首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
8-Oxoguanine (8-oxoG), induced by reactive oxygen species and arguably one of the most important mutagenic DNA lesions, is prone to further oxidation. Its one-electron oxidation products include potentially mutagenic guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) because of their mispairing with A or G. All three oxidized base-specific DNA glycosylases of Escherichia coli, namely endonuclease III (Nth), 8-oxoG-DNA glycosylase (MutM) and endonuclease VIII (Nei), excise Gh and Sp, when paired with C or G in DNA, although Nth is less active than the other two. MutM prefers Sp and Gh paired with C (kcat/Km of 0.24–0.26 min–1 nM–1), while Nei prefers G over C as the complementary base (kcat/Km 0.15–0.17 min–1 nM–1). However, only Nei efficiently excises these paired with A. MutY, a 8-oxoG·A(G)-specific A(G)-DNA glycosylase, is inactive with Gh(Sp)·A/G-containing duplex oligonucleotide, in spite of specific affinity. It inhibits excision of lesions by MutM from the Gh·G or Sp·G pair, but not from Gh·C and Sp·C pairs. In contrast, MutY does not significantly inhibit Nei for any Gh(Sp) base pair. These results suggest a protective function for MutY in preventing mutation as a result of A (G) incorporation opposite Gh(Sp) during DNA replication.  相似文献   

2.
Oxidation of guanine (G) and 8-oxoguanine (OG) with a wide variety of oxidants yields the hydantoin lesions, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp). These two lesions have garnered much recent attention due to their unusual structures and high mutagenic potential. We have previously shown that duplexes containing Gh and Sp are substrates for the base excision repair glycosylase Escherichia coli Fpg (EcFpg). To evaluate the recognition features of these unusual lesions, binding and footprinting experiments were performed using a glycosylase inactive variant, E3Q EcFpg, and 30 bp duplexes containing the embedded lesions. Surprisingly, E3Q EcFpg was found to bind significantly more tightly ( approximately 1000-fold) to duplexes containing Gh or Sp over the corresponding duplexes containing OG. This may be a consequence of the helix-destabilizing nature of the hydantoin lesions that facilitates their recognition within duplex DNA. Though DNA binding affinities of E3Q EcFpg with Gh- and Sp-containing duplexes were found to be similar to each other, hydroxyl radical footprinting using methidium-propyl-EDTA (MPE)-Fe(II) revealed subtle differences between binding of E3Q EcFpg to the two lesions. Most notably, in the presence of E3Q EcFpg, the Sp nucleotide (nt) is hyperreactive toward cleavage by MPE-Fe(II)-generated hydroxyl radicals, suggestive of the formation of an intercalation site for the MPE-Fe(II) reagent at the Sp nt. Interestingly, increasing the duplex length from 18 to 30 bp enhanced the excision efficiency of Gh and Sp paired with C, G, or T by EcFpg such that these substrates are processed as efficiently as the signature substrate lesion, OG. Moreover, the base removal activity with these two lesions was more efficient than removal of OG when in a base pairing context opposite A. The high affinity and efficient activity of EcFpg toward the hydantoin lesions suggest that EcFpg mediates repair of the lesions in vivo. Notably, the facile activity of EcFpg toward Gh and Sp in base pairing contexts with G and A, which are likely to be present after DNA replication, would be detrimental and enhance mutagenesis.  相似文献   

3.
8-Oxoguanine (8-oxoG) is an unstable mutagenic DNA lesion that is prone to further oxidation. High valent metals such as Cr(V) and Ir(IV) readily oxidize 8-oxoG to form guanidinohydantoin (Gh), its isomer iminoallantoin (Ia), and spiroiminodihydantoin (Sp). When present in DNA, these lesions show enhanced base misincorporation over the parent 8-oxoG lesion leading to G --> T and G --> C transversion mutations and polymerase arrest. These findings suggested that further oxidized lesions of 8-oxoG are more mutagenic and toxic than 8-oxoG itself. Repair of oxidatively damaged bases, including Sp and Gh/Ia, are initiated by the base excision repair (BER) system that involves the DNA glycosylases Fpg, Nei, and Nth in E. coli. Mammalian homologs of two of these BER enzymes, OGG1 and NTH1, have little or no affinity for Gh/Ia and Sp. Herein we report that two recently identified mammalian glycosylases, NEIL1 and NEIL2, showed a high affinity for recognition and cleavage of DNA containing Gh/Ia and Sp lesions. NEIL1 and NEIL2 recognized both of these lesions in single-stranded DNA and catalyzed the removal of the lesions through a beta- and delta-elimination mechanism. NEIL1 and NEIL2 also recognized and excised the Gh/Ia lesion opposite all four natural bases in double-stranded DNA. NEIL1 was able to excise the Sp lesion opposite the four natural bases in double-stranded DNA, however, NEIL2 showed little cleavage activity against the Sp lesion in duplex DNA although DNA trapping studies show recognition and binding of NEIL2 to this lesion. This work suggests that NEIL1 and NEIL2 are essential in the recognition of further oxidized lesions arising from 8-oxoG and implies that these BER glycosylases may play an important role in the repair of DNA damage induced by carcinogenic metals.  相似文献   

