首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Phenolic additives widely used for the preservation of insulin preparations can have a profound effect on the hormone's conformation in solution. m-Cresol, for instance, increases the circular dichroism in the far ultraviolet by 10-20%, corresponding to an increase in helix, and around 255 nm. The CD-spectral changes are strikingly similar to those brought about by halide ions which have been identified to reflect the 2 Zn----4 Zn insulin transition. Its most prominent element is the helix formation at the B-chain N-terminus. In both cases the changes fail to occur with dimeric insulin in the absence of Zn2 and with monomeric des-(B26-B30)-insulin. In the presence of Ni2 which is unable to replace Zn2 in 4 Zn insulin for coordinative reasons, the effect of m-cresol is impeded. m-Cresol thus induces a transition identical with or closely similar to the 2 Zn----4 Zn transformation. 2 Zn insulin crystals, when soaked in m-cresol containing solvents, are destroyed. Crystals grown in the presence of m-cresol, however, are monoclinic and containing symmetrical hexamers of, notably, 4 Zn conformation. Phenol, o- and p-cresol, m-nitrophenol, Nipagin M and benzene were further additives tested, all of them inducing largely the same spectral effects except for benzene. The results presented corroborate the close correspondence of insulin's structure in solution and in the crystal as well as insulin's capacity for structural variation.  相似文献   

2.
Cobalt probing of structural alternatives for insulin in solution   总被引:1,自引:0,他引:1  
Inorganic anions and phenolic compounds make the subunits of insulin hexamers undergo the T----R transition whereby the extended N-terminal B chain becomes helical and the octahedral metal coordination tetrahedral. The role of the metal ions is permissive. With cresol the transition is also undergone by metal-free hexamers. For coordinative reasons only zinc insulin can be transformed by moderate concentrations of inorganic anions. At higher concentrations and particularly with cresol transformation is also possible if Zn2+ is replaced by other metal ions. Owing to its d--d transitions in the visible cobalt lends itself as a spectroscopic probe for studying the interdependence of transformation and coordination. The transformation-related change in coordination is reflected in both the isotropic absorption and the CD spectrum. Cresol achieves T6----R6 transformation whereas that induced by SCN- ions is T6----T'3R3 with only the axial metal-binding site being realized in the R3 trimer. The spectral effects of the transformation of the two trimers are not additive; an extra contribution seems to be indicative of trimer/trimer interaction. Oxidation of 2 Co2+ insulin to a certain extent affects the structure of insulin; a characteristic positive band appears at 251 nm. Because of its extremely stable and exclusively octahedral complexes the Co3+ ion most strongly withstands transformation. The oxidation of tetrahedrally liganded Co2+ ions in R3 trimers proceeds with reduced velocity. Independent transformation of the Zn2+ trimers is possible in Zn2+/Co3+ metal hybrids of insulin.  相似文献   

3.
The cobalt(II)-substituted human insulin hexamer has been shown to undergo the phenol-induced T6 to R6 structural transition in solution. The accompanying octahedral to tetrahedral change in ligand field geometry of the cobalt ions results in dramatic changes in the visible region of the electronic spectrum and thus represents a useful spectroscopic method for studying the T to R transition. Changes in the Co2+ spectral envelope show that the aqua ligand associated with each tetrahedral Co2+ center can be replaced by SCN-, CN-, OCN-, N3-, Cl-, and NO2-. 19F NMR experiments show that the binding of m-trifluorocresol stabilizes the R6 state of zinc insulin. The chemical shift and line broadening of the CF3 singlet, which occur due to binding, provide a useful probe of the T6 to R6 transition. Due to the appearance of new resonances in the aromatic region, the 500 MHz 1H NMR spectrum of the phenol-induced R6 hexamer is readily distinguishable from that of the T6 form. 1H NMR studies show that phenol induces the T6 to R6 transition, both in the (GlnB13)6(Zn2+)2 hexamer and in the metal-free GlnB13 species; we conclude that metal binding is not a prerequisite for formation of the R state in this mutant.  相似文献   

