首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Previously we demonstrated that an entire bacterial operon (the PRN operon) is expressible in plants when driven by the Tomato -yellow-leaf-curl-virus (TYLCV) -derived universal vector IL-60.Petroleum-derived plastics are not degradable, and are therefore harmful to the environment. Fermentation of bacteria carrying operons for polyhydroxyalkanoates (PHAs) produces degradable bioplastics which are environmentally friendly. However, bacterial production of bioplastics is not cost-effective, and attention is turning to their production in plants. Such “green” plastics would be less expensive and environmentally friendly. Hence, attempts are being made to substitute petroleum-derived plastics with “green” plastics. However, transformation of plants with genes of operons producing bioplastics has deleterious effects. Transformation of plastids does not cause deleterious effects, however it is a complicated procedures.

Results

We have developed another TYLCV-based vector (SE100) and show that yet another bacterial operon (the phaCAB operon) when driven by SE100 is also expressed in plants. We employed the combination of SE100 and the phaCAB operon to drive the operon to the plastids and produce in plants a biodegradable plastic [polyhydroxybutyrate (PHB)].Here we indicate that the bacterial operon (phaCAB), when driven by the newly developed universal plant vector SE100 is directed to chloroplasts and produces in plants PHB, a leading PHA. The PHB-producing plants circumvent the need for complicated technical procedures.

Conclusion

The viral vector system SE100 facilitated the production of the bio-plastic poly-3-hydroxybutyrate. This was achieved by using the full pha-CAB operon indicating that TYLCV based system can transcribe and translate genes from bacterial operons controlled by a single cis element. Our data hints to the participation of the chloroplasts in these processes.
  相似文献   

2.

Background  

In an effort to identify alternate recombinant gene expression systems in Pseudomonas fluorescens, we identified genes encoding two native metabolic pathways that were inducible with inexpensive compounds: the anthranilate operon (antABC) and the benzoate operon (benABCD).  相似文献   

3.
4.
5.

Objective

To investigate the xylose operon and properties of xylose isomerase and xylulokinase in Bacillus coagulans that can effectively ferment xylose to lactic acid.

Results

The xylose operon is widely present in B. coagulans. It is composed of four putative ORFs. Novel xylA and xylB from B. coagulans NL01 were cloned and expressed in Escherichia coli. Sequence of xylose isomerase was more conserved than that of xylulokinase. Both the enzymes exhibited maximum activities at pH 7–8 but with a high temperature maximum of 80–85 °C, divalent metal ion was prerequisite for their activation. Xylose isomerase and xylulokinase were most effectively activated by Ni2+ and Co2+, respectively.

Conclusions

Genomic analysis of xylose operon has contributed to understanding xylose metabolism in B. coagulans and the novel xylose isomerase and xylulokinase might provide new alternatives for metabolic engineering of other strains to improve their fermentation performance on xylose.
  相似文献   

6.
7.

Background

Shuffling and disruption of operons and horizontal gene transfer are major contributions to the new, dynamic view of prokaryotic evolution. Under the 'selfish operon' hypothesis, operons are viewed as mobile genetic entities that are constantly disseminated via horizontal gene transfer, although their retention could be favored by the advantage of coregulation of functionally linked genes. Here we apply comparative genomics and phylogenetic analysis to examine horizontal transfer of entire operons versus displacement of individual genes within operons by horizontally acquired orthologs and independent assembly of the same or similar operons from genes with different phylogenetic affinities.

Results

Since a substantial number of operons have been identified experimentally in only a few model bacteria, evolutionarily conserved gene strings were analyzed as surrogates of operons. The phylogenetic affinities within these predicted operons were assessed first by sequence similarity analysis and then by phylogenetic analysis, including statistical tests of tree topology. Numerous cases of apparent horizontal transfer of entire operons were detected. However, it was shown that apparent horizontal transfer of individual genes or arrays of genes within operons is not uncommon either and results in xenologous gene displacement in situ, that is, displacement of an ancestral gene by a horizontally transferred ortholog from a taxonomically distant organism without change of the local gene organization. On rarer occasions, operons might have evolved via independent assembly, in part from horizontally acquired genes.

Conclusions

The discovery of in situ gene displacement shows that combination of rampant horizontal gene transfer with selection for preservation of operon structure provides for events in prokaryotic evolution that, a priori, seem improbable. These findings also emphasize that not all aspects of operon evolution are selfish, with operon integrity maintained by purifying selection at the organism level.
  相似文献   

8.
9.
10.
11.

Background  

A large number of theories have been advanced to explain why genes involved in the same biochemical processes are often co-located in genomes. Most of these theories have been dismissed because empirical data do not match the expectations of the models. In this work we test the hypothesis that cluster formation is most likely due to a selective pressure to gradually co-localise protein products and that operon formation is not an inevitable conclusion of the process.  相似文献   

12.

Background  

Previous studies of gene amplification in Escherichia coli have suggested that it occurs in two steps: duplication and expansion. Expansion is thought to result from homologous recombination between the repeated segments created by duplication. To explore the mechanism of expansion, a 7 kbp duplication in the chromosome containing a leaky mutant version of the lac operon was constructed, and its expansion into an amplified array was studied.  相似文献   

13.

Background  

Models for the simulation of metabolic networks require the accurate prediction of enzyme function. Based on a genomic sequence, enzymatic functions of gene products are today mainly predicted by sequence database searching and operon analysis. Other methods can support these techniques: We have developed an automatic method "BrEPS" that creates highly specific sequence patterns for the functional annotation of enzymes.  相似文献   

14.