4.
Ligases conduct the final stage of repair of DNA damage by sealing a single-stranded nick after excision of damaged nucleotides and reinsertion of correct nucleotides. Depending upon the circumstances and the success of the repair process, lesions may remain at the ligation site, either in the template or at the oligomer termini to be joined. Ligation experiments using bacteriophage T4 DNA ligase were carried out with purine lesions in four positions surrounding the nick site in a total of 96 different duplexes. The oxidized lesion 8-oxo-7,8-dihydroguanosine (OG) showed, as expected, that the enzyme is most sensitive to lesions on the 3' end of the nick compared to the 5' end and to lesions located in the intact template strand. In general, substrates containing the OG.A mismatch were more readily ligated than those with the OG.C mismatch. Ligations of duplexes containing the OA.T base pair (OA = 8-oxo-7,8-dihydroadenosine) that could adopt an anti-anti conformation proceeded with high efficiencies. An OI.A mismatch-containing duplex (OI = 8-oxo-7,8-dihydroinosine) behaved like OG.A. Due to its low reduction potential, OG is readily oxidized to secondary oxidation products, such as the guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp) nucleosides; these lesions also contain an oxo group at the original C8 position of the purine. Ligation of oligomers containing Gh and Sp occurred when opposite A and G, although the overall ligation efficiencies were much lower than those of most OG base pairs. Steady-state kinetic studies were carried out for representative examples of lesions in the template. Km increased by 90-100-fold for OG.C-, OI.C-, OI.A-, and OA.T-containing duplexes compared to that of a G.C-containing duplex. Substrates containing Gh.A, Gh.G, Sp.A, and Sp.G base pairs exhibited Km values 20-70-fold higher than that of the substrate containing a G.C base pair, while the Km value for OG.A was 5 times lower than that for G.C.  相似文献   

5.
8-Oxo-7,8-dihydroguanine (OG) is susceptible to further oxidation in vitro to form two secondary oxidation products, guanidinohydantoin (Gh) and spiroiminodihydantoin (Sp). Previous work from this laboratory has shown that OG, Gh, and Sp are recognized and excised from duplex DNA substrates by the Escherichia coli DNA repair enzyme Fpg. In this report, we extend these studies to the functionally related eukaryotic OG glycosylases (OGG) from yeast and humans: yOGG1, yOGG2, and hOGG1. The hOGG1 enzyme was active only toward the removal of 8-oxoguanine, exhibiting a 1000-fold faster rate of removal of 8-oxoguanine from OG.C-containing duplexes relative to their OG.A counterparts. Duplexes containing Gh or Sp opposite any of the four natural bases were not substrates for the hOGG1 enzyme. In contrast, both yOGG1 and yOGG2 enzymes removed Gh and Sp in a relatively efficient manner from an 18 bp duplex. No significant difference was observed in the rate of reaction of Gh- and Sp-containing duplexes with yOGG1. However, yOGG2 removed Sp at a faster rate than Gh. Both yOGG enzymes exhibit a negligible dependence on the base opposite the lesion, suggesting that the activity of these enzymes may be promutagenic. Surprisingly, in the 18 bp sequence context, both yOGG enzymes did not exhibit OG removal activity. However, both removed OG in a 30 bp duplex with a different sequence surrounding the OG. The wide range of repair efficiencies observed by these enzymes with different substrates in vitro suggests that this could greatly affect the mutagenicity of these lesions in vivo. Indeed, the greater efficiency of the yOGG proteins for removal of the further oxidized products, Gh and Sp, over their 8-oxoguanine parent, suggests that these lesions may be the preferred substrates in vivo.  相似文献   