4.
For hexamer formation of native insulin the repulsive potential of six B13 Glu carboxylate groups coming together in the centre is overcome by zinc binding to B10 His. Substitution of Gln for Glu in position B13 by site-directed mutagenesis, i.e. replacement of the repelling carboxylates by amide groups, which are offering H-bonding potential, enhances association and allows a metal-free hexamer to form. Merely upon addition of zinc ions this hexamer undergoes the T6----T3R3 respectively T6----R6 structural transition which in the native 2Zn insulin hexamer is inducible only by additives like inorganic anions or phenolic compounds. [B13 Gln]Insulin hexamers are transformed by phenolic compounds, but not by anions, even in the absence of any metal. The structural transformation of insulin can thus be brought about in two ways: By inorganic ions with the zinc ions as their points of attack, which preexist in the nontransformed hexamer, and by phenol, for which the binding sites close to the B5 histidines come into existence only with the transformation. Therefore transformed and non-transformed hexamers, i.e. molecules with helical and extended B chain N-terminus, must be related in a dynamic equilibrium. Phenol acts as a wedge jamming the structure in the transformed state and trapping the zinc ions. Combination of transformed 2Zn[B13 Gln]insulin and metal-free native insulin in the absence of additives results in a redistribution of the zinc ions in favour of native insulin which is an outcome of the dynamic equilibrium and also demonstrates an influence of B13 charge on metal binding affinity. Transformation of a single subunit in a hexamer would lead to bad contacts.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Destripeptide (B28-B30) insulin (DTRI) is an insulin analogue that has much weaker association ability than native insulin but keeps most of its biological activity. It can be crystallized from a solution containing zinc ions at near-neutral pH. Its crystal structure has been determined by molecular replacement and refined at 1.9 A resolution. DTRI in the crystal exists as a loose hexamer compared with 2Zn insulin. The hexamer only contains one zinc ion that coordinates to the B10 His residues of three monomers. Although residues B28-B30 are located in the monomer-monomer interface within a dimer, the removal of them can simultaneously weaken both the interactions between monomers within the dimer and the interactions between dimers. Because the B-chain C-terminus of insulin is very flexible, we take the DTRI hexamer as a transition state in the native insulin dissociation process and suggest a possible dissociation process of the insulin hexamer based on the DTRI structure.  相似文献   

6.
The metal ions in insulin hexamer play a crucial role in the T to R conformational transitions. We have determined the crystal structures of 2Mn2+, 1Rb1+ and 4Ni2+ human arg-insulin and compared them with the 2Zn2+ structure. The first two structures exist in the T3R3f state like the native 2Zn2+ arg-insulin, while the 4Ni2+ adopts a T6 conformation. The metal coordination is found to be tetrahedral in all the structures except that of nickel where a dual octahedral and tetrahedral coordination is found at one site. Rubidium occupies only one of the high affinity metal binding sites. The metal induced structural changes observed, have been explained.  相似文献   

