmin, an endogenous molecule released by dying cells that acts to initiate tissue repair. We have previously reported that osteoclasts and osteoblasts release HMGB1 and release by the latter is regulated by parathyroid hormone (PTH), an agent of bone remodeling. A recent study suggests that HMGB1 acts as a chemotactic agent to osteoclasts and osteoblasts during endochondral ossification. To explore the potential impact of HMGB1 in the bone microenvironment and its mechanism of release by osseous cells, we characterized the effects of recombinant protein (rHMGB1) on multiple murine bone cell preparations that together exhibit the various cell phenotypes present in bone. We also inquired whether apoptotic bone cells release HMGB1. rHMGB1 enhanced the RANKL/OPG steady state mRNA ratio and dramatically augmented the release of tumor necrosis factor-alpha (TNFalpha) and interleukin-6 (IL6) in osteoblastogenic bone marrow stromal cell (BMSC) cultures but not in the calvarial-derived MC3T3-E1 cells. Interestingly, rHMGB1 promoted GSK-3beta phosphorylation in MC3T3-E1 cells but not in BMSCs. Apoptotic bone cells released HMGB1, including MLO-Y4 osteocyte-like cells. MLO-Y4 release of HMGB1 was coincident with caspase-3 cleavage. Furthermore, the anti-apoptotic action of PTH on MC3T3-E1 cells correlated with the observed decrease in HMGB1 release. Our data suggest that apoptotic bone cells release HMGB1, that within the marrow HMGB1 is a bone resorption signal, and that intramembraneous and endochondral osteoblasts exhibit differential responses to this cytokine.  相似文献   

14.
We developed a Sleeping Beauty (SB) transposon mediated hTERT gene delivery system for in vitro use. We have constructed telomerase or luciferase gene expressing SB-transposons with a SV40 enhancer (pT3.hTERT.Con and pT3.Con, respectively) or without an enhancer (pT3.Pro). Using the SB transposon system in vitro hTERT gene overexpression has protective effects from acute cellular injury by tert-butyl hydroperoxide (t-BH), carbon tetrachloride (CCl(4)), and d-galactosamine (d-GalN) in normal human cells IMR-90. pT3.hTERT.Con vector and helper plasmid co-transfection resulted in a approximately 3-fold increase in telomerase activity which was maintained for 14 days. Trypan blue and Cell Death Detection Assays showed the protective effects of the telomerase gene against toxic agents. Fourteen days after co-transfection with pT3.hTERT.Con vector and helper plasmid, IMR-90 cells were incubated with 1.2mM t-BH for 50 min, 5mM CCl(4) for 1.5h or 30 mM d-GalN for 24h. Cell viability of SB-mediated telomerase overexpressing cells significantly increased by 48% (t-BH), 43% (CCl(4)), and 25% (d-GalN) in comparison to mock treated cells. Cell Death Detection ELISA showed a decrease in the rate of apoptosis by 47%. In summary, SB transposon mediated telomerase gene transfer may have a protective effect against t-BH, CCl(4), or d-GalN induced acute cellular injury, and this results suggested SB-mediated telomerase therapy for tissue engineering.  相似文献   

15.
Apoprotein A-1 (apo A-1), the predominant protein constituent of high density lipoproteins (HDL), was phosphorylated by protein kinase C (PKC). Optimal phosphorylation of lipid-free apo A-1 occurs in the absence of calcium, phosphatidyl serine (PS), and diolein (DO). However, HDL-bound apo A-1 was not phosphorylated by PKC. Furthermore, addition of either native or reconstituted HDL particles to lipid-free apo A-1 resulted in a concentration-dependent inhibition of phosphorylation. It appears that the phosphorylatable sites on apo A-1 are involved in hydrophobic interaction with the lipids of HDL. Apo A-1 is a novel substrate of PKC because it does not require calcium and lipid cofactors for optimal phosphorylation.  相似文献   

16.
Crm1 is a member of the karyopherin family of nucleocytoplasmic transport receptors and mediates the export of proteins from the nucleus by forming a ternary complex with cargo and Ran:GTP. This complex translocates through the nuclear pores and dissociates in the cytosol. The yeast protein Yrb2p participates in this pathway and binds Crm1, but its mechanism of action has not been established. We show that the human orthologue of Yrb2p, Ran-binding protein 3 (RanBP3), acts as a cofactor for Crm1-mediated export in a permeabilized cell assay. RanBP3 binds directly to Crm1, and the complex possesses an enhanced affinity for both Ran:GTP and cargo. RanBP3 shuttles between the nucleus and the cytoplasm by a Crm1-dependent mechanism, and the Crm1--RanBP3-NES-Ran:GTP quarternary complex can associate with nucleoporins. We infer that this complex translocates through the nuclear pore to the cytoplasm where it is disassembled by RanBP1 and Ran GTPase--activating protein.  相似文献   