6.
7.
The DNA damage product 7,8-dihydro-8-oxo-2'-deoxyguanine (8-oxoG) is a commonly used biomarker of oxidative stress. The mutagenic potential of this DNA lesion is mitigated in Escherichia coli by multiple enzymes. One of these enzymes, MutY, excises an A mispaired with 8-oxoG as part of the process to restore the original G:C base pair. However, numerous studies have shown that 8-oxoG is chemically labile toward further oxidation. Here, we examine the activity of MutY on the 8-oxoG oxidation products guanidinohydantoin (Gh), two diastereomers of spiroiminodihydantoin (Sp1 and Sp2), oxaluric acid (Oa), and urea (Ur). Single-stranded viral genomes containing a site-specific lesion were constructed and replicated in E. coli that are either proficient in DNA repair or that lack MutY. These lesions were found previously to be potently mutagenic in repair competent bacteria, and we report here that these 8-oxoG-derived lesions are equally miscoding when replicated in E. coli lacking MutY; no significant change in mutation identity or frequency is observed. Interestingly, however, in the presence of MutY, Sp1 and Sp2 are more toxic than in cells lacking this repair enzyme.  相似文献   

8.
Efficient removal of formamidopyrimidines by 8-oxoguanine glycosylases   总被引:4,自引:0,他引:4  
Under conditions of oxidative stress, the formamidopyrimidine lesions (FapyG and FapyA) are formed in competition with the corresponding 8-oxopurines (OG and OA) from a common intermediate. In order to reveal features of the repair of these lesions, and the potential contribution of repair in mitigating or exacerbating the mutagenic properties of Fapy lesions, their excision by three glycosylases, Fpg, hOGG1 and Ntg1, was examined in various base pair contexts under single-turnover conditions. FapyG was removed at least as efficiently as OG by all three glycosylases. In addition, the rates of removal of FapyG by Fpg and hOGG1 were influenced by their base pair partner, with preference for removal when base paired with the correct Watson-Crick partner C. With the FapyA lesion, Fpg and Ntg1 catalyze its removal more readily than OG opposite all four natural bases. In contrast, the removal of FapyA by hOGG1 was not as robust as FapyG or OG, and was only significant when the lesion was paired with C. The discrimination by the various glycosylases with respect to the opposing base was highly dependent on the identity of the lesion. OG induced the greatest selectivity against its removal when part of a promutagenic base pair. The superb activity of the various OG glycosylases toward removal of FapyG and FapyA in vitro suggests that these enzymes may act upon these oxidized lesions in vivo. The differences in the activity of the various glycosylases for removal of FapyG and FapyA compared to OG in nonmutagenic versus promutagenic base pair contexts may serve to alter the mutagenic profiles of these lesions in vivo.  相似文献   

9.
The low redox potential of 8-oxo-7,8-dihydroguanine (OG), a molecule regarded as a marker of oxidative damage in cells, makes it an easy target for further oxidation. Using a temperature-dependent method of synthesis, the oxidation products of OG, guanidinohydantoin (Gh) and/or its isomer iminoallantoin (Ia) as well as spiroiminodihydantoin (Sp), have been site-specifically incorporated into DNA oligomers. Single nucleotide insertion and primer extension experiments using Escherichia coli Kf exo(-) DNA polymerase were carried out under "standing start" and "running start" conditions in various sequence contexts. dAMP and dGMP were found to be inserted opposite these OG oxidation products. Steady-state kinetic studies show that the Gh/Ia.G base pair yields a lower K(m) value compared to the Sp.G pair or X.A (X = Gh/Ia or Sp). Running start experiments using oxidized and unoxidized OG-containing templates showed enhanced full extension in the presence of all four dNTPs. A sequence preference for efficiency of extension was found when Gh/Ia and Sp are present in the DNA template, possibly leading to primer misalignment. Full extension is more efficient for the templates containing two Gs immediately 3' to the lesions compared to two As. Although these lesions cause a significant block for DNA elongation, results show that they are more easily bypassed by the polymerase when situated in the appropriate sequence context. UV melting studies carried out on duplexes mimicking the template/primer systems were used to characterize thermal stability of the duplexes. These experiments suggest that both Gh/Ia and Sp destabilize the duplex to a much greater extent than OG, with Sp being most severe.  相似文献   