7.
W Kadima 《Biochemistry》1999,38(41):13443-13452
The role of metal ions in the T- to R-allosteric transition is ascertained from the investigation of the T- to R-allosteric transition of transition metal ions substituted-insulin hexamers, as well as from the kinetics of their dissociation. These studies establish that ligand field stabilization energy (LFSE), coordination geometry preference, and the Lewis acidity of the metal ion in the zinc sites modulate the T- to R-state transition. (1)H NMR, (113)Cd NMR, and UV-vis measurements demonstrate that, under suitable conditions, Fe2+/3+, Ni2+, and Cd2+ bind insulin to form stable hexamers, which are allosteric species. (1)H NMR R-state signatures are elicited by addition of phenol alone in the case of Ni(II)- and Cd(II)-substituted insulin hexamers. The Fe(II)-substituted insulin hexamer is converted to the ferric analogue upon addition of phenol. For the Fe(III)-substituted insulin hexamer, appearance of (1)H NMR R-state signatures requires, additionally to phenol, ligands containing a nitrogen that can donate a lone pair of electrons. This is consistent with stabilization of the R-state by heterotropic interactions between the phenol-binding pocket and ligand binding to Fe(III) in the zinc site. UV-vis measurements indicate that the (1)H NMR detected changes in the conformation of the Fe(III)-insulin hexamer are accompanied by a change in the electronic structure of the iron site. Kinetic measurements of the dissociation of the hexamers provide evidence for the modulation of the stability of the hexamer by ligand field stabilization effects. These kinetic studies also demonstrate that the T- to R-state transition in the insulin hexamer is governed by coordination geometry preference of the metal ion in the zinc site and the compatibility between Lewis acidity of the metal ion in the zinc site and the Lewis basicity of the exogenous ligands. Evidence for the alteration of the calcium site has been obtained from (113)Cd NMR measurements. This finding adds to the number of known conformational changes that occur during the T- to R-transition and is an important consideration in the formulation of allosteric mechanisms of the insulin hexamer.  相似文献   

8.
L Gross  M F Dunn 《Biochemistry》1992,31(5):1295-1301
The phenol-induced conformational transition in the insulin hexamer is known to involve a large change in structure wherein residues 1-8 of the insulin B-chain are transformed from an extended coil (T-state) to a helix (R-state). This change in protein conformation both exposes a cryptic protein pocket on each subunit to which phenol binds and forces the HisB10 zinc sites to undergo a change in coordination geometry from octahedral to tetrahedral [Derewenda, U., Derewenda, Z., Dodson, E. J., Dodson, G. G., Reynolds, C. D., Smith, G. D., Sparks, C., & Swensen, D. (1989) Nature 338, 593-596]. Substitution of Co(II) for Zn(II) at the HisB10 sites introduces a sensitive chromophoric probe of the structural and chemical events that occur during this allosteric transition [Roy, M., Brader, M. L., Lee, R. W.-K., Kaarsholm, N. C., Hansen, J. F., & Dunn, M. F. (1989) J. Biol. Chem. 264, 19081-19085]. In this study, using rapid-scannig stopped-flow (RSSF) UV-visible spectroscopic studies, we demonstrate that a transient chemical intermediate is formed during the phenol-induced conversion of Co(II)-substituted hexamer from the T-state to the R-state. Decomposition of the RSSF spectra gave a spectrum for the intermediate with d-d transitions consistent with the assignment of the intermediate as either a distorted tetrahedral or a 5-coordinate Co(II) species. Possible structures for the intermediate and the implications of these findings to the allosteric mechanism are considered.  相似文献   