17.
The main methods for producing genetically engineered cells use viral vectors for which safety issues and manufacturing costs remain a concern. In addition, selection of desired cells typically relies on the use of cytotoxic drugs with long culture times. Here, we introduce an efficient non-viral approach combining the Sleeping Beauty (SB) Transposon System with selective proliferation of engineered cells by chemically induced dimerization (CID) of growth factor receptors. Minicircles carrying a SB transposon cassette containing a reporter transgene and a gene for the F36VFGFR1 fusion protein were delivered to the hematopoietic cell line Ba/F3. Stably-transduced Ba/F3 cell populations with >98% purity were obtained within 1 week using this positive selection strategy. Copy number analysis by quantitative PCR (qPCR) revealed that CID-selected cells contain on average higher copy numbers of transgenes than flow cytometry-selected cells, demonstrating selective advantage for cells with multiple transposon insertions. A diverse population of cells is present both before and after culture in CID media, although site-specific qPCR of transposon junctions show that population diversity is significantly reduced after selection due to preferential expansion of clones with multiple integration events. This non-viral, positive selection approach is an attractive alternative for producing engineered cells.  相似文献   

18.
Genetic evidence suggests that the Bacillus subtilis lrpC gene product participates in cell growth and sporulation. The purified LrpC protein, which has a predicted molecular mass of 16.4 kDa, is a tetramer in solution. LrpC binds with higher affinity (Kapp ~ 80 nM) to intrinsically curved DNA than to non-curved DNA (Kapp ~ 700 nM). DNase I footprinting and the supercoiling of relaxed circular plasmid DNA in the presence of topoisomerase I revealed that LrpC induces DNA bending and constrains DNA supercoils in vitro. The LrpC protein cooperatively increases DNA binding of the bona fide DNA-binding and DNA-bending protein Hbsu. LrpC forms inter- and intramolecular bridges on linear and supercoiled DNA molecules, resulting in a large network and DNA compactation. Collectively, these findings suggest that LrpC is an architectural protein and that its activities could provide a means to modulate DNA transactions.  相似文献   

19.
HMGB1, a non-histone nuclear factor, acts extracellularly as a mediator of delayed endotoxin lethality, which raises the question of how a nuclear protein can reach the extracellular space. We show that activation of monocytes results in the redistribution of HMGB1 from the nucleus to cytoplasmic organelles, which display ultrastructural features of endolysosomes. HMGB1 secretion is induced by stimuli triggering lysosome exocytosis. The early mediator of inflammation interleukin (IL)-1beta is also secreted by monocytes through a non-classical pathway involving exocytosis of secretory lysosomes. However, in keeping with their respective role of early and late inflammatory factors, IL-1beta and HMGB1 respond at different times to different stimuli: IL-1beta secretion is induced earlier by ATP, autocrinally released by monocytes soon after activation; HMGB1 secretion is triggered by lysophosphatidylcholine, generated later in the inflammation site. Thus, in monocytes, non-classical secretion can occur through vescicle compartments that are at least partially distinct.  相似文献   

20.
The Sleeping Beauty (SB) transposon is a Tc1/mariner family transposon that has applications in vertebrate animals for gene transfer, gene-tagging, and human gene therapy. In this study, we analyzed the target-site preferences of the SB transposon. At the genomic level, integration of SB transposons with respect to genes (exons and introns) and intergenic regions appears fairly random but not on a micro-scale. Although there appears to be a consensus sequence around the vicinity of the target sites, the primary sequence is not the determining factor for target selection. When integrations were examined over a limited topography, the sites used most often for integration did not match the consensus sequence. Rather, a unique deformation inherent in the sequence may be a recognition signal for target selection. The deformation is characterized by an angling of the target site such that the axis around the insertion site is off-center, the rotation of the helix (twisting) is non-uniform and there is an increase in the distance between the central base-pairs. Our observations offer several hypothetical insights into the transposition process. Our observations suggest that particular deformations of the double helix predicted by the V(step) algorithm can distinguish TA sites that vary by about 16-fold in their preferences for accommodating insertions of SB transposons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号