10.
The oxidation product of 2'-deoxyguanosine, 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG), produces G:C to T:A transversion mutations. The Escherichia coli base excision repair glycosylase MutY plays an important role in preventing OG-associated mutations by removing adenines misincorporated opposite OG lesions during DNA replication. Recently, biallelic mutations in the human MutY homologue (hMYH) have been correlated with the development of colorectal cancer. The two most common mutations correspond to two single amino acid substitutions in the hMYH protein: Y165C and G382D [Al-Tassan, N., et al. (2002) Nat. Genet. 30, 227-232]. Previously, our laboratory analyzed the adenine glycosylase activity of the homologous variant E. coli MutY enzymes, Y82C and G253D [Chmiel, N. H., et al. (2003) J. Mol. Biol. 327, 431-443]. This work demonstrated that both variants have a reduced adenine glycosylase activity and affinity for substrate analogues compared to wild-type MutY. Recent structural work on Bacillus stearothermophilus MutY bound to an OG:A mismatch-containing duplex indicates that both residues aid in recognition of OG [Fromme, J. C., et al. (2004) Nature 427, 652-656]. To determine the extent with which Tyr 82 and Gly 253 contribute to catalysis of adenine removal by E. coli MutY, we made a series of additional modifications in these residues, namely, Y82F, Y82L, and G253A. When the substrate analogue 2'-deoxy-2'-fluoroadenosine (FA) in duplex paired with G or OG is used, both Y82F and G253A showed reduced binding affinity, and G253A was unable to discriminate between OG and G when paired with FA. Additionally, compromised glycosylase activity of Y82F, Y82C, and G253A MutY was observed using the nonoptimal G:A substrate, or at low reaction temperatures. Interestingly, adenine removal from an OG:A-containing DNA substrate by Y82C MutY was also shown to be extremely sensitive to the NaCl concentration. The most surprising result was the remarkably similar activity of Y82L MutY to the WT enzyme under all conditions examined, indicating that a leucine residue may effectively replace tyrosine for intercalation at the OG:A mismatch. The results contained herein provide further insight regarding the intricate roles of Tyr 82 and Gly 253 in the OG recognition and adenine excision functions of MutY.  相似文献   

11.
DNA damage recognition and repair by the murine MutY homologue   总被引:1,自引:0,他引:1  
Pope MA  David SS 《DNA Repair》2005,4(1):91-102
E. coli MutY excises adenine from duplex DNA when it is mispaired with the mutagenic oxidative lesion 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG). While E. coli MutY has been extensively studied, a detailed kinetic analysis of a mammalian MutY homologue has been inhibited by poor overexpression in bacterial hosts. This current work is the first detailed study of substrate recognition and repair of mismatched DNA by a mammalian adenine glycosylase, the murine MutY homologue (mMYH). Similar to E. coli MutY, the processing of OG:A substrates by mMYH is biphasic, indicating that product release is rate-limiting. Surprisingly, the intrinsic rates of adenine removal from both OG:A and G:A substrates by mMYH are diminished ( approximately 10-fold) compared to E. coli MutY. However, similar to E. coli MutY, the rate of adenine removal is approximately nine-fold faster with an OG:A- than a G:A-containing substrate. Interestingly, the rate of removal of 2-hydroxyadenine mispaired with OG or G in duplex DNA by mMYH was similar to the rate of adenine removal from the analogous context. In contrast, 2-hydroxyadenine removal by E. coli MutY was significantly reduced compared to adenine removal opposite both OG and G. Furthermore, dissociation constant measurements with duplexes containing noncleavable 2'-deoxyadenosine analogues indicate that mMYH is less sensitive to the structure of the base mispaired with OG or G than MutY. Though in many respects the catalytic behavior of mMYH is similar to E. coli MutY, the subtle differences may translate into differences in their in vivo functions.  相似文献   