9.
N C Kaarsholm  H C Ko  M F Dunn 《Biochemistry》1989,28(10):4427-4435
The chromophoric divalent metal ion chelators 4-(2-pyridylazo)resorcinol (PAR) and 2,2',2"-terpyridine (terpy) are used as kinetic and spectroscopic probes to investigate in solution the SCN- -induced conformational transformations of the insulin, proinsulin, and miniproinsulin hexamers (miniproinsulin is a proinsulin analogue wherein the C-chain is replaced by a dipeptide cross-link between Gly-A1 and Ala-B30). Herein we designate the 2Zn and 4Zn crystal forms of the hexamer as the T6 and T3R3 conformations, respectively. For all three proteins, addition of SCN- reduces the rate of sequestering and removal of zinc ion by chelator. The effect of SCN- on the rate of this process saturates at the same concentration (30 mM) known to induce the T6 to T3R3 transformation in the insulin crystal. Under both T6 and T3R3 conditions, the critical stoichiometry for high-affinity interaction between Zn2+ and each of the three proteins is shown to be 2 mol of Zn2+/mol of protein hexamer. Consequently, we confirm the finding that off-axial coordination of Zn2+ via His-B10 and His-B5 residues is of minor importance for the SCN- -induced conformation change in solution [Renscheidt, H., Strassburger, W., Glatter, U., Wollmer, A., Dodson, G. G., & Mercola, D. A. (1984) Eur. J. Biochem. 142, 7-14]. Under T6 conditions, the kinetics of the reactions between insulin, proinsulin, and miniproinsulin and a variable excess of terpy are similar and biphasic.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Spectral studies of cobalt (II)- and Nickel (II)-metallothionein   总被引:1,自引:0,他引:1  
The zinc and cadmium of native rabbit metallothionein-1 were replaced stoichiometrically with either cobalt (II) or nickel (II). The electronic, magnetic circular dichroic (MCD), and electron spin resonance spectra of Co (II)-metallothionein reflect distorted tetrahedral coordination of the cobalt atoms. Both the d-d and charge-transfer spectral regions closely resemble those of simple cobalt-tetrathiolate complexes, implying that their coordination chemistry is analogous. Ni (II) complex ions and Ni (II)-metallothionein similarly exhibit analogous MCD bands in the d-d region. The circular dichroic bands associated with ligand-metal charge-transfer transitions in the non-d-d region of Co (II)- and Ni (II)-metallothionein afford additional evidence for the similarity in tetrahedral microsymmetry of the two metal derivatives. The known ratio of 20 thiolate ligands to 7 metal ions, in conjunction with the spectral evidence for tetrathiolate coordination in metallothionein, represents good evidence that these metal thiolates are organized in clusters.  相似文献   

11.
The assembly of the insulin hexamer brings the six B13 glutamate side-chains at the centre into close proximity. Their mutual repulsion is unfavourable and zinc co-ordination to B10 histidine is necessary to stabilize the well known zinc-containing hexamers. Since B13 is always a carboxylic acid in all known sequences of hexamer forming insulins, it is likely to be important in the hormone's biology. The mutation of B13 Glu-->Gln leads to a stable zinc-free hexamer with somewhat reduced potency. The structures of the zinc-free B13 Gln hexamer and the 2Zn B13 insulin hexamer have been determined by X-ray analysis and refined with 2.5 A and 2.0 A diffraction data, respectively. Comparisons show that in 2Zn B13 Gln insulin, the hexamer structure (T6) is very like that of the native hormone. On the other hand, the zinc-free hexamer assumes a quaternary structure (T3/R3) seen in the native 4Zn insulin hexamer, and normally associated only with high chloride ion concentrations in the medium. The crystal structures show the B13 Gln side-chains only contact water in contrast to the B13 glutamate in 2Zn insulin. The solvation of the B13 Gln may be associated with this residue favouring helix at B1 to B8. The low potency of the B13 Gln insulin also suggests the residue influences the hormone's conformation.  相似文献   

12.
1H n.m.r. studies at 270 MHz were made of the transformation of 2 Zn insulin hexamer to 4 Zn hexamer produced by the addition of anions (thiocyanate ion). Four separate H2 histidine resonances were observed for the B5 and B10 histidines in 2 Zn hexamer at pH 7 and 9 and four separate resonances also occurred in the 4 Zn hexamer. The observation of these resonances and others from phenylalanine, tyrosine and leucine residues showed that the 2 Zn to 4 Zn transformation probably occurred in solution in a similar manner to that observed in the crystal. Furthermore as occurred in the crystal, it was found that in solution the transformation was reversible (on removal of thiocyanate) and that 2 Cd insulin was unable to undergo the transformation. Des-Phe-Bl-insulin did not undergo the transformation. Addition of SCN- to Zn-free insulin (mainly dimer) produced only a small transformation, consistent with the idea that Zn2+ promotes formation of hexamer from dimer but probably does not otherwise affect the transformation.  相似文献   