Background  

Helicobacter pyloricolonizes the human stomach and is the etiological agent of peptic ulcer disease. All threeH. pyloristrains that have been sequenced to date contain a potential operon whose products share homology with the subunits of acetone carboxylase (encoded byacxABC) fromXanthobacter autotrophicusstrain Py2 andRhodobacter capsulatusstrain B10. Acetone carboxylase catalyzes the conversion of acetone to acetoacetate. Genes upstream of the putativeacxABCoperon encode enzymes that convert acetoacetate to acetoacetyl-CoA, which is metabolized further to generate two molecules of acetyl-CoA.  相似文献   

15.

Background  

The tetracycline operon is a self-regulated system. It is found naturally in bacteria where it confers resistance to antibiotic tetracycline. Because of the performance of the molecular elements of the tetracycline operon, these elements are widely used as parts of synthetic gene networks where the protein production can be efficiently turned on and off in response to the presence or the absence of tetracycline. In this paper, we investigate the dynamics of the tetracycline operon. To this end, we develop a mathematical model guided by experimental findings. Our model consists of biochemical reactions that capture the biomolecular interactions of this intriguing system. Having in mind that small biological systems are subjects to stochasticity, we use a stochastic algorithm to simulate the tetracycline operon behavior. A sensitivity analysis of two critical parameters embodied this system is also performed providing a useful understanding of the function of this system.  相似文献   

16.

Background  

The Bacillus subtilis glucokinase operon was predicted to be comprised of the genes, yqgP (now named gluP), yqgQ, and glcK. We have previously established a role for glcK in glucose metabolism. In the absence of enzymes that phosphorylate glucose, such as GlcK and/or enzyme IIGlc, accumulated cytoplasmic glucose can be transported out of the cell. Genes within the glucokinase operon were not previously known to play a role in glucose transport. Here we describe the expression of gluP and its function in glucose transport.  相似文献   

17.

Background  

Tryptophan-pathway genes that exist within an apparent operon-like organization were evaluated as examples of multi-genic genomic regions that contain phylogenetically incongruous genes and coexist with genes outside the operon that are congruous. A seven-gene cluster in Xylella fastidiosa includes genes encoding the two subunits of anthranilate synthase, an aryl-CoA synthetase, and trpR. A second gene block, present in the Anabaena/Nostoc lineage, but not in other cyanobacteria, contains a near-complete tryptophan operon nested within an apparent supraoperon containing other aromatic-pathway genes.  相似文献   

18.
Kumar A  Schweizer HP 《PloS one》2011,6(10):e26520

Background

The Pseudomonas aeruginosa MexEF-OprN efflux pump confers resistance to clinically significant antibiotics. Regulation of mexEF-oprN operon expression is multifaceted with the MexT activator being one of the most prominent regulatory proteins.

Methodology

We have exploited the impaired metabolic fitness of a P. aeruginosa mutant strain lacking several efflux pump of the resistance nodulation cell division superfamily and the TolC homolog OpmH, and isolated derivatives (large colony variants) that regained fitness by incubation on nutrient-rich medium in the absence of antibiotics. Although the mexEF-oprN operon is uninducible in this mutant due to a 8-bp mexT insertion present in some P. aeruginosa PAO1 strains, the large colony variants expressed high levels of MexEF-OprN. Unlike large colony variants obtained after plating on antibiotic containing medium which expressed mexEF-oprN in a MexT-dependent fashion as evidenced by clean excision of the 8-bp insertion from mexT, mexEF-oprN expression was MexT-independent in the large colony variants obtained by plating on LB alone since the mexT gene remained inactivated. A search for possible regulators of mexEF-oprN expression using transposon mutagenesis and genomic library expression approaches yielded several candidates but proved inconclusive.

Significance

Our results show that antibiotic and metabolic stress lead to up-regulation of MexEF-OprN expression via different mechanisms and that MexEF-OprN does not only extrude antimicrobials but rather serves other important metabolic functions.  相似文献   

19.
Feng Y  Chen Z  Liu SL 《PloS one》2011,6(11):e27754

Background

Many facultative bacterial pathogens have undergone extensive gene decay processes, possibly due to lack of selection pressure during evolutionary conversion from free-living to intracellular lifestyle. Shigella, the causative agents of human shigellosis, have arisen from different E. coli-like ancestors independently by convergent paths. As these bacteria all have lost large numbers of genes by mutation or deletion, they can be used as ideal models for systematically studying the process of gene function loss in different bacteria living under similar selection pressures.

Methodologies/Principal Findings

We compared the sequenced Shigella genomes and re-defined decayed genes (pseudogenes plus deleted genes) in these bacteria. Altogether, 85 genes are commonly decayed in the five analyzed Shigella strains and 1456 genes are decayed in at least one Shigella strain. Genes coding for carbon utilization, cell motility, transporter or membrane proteins are prone to be inactivated. Decayed genes tend to concentrate in certain operons rather than distribute averagely across the whole genome. Genes in the decayed operon accumulated more non-synonymous mutations than the rest genes and meanwhile have lower expression levels.

Conclusions

Different Shigella lineages underwent convergent gene decay processes, and inactivation of one gene would lead to a lesser selection pressure for the other genes in the same operon. The pool of superfluous genes for Shigella may contain at least two thousand genes and the gene decay processes may still continue in Shigella until a minimum genome harboring only essential genes is reached.  相似文献   

20.

Background  

Modification of teichoic acids with D-alanine by the products of the dlt operon protects Gram-positive bacteria against major antimicrobial host defense molecules such as defensins, cathelicidins, myeloperoxidase or phospholipase. The graRS regulatory genes have recently been implicated in the control of D-alanylation in Staphylococcus aureus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号