12.
The DNA repair enzyme MutY plays an important role in the prevention of DNA mutations resulting from the presence of the oxidatively damaged lesion 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG). MutY is a base excision repair (BER) glycosylase that removes misincorporated adenine residues from OG:A mispairs, as well as G:A and C:A mispairs. We have previously shown that, under conditions of low MutY concentrations relative to an OG:A or G:A substrate, the time course of the adenine glycosylase reaction exhibits biphasic kinetic behavior due to slow release of the DNA product by MutY. The dissociation of MutY from its product may require the recruitment of other proteins from the BER pathway, such as an apurinic-apyrimidinic (AP) endonuclease, as turnover-enhancing cofactors. The effect of the AP endonucleases endonuclease IV (Endo IV), exonuclease III (Exo III), and Ape1 on the reaction kinetics of MutY with G:A- and OG:A-containing substrates was investigated. The effect of the glycosylases UDG and MutM and the DNA polymerase pol I was also characterized. Endo IV and Exo III, unlike Ape1, UDG, and pol I, greatly enhance the rate of product release with a G:A substrate, whereas the rate constant for the adenine removal step remains unchanged. Furthermore, the turnover rate with a truncated form of MutY, Stop 225, which lacks 125 amino acids of the C terminus, is unaffected by the presence of Endo IV or Exo III. These results constitute the first evidence of an interaction between the MutY-product DNA complex and Endo IV or Exo III. Furthermore, they suggest a role for the C-terminal domain of MutY in mediating this interaction.  相似文献   

13.
Escherichia coli MutY has an important role in preventing mutations associated with the oxidative lesion 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG) in DNA by excising adenines from OG.A mismatches as the first step of base excision repair. To determine the importance of specific steps in the base pair recognition and base removal process of MutY, we have evaluated the effects of modifications of the OG.A substrate on the kinetics of base removal, mismatch affinity and repair to G-C in an E. coli-based assay. Notably, adenine modification was tolerated in the cellular assay, whereas modification of OG resulted in minimal cellular repair. High affinity for the mismatch and efficient base removal required the presence of OG. Taken together, these results suggest that the presence of OG is a critical feature that is necessary for MutY to locate OG.A mismatches and select the appropriate adenines for excision to initiate repair in vivo before replication.  相似文献   

14.
Formamidopyrimidine DNA glycosylase (Fpg) and endonuclease VIII (Nei) share an overall common three-dimensional structure and primary amino acid sequence in conserved structural motifs but have different substrate specificities, with bacterial Fpg proteins recognizing formamidopyrimidines, 8-oxoguanine (8-oxoG) and its oxidation products guanidinohydantoin (Gh), and spiroiminodihydantoin (Sp) and bacterial Nei proteins recognizing primarily damaged pyrimidines. In addition to bacteria, Fpg has also been found in plants, while Nei is sparsely distributed among the prokaryotes and eukaryotes. Phylogenetic analysis of Fpg and Nei DNA glycosylases demonstrated, with 95% bootstrap support, a clade containing exclusively sequences from plants and fungi. Members of this clade exhibit sequence features closer to bacterial Fpg proteins than to any protein designated as Nei based on biochemical studies. The Candida albicans (Cal) Fpg DNA glycosylase and a previously studied Arabidopsis thaliana (Ath) Fpg DNA glycosylase were expressed, purified and characterized. In oligodeoxynucleotides, the preferred glycosylase substrates for both enzymes were Gh and Sp, the oxidation products of 8-oxoG, with the best substrate being a site of base loss. GC/MS analysis of bases released from γ-irradiated DNA show FapyAde and FapyGua to be excellent substrates as well. Studies carried out with oligodeoxynucleotide substrates demonstrate that both enzymes discriminated against A opposite the base lesion, characteristic of Fpg glycosylases. Single turnover kinetics with oligodeoxynucleotides showed that the plant and fungal glycosylases were most active on Gh and Sp, less active on oxidized pyrimidines and exhibited very little or no activity on 8-oxoG. Surprisingly, the activity of AthFpg1 on an AP site opposite a G was extremely robust with a kobs of over 2500 min?1.  相似文献   