13.
1H NMR and UV-visible electronic absorption studies have been performed to investigate the effects of anions and cyclic organic molecules on the interconversion of the T- and R-conformational states (Kaarsholm et al., 1989) of hexameric M (II)-substituted insulin in solution (M = Zn or Co.). Two ligand binding processes that stabilize the R-state conformation of the M(II)-substituted insulin hexamer [M(II)-R6] have been distinguished: (i) The binding of neutral organic molecules to the six, crystallographically identified, protein pockets in the Zn(II)-R6 insulin hexamer (Derewenda et al. 1989) generate homotropic site-site interactions that stabilize the R-state. Cyclohexanol, phenol, 4-nitrophenol, and 4-hydroxymethylbenzoate are shown to bind at these sites. (ii) The coordination of singly charged anions that are able to gain access to the two HisB10 coordinated metal ions of the M(II)-R6 hexamer stabilizes the R-state. Adducts of the M(II)-R6 hexamer are formed, thereby, in which the solvent-accessible fourth coordination position of the M(II) ion is replaced by a competing anion. Binding to these two classes of sites introduces strong heterotropic interactions that stabilize the R-state. UV-visible spectral data and apparent affinity constants for the adducts formed by the Co(II)-R6 hexamer with a wide range of anionic ligands are presented. The Co(II)-R6 adducts have a strong preference for the formation of pseudotetrahedral Co(II) centers. The HCO3- and pyridine-2-thiolate ions form Co(II)-R6 adducts that are proposed to possess pentacoordinate Co(II) geometries. The relevance of the Co(II)-R6 complexes to carbonic anhydrase catalysis and zinc enzyme model systems is discussed.  相似文献   

14.
High-resolution 270-MHz proton nuclear magnetic resonance (NMR) spectra of the native two-zinc insulin hexamer at pH 9 have been obtained, and assignments of key resonances have been made. Spectra of zinc-free insulin titrated with Zn2+ are unchanged after the addition of 1 equiv of zinc per insulin hexamer, indicating that the conformation of the hexamer is fixed at this point and that the second zinc ion does not significantly change the conformation. Titration of the two-zinc insulin hexamer with anions high on the Hofmeister series such as SCN- causes marked changes in the NMR spectra which are interpreted as the result of major conformational changes to a new hexameric form of insulin having a twofold axis perpendicular to the threefold axis. Analysis of difference spectra indicates that this new hexamer (which should be capable of binding six zinc ions) binds 2 equiv of SCN- at two sites which are assumed to be identical and independent (K1 = 10(3), K2 = 2.5 X 10(2) M-1).  相似文献   

15.
The thermal stability of human insulin was studied by differential scanning microcalorimetry and near-UV circular dichroism as a function of zinc/protein ratio, to elucidate the dissociation and unfolding processes of insulin in different association states. Zinc-free insulin, which is primarily dimeric at room temperature, unfolded at approximately 70 degrees C. The two monomeric insulin mutants Asp(B28) and Asp(B9),Glu(B27) unfolded at higher temperatures, but with enthalpies of unfolding that were approximately 30% smaller. Small amounts of zinc caused a biphasic thermal denaturation pattern of insulin. The biphasic denaturation is caused by a redistribution of zinc ions during the heating process and results in two distinct transitions with T(m)'s of approximately 70 and approximately 87 degrees C corresponding to monomer/dimer and hexamer, respectively. At high zinc concentrations (>or=5 Zn(2+) ions/hexamer), only the hexamer transition is observed. The results of this study show that the thermal stability of insulin is closely linked to the association state and that the zinc hexamer remains stable at much higher temperatures than the monomer. This is in contrast to studies with chemical denaturants where it has been shown that monomer unfolding takes place at much higher denaturant concentrations than the dissociation of higher oligomers [Ahmad, A., et al. (2004) J. Biol. Chem. 279, 14999-15013].  相似文献   

16.
Structurally, the T-->R transition of insulin mainly consists of a rearrangement of the N-terminal B-chain (residues B1-B8) from extended to helical in one or both of the trimers of the hexamer. The dependence of the transition on the nature of the ligands inducing it, such as inorganic anions or phenolic compounds, as well as of the metal ions complexing the hexamer, has been the subject of extensive investigations. This study explores the effect of helix-enhancing modifications of the N-terminal B-chain sequence where the transition actually occurs, with special emphasis on N-capping. In total 15 different analogues were prepared by semisynthesis. 80% of the hexamers of the most successful analogues with zinc were found to adopt the T3R3 state in the absence of any transforming ligands, as compared to only 4% of wild-type insulin. Transformation with SCN- ions can exceed the T3R3 state where it stops in the case of wild-type insulin. Full transformation to the R6 state can be achieved by only one-tenth the phenol concentration required for wild-type insulin, i.e. almost at the stoichiometric ratio of 6 phenols per hexamer.  相似文献   

17.
Metal ion binding to the insulin hexamer has been investigated by crystallographic analysis. Cadmium, lead, and metal-free hexamers have been refined to R values of 0.181, 0.172, and 0.172, against data of 1.9-, 2.5-, and 2.5-A resolution, respectively. These structures have been compared with each other and with the isomorphous two-zinc insulin. The structure of the metal-free hexamer shows that the His(B10) imidazole rings are arranged in a preformed site that binds a water molecule and is poised for Zn2+ coordination. The structure of the cadmium derivative shows that the binding of Cd2+ at the center of the hexamer is unusual. There are three symmetry-related sites located within 2.7 A of each other, and this position is evidently one-third occupied. It is also shown that the coordinating B13 glutamate side chains of this derivative have two partially occupied conformations. One of these conformations is two-thirds occupied and is very similar to that seen in two-zinc insulin. The other, one-third-occupied conformation, is seen to coordinate the one-third-occupied metal ion. The binding of Ca2+ to insulin is assumed to be essentially identical with that of Cd2+. Thus, we conclude that the Ca2+ binding site in the insulin hexamer is unlike that of any other known calcium binding protein. The crystal structures reported herein explain how binding of metal ions stabilizes the insulin hexamer. The role of metal ions in hexamer assembly and dissociation is discussed.  相似文献   

18.
R Palmieri  R W Lee  M F Dunn 《Biochemistry》1988,27(9):3387-3397
1H Fourier transform NMR investigations of metal ion binding to insulin in 2H2O were undertaken as a function of pH* to determine the effects of metal ion coordination to the Glu(B13) site on the assembly and structure of the insulin hexamer. The C-2 histidyl regions of the 1H NMR spectra of insulin species containing respectively one Ca2+ and two Zn2+/hexamer and three Cd2+/hexamer have been assigned. Both the Cd2+ derivative (In)6(Cd2+)2Cd2+, where two of the Cd2+ ions are coordinated to the His(B10) sites and the remaining Cd2+ ion is coordinated to the Glu(B13) site [Sudmeier, J.L., Bell, S.J., Storm, M. C., & Dunn, M.F. (1981) Science (Washington, D.C.) 212, 560], and the Zn2+-Ca2+ derivative (In)6-(Zn2+)2Ca2+, where the two Zn2+ ions are coordinated to the His(B10) sites and Ca2+ ion is coordinated to the Glu(B13) site, give spectra in which the C-2 proton resonances of His(B10) are shifted upfield relative to metal-free insulin. Spectra of insulin solutions (3-20 mg/mL) containing a ratio of In:Zn2+ = 6:2 in the pH* region from 8.6 to 10 were found to contain signals both from metal-free insulin species and from the 2Zn-insulin hexamer, (In)6(Zn2+)2. The addition of either Ca2+ (in the ratio In:Zn2+:Ca2+ = 6:2:1) or 40 mM NaSCN was found to provide sufficient additional thermodynamic drive to bring about the nearly complete assembly of insulin hexamers. Cd2+ in the ratio In:Cd2+ = 6:3 also drives hexamer assembly to completion. We postulate that the additional thermodynamic drive provide by Ca2+ and CD2+ is due to coordination of these metal ions to the Glu(B13) carboxylates of the hexamer. At high pH*, this coordination neutralizes the repulsive Coulombic interactions between the six Glu(B13) carboxylates and forms metal ion "cross-links" across the dimer-dimer interfaces. Comparison of the aromatic regions of the 1H NMR spectra for (In)6(Zn2+)2 with (In)6(Zn2+)2Ca2+, (In)6(Cd2+)2Cd2+, and (In)6(Cd2+)2Ca2+ indicates that binding of either Ca2+ or Cd2+ to the Glu(B13) site induces a conformation change that perturbs the environments of the side chains of several of the aromatic residues in the insulin structure. Since these residues lie on the monomer-monomer and dimer-dimer subunit interfaces, we conclude that the conformation change includes small changes in the subunit interfaces that alter the microenvironments of the aromatic rings.  相似文献   