15.
The DNA glycosylase hNEIL1 initiates the base excision repair (BER) of a diverse array of lesions, including ring-opened purines and saturated pyrimidines. Of these, the hydantoin lesions, guanidinohydantoin (Gh) and the two diastereomers of spiroiminodihydantoin (Sp1 and Sp2), have garnered much recent attention due to their unusual structures, high mutagenic potential, and detection in cells. In order to provide insight into the role of repair, the excision efficiency by hNEIL1 of these hydantoin lesions relative to other known substrates was determined. Most notably, quantitative examination of the substrate specificity with hNEIL1 revealed that the hydantoin lesions are excised much more efficiently (>100-fold faster) than the reported standard substrates thymine glycol (Tg) and 5-hydroxycytosine (5-OHC). Importantly, the glycosylase and beta,delta-lyase reactions are tightly coupled such that the rate of the lyase activity does not influence the observed substrate specificity. The activity of hNEIL1 is also influenced by the base pair partner of the lesion, with both Gh and Sp removal being more efficient when paired with T, G, or C than when paired with A. Notably, the most efficient removal is observed with the Gh or Sp paired in the unlikely physiological context with T; indeed, this may be a consequence of the unstable nature of base pairs with T. However, the facile removal via BER in promutagenic base pairs that are reasonably formed after replication (such as Gh.G) may be a factor that modulates the mutagenic profile of these lesions. In addition, hNEIL1 excises Sp1 faster than Sp2, indicating the enzyme can discriminate between the two diastereomers. This is the first time that a BER glycosylase has been shown to be able to preferentially excise one diastereomer of Sp. This may be a consequence of the architecture of the active site of hNEIL1 and the structural uniqueness of the Sp lesion. These results indicate that the hydantoin lesions are the best substrates identified thus far for hNEIL1 and suggest that repair of these lesions may be a critical function of the hNEIL1 enzyme in vivo.  相似文献   

16.
In the bacterium Escherichia coli, oxidized pyrimidines are removed by two DNA glycosylases, endonuclease III and endonuclease VIII (endo VIII), encoded by the nth and nei genes, respectively. Double mutants lacking both of these activities exhibit a high spontaneous mutation frequency, and here we show that all of the mutations observed in the double mutants were G:C-->A:T transitions; no thymine mutations were found. These findings are in agreement with the preponderance of C-->T transitions in the oxidative and spontaneous mutational databases. The major oxidized purine lesion in DNA, 7,8-dihydro-8-oxoguanine (8-oxoG), is processed by two DNA glycosylases, formamidopyrimidine DNA glycosylase (Fpg), which removes 8-oxoG opposite C, and MutY DNA glycosylase, which removes misincorporated A opposite 8-oxoG. The high spontaneous mutation frequency previously observed in fpg mutY double mutants was significantly enhanced by the addition of the nei mutation, suggesting an overlap in the substrate specificities between endo VIII and Fpg/MutY. When the mutational specificity was examined, all of the mutations observed were G:C-->T:A transversions, indicating that in the absence of Fpg and MutY, endo VIII serves as a backup activity to remove 8-oxoG. This was confirmed by showing that, indeed, endo VIII can recognize 8-oxoG in vitro.  相似文献   

17.
Formamidopyrimidine-DNA glycosylase (Fpg; MutM) is a DNA repair enzyme widely distributed in bacteria. Fpg recognizes and excises oxidatively modified purines, 4,6-diamino-5-formamidopyrimidine, 2,6-diamino-4-hydroxy-5-formamidopyrimidine and 8-oxoguanine (8-oxoG), with similar excision kinetics. It exhibits some lesser activity toward 8-oxoadenine. Fpg enzymes are also present in some plant and fungal species. The eukaryotic Fpg homologs exhibit little or no activity on DNA containing 8-oxoG, but they recognize and process its oxidation products, guanidinohydantoin (Gh) and spiroiminohydantoin (Sp). To date, several structures of bacterial Fpg enzymes unliganded or in complex with DNA containing a damaged base have been published but there is no structure of a eukaryotic Fpg. Here we describe the first crystal structure of a plant Fpg, Arabidopsis thaliana (AthFpg), unliganded and bound to DNA containing an abasic site analog, tetrahydrofuran (THF). Although AthFpg shares a common architecture with other Fpg glycosylases, it harbors a zincless finger, previously described in a subset of Nei enzymes, such as human NEIL1 and Mimivirus Nei1. Importantly the "αF-β9/10 loop" capping 8-oxoG in the active site of bacterial Fpg is very short in AthFpg. Deletion of a segment encompassing residues 213-229 in Escherichia coli Fpg (EcoFpg) and corresponding to the "αF-β9/10 loop" does not affect the recognition and removal of oxidatively damaged DNA base lesions, with the exception of 8-oxoG. Although the exact role of the loop remains to be further explored, it is now clear that this protein segment is specific to the processing of 8-oxoG.  相似文献   

18.
Reactive oxygen species are byproducts of normal aerobic respiration and ionizing radiation, and they readily react with DNA to form a number of base lesions, including the mutagenic 8-oxo-7,8-dihydroguanine (8-oxoG), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), 4,6-diamino-5-formamidopyrimidine (FapyA), and 8-oxo-7,8-dihydroadenine (8-oxoA). Such oxidative lesions are removed by the base excision repair pathway, which is initiated by DNA glycosylases such as the formamidopyrimidine-DNA glycosylase (Fpg) in Escherichia coli. The 8-oxoG, FapyG, and FapyA lesions are bound and excised by Fpg, while structurally similar 8-oxoA is excised by Fpg very poorly. We carried out molecular modeling and molecular dynamics simulations to interpret substrate discrimination within the active site of E. coli Fpg. Lys-217 and Met-73 were identified as residues playing important roles in the recognition of the oxidized imidazole ring in the substrate bases, and the Watson-Crick edge of the damaged base plays a role in optimally positioning the base within the active site. The recognition and excision of FapyA likely result from the opened imidazole ring, while 8-oxoA's lack of flexibility and closed imidazole ring may contribute to Fpg's inability to excise this base. Different interactions between each base and the enzyme specificity pocket account for differential treatment of the various lesions by this enzyme, and thus elucidate the structure-function relationship involved in an initial step of base excision repair.  相似文献   

19.
In Escherichia coli, MutM (8-oxoG DNA glycosylase/lyase or Fpg protein), MutY (adenine DNA glycosylase) and MutT (8-oxodGTPase) function cooperatively to prevent mutation due to 7, 8-dihydro-8-oxoguanine (8-oxoG), a highly mutagenic oxidative DNA adduct. MutM activity has been demonstrated to be induced by oxidative stress. Its regulation is under the negative control of the global regulatory genes, fur, fnr and arcA. However, interestingly the presence of MutY increases the mutation frequency in mutT- background because of MutY removes adenine (A) from 8-oxoG:A which arises from the misincorporation of 8-oxoG against A during DNA replication. Accordingly we hypothesized that the response of MutY to oxidative stress is opposite to that of MutM and compared the regulation of MutY activity with MutM under various oxidative stimuli. Unlike MutM, MutY activity was reduced by oxidative stress. Its activity was reduced to 30% of that of the control when E. coli was treated with paraquat (0.5 mM) or H
2
O
2
(0.1 mM) and induced under anaerobic conditions to more than twice that observed under aerobic conditions. The reduced mRNA level of MutY coincided with its reduced activity by paraquat treatment. Also, the increased activity of MutY in anaerobic conditions was reduced further in E. coli strains with mutations in fur, fnr and arcA and the maximum reduction in activity was when all mutations were present in combination, indicating that MutY is under the positive control of these regulatory genes. Therefore, the down-regulation of MutY suggests that there has been complementary mechanism for its mutagenic activity under special conditions. Moreover, the efficacy of anti-mutagenic action should be enhanced by the reciprocal co-regulation of MutM.  相似文献   

20.
Chromosomal rearrangements and base substitutions contribute to the large intraspecies genetic diversity of Helicobacter pylori. Here we explored the base excision repair pathway for the highly mutagenic 8-oxo-7,8-dihydroguanine (8-oxoG), a ubiquitous form of oxidized guanine. In most organisms, 8-oxoG is removed by a specific DNA glycosylase (Fpg in bacteria or OGG1 in eukaryotes). In the case where replication of the lesion yields an A/8-oxoG base pair, a second DNA glycosylase (MutY) can excise the adenine and thus avoid the fixation of the mutation in the next round of replication. In a genetic screen for H. pylori genes complementing the hypermutator phenotype of an Escherichia coli fpg mutY strain, open reading frame HP0142, a putative MutY coding gene, was isolated. Besides its capacity to complement E. coli mutY strains, HP0142 expression resulted in a strong adenine DNA glycosylase activity in E. coli mutY extracts. Consistently, the purified protein also exhibited such an activity. Inactivation of HP0142 in H. pylori resulted in an increase in spontaneous mutation frequencies. An Mg-dependent AP (abasic site) endonuclease activity, potentially allowing the processing of the abasic site resulting from H. pylori MutY activity, was detected in H. pylori cell extracts. Disruption of HP1526, a putative xth homolog, confirmed that this gene is responsible for the AP endonuclease activity. The lack of evidence for an Fpg/OGG1 functional homolog is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号