19.
M L Brader  D Borchardt  M F Dunn 《Biochemistry》1992,31(19):4691-4696
The R-state conformation of the Cu(II)-substituted insulin hexamer has been identified, and a number of its derivatives have been studied via 1H NMR, ESR, and UV-visible spectroscopy. This work establishes that the Cu(II)-substituted insulin hexamer undergoes an analogous T to R conformational transition in solution that has been identified previously for Zn(II)- and Co(II)-insulin hexamers [Roy, M., Brader, M.L., Lee, R. W.-K., Kaarsholm, N.C., Hansen, J., & Dunn, M.F. (1989) J. Biol. Chem. 264, 19081-19085]. The data indicate that each Cu(II) center of the R-state Cu(II)-insulin hexamer possesses a coordination site that is accessible to anions from solution. Both phenol and anionic ligands that coordinate to the Cu(II) ions are required to generate the necessary heterotropic interactions that stabilize the R-state structure. With phenylmethylthiolate (PMT), a Cu(II)-R6 adduct that displays the spectral features of blue (type 1) copper proteins is obtained. This complex is proposed to embody a pseudotetrahedral CuIIN3S(PMT) chromophore, in which N is HisB10 (imidazolyl). The remaining ligands examined gave rise to Cu(II)-R6 adducts that possessed the spectral characteristics of normal (type 2) Cu(II) proteins. Under reducing conditions, Cu(I)-T6 and Cu(I)-R6 hexamers have been identified.  相似文献   

20.
As a means for probing the microenvironment of zinc in the insulin hexamer and to investigate the effects of calcium ion on the assembly and the structure of the two-zinc insulin hexamer, the thermodynamics and kinetics of the reaction between the chromophoric divalent metal ion chelator 4-(2-pyridylazo)resorcinol (PAR) and zinc-insulin have been investigated over a wide range of conditions. For [PAR]0 much greater than [Zn2+]0 and [Zn2+]/[In] less than or equal to 0.33, the reaction leads to the sequestering and ultimate removal of all of the insulin-bound Zn2+; for [Zn2+]0 much greater than [PAR]0, two stable ternary complexes are formed where Zn2+ has ligands derived from PAR as well as from hexameric insulin. For [Zn2+]/[In] ratios below 0.33, the equilibrium distribution between the two ternary complexes is dependent on the [Zn2+]/[In] ratio. One of the complexes is assigned to the monoanion of PAR coordinated to Zn2+ that resides in a His-B10 site. The other complex is proposed to involve the coordination of (PAR)Zn to the site formed by the alpha-NH2 group of Phe-B1 and the gamma-carboxylate ion of Glu-A17 across the dimer-dimer interface on the surface of the hexamer. With either PAR or zinc-insulin in large excess, the kinetics of the PAR optical density changes are remarkably similar and biphasic. The faster step is first order in PAR and first order in insulin-bound Zn2+ (k congruent to 3 X 10(3) M-1 s-1) and involves the formation of an intermediate in which PAR is coordinated to insulin-bound zinc at the His-B10 site.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号