首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Age-related declines in motor function may be due, in part, to an increase in oxidative stress in the aging brain leading to dopamine (DA) neuronal cell death. In this study, we examined the neuroprotective effects of natural antioxidants resveratrol and pinostilbene against age-related DAergic cell death and motor dysfunction using SH-SY5Y neuroblastoma cells and young, middle-aged, and old male C57BL/6 mice. Resveratrol and pinostilbene protected SH-SY5Y cells from a DA-induced decrease in cell viability. Dietary supplementation with resveratrol and pinostilbene inhibited the decline of motor function observed with age. While DA and its metabolites (DOPAC and HVA), dopamine transporter, and tyrosine hydroxylase levels remain unchanged during aging or treatment, resveratrol and pinostilbene increased ERK1/2 activation in vitro and in vivo in an age-dependent manner. Inhibition of ERK1/2 in SH-SY5Y cells decreased the protective effects of both compounds. These data suggest that resveratrol and pinostilbene alleviate age-related motor decline via the promotion of DA neuronal survival and activation of the ERK1/2 pathways.  相似文献   

2.
Tyrosinase, which catalyzes both the hydroxylation of tyrosine and consequent oxidation of L-DOPA to form melanin in melanocytes, is also expressed in the brain, and oxidizes L-DOPA and dopamine. Replacement of dopamine synthesis by tyrosinase was reported in tyrosine hydroxylase null mice. To examine the potential benefits of autograft cell transplantation for patients with Parkinson’s disease, tyrosinase-producing cells including melanocytes, were transplanted into the striatum of hemi-parkinsonian model rats or mice lesioned with 6-hydroxydopamine. Marked improvement in apomorphine-induced rotation was noted at day 40 after intrastriatal melanoma cell transplantation. Transplantation of tyrosinase cDNA-transfected hepatoma cells, which constitutively produce L-DOPA, resulted in marked amelioration of the asymmetric apomorphine-induced rotation in hemi-parkinsonian mice and the effect was present up to 2 months. Moreover, parkinsonian mice transplanted with melanocytes from the back skin of black newborn mice, but not from albino mice, showed marked improvement in the apomorphine-induced rotation behavior up to 3 months after the transplantation. Dopamine-positive signals were seen around the surviving transplants in these experiments. Taken together with previous studies showing dopamine synthesis and metabolism by tyrosinase, these results highlight therapeutic potential of intrastriatal autograft cell transplantation of melanocytes in patients with Parkinson’s disease.  相似文献   

3.
Koo U  Nam KW  Ham A  Lyu D  Kim B  Lee SJ  Kim KH  Oh KB  Mar W  Shin J 《Neurochemical research》2011,36(11):1991-2001
Dopamine (DA), as a neurotoxin, can elicit severe Parkinson’s disease-like syndrome by elevating intracellular reactive oxygen species (ROS) levels and apoptotic activity. We examined the inhibitory effects of 3α-acetoxyeudesma-1,4(15),11(13)-trien-12,6α-olide (AETO), purified from the leaves of Laurus nobilis L., on DA-induced apoptosis and α-synuclein (α-syn) formation in dopaminergic SH-SY5Y cells. AETO decreased the active form of caspase-3 and the levels of p53, which were accompanied by increased levels of Bcl-2 in a dose-dependent manner. Flow cytometric and Western blot analysis showed that AETO significantly inhibited DA-induced apoptosis along with suppression of intracellular tyrosinase activity, ROS generation, quinoprotein, and α-syn formation (P < 0.01). These results indicate that AETO inhibited DA-induced apoptosis, which is closely related to the suppression of intracellular tyrosinase activity and the formation of α-syn, ROS, and quinoprotein in SH-SY5Y cells.  相似文献   

4.
In cultured cells of the Bomirski Ab amelanotic hamster melanoma line, the substrates of tyrosinase, L-tyrosine, and L-DOPA induce the melanogenic pathway. In this report, we demonstrate that these substrates regulate the subcellular apparatus involved in their own metabolism and that this regulation is under the dynamic control of one of the components of this apparatus, tyrosinase, via tyrosine hydroxylase activity. Culturing cells with nontoxic but melanogenically inhibitory levels of phenylthiourea (PTU; 100 microM) strongly inhibits induction of both the tyrosine hydroxylase and DOPA oxidase activities of tyrosinase by L-tyrosine (200 microM) but has no effect on the induction of either activity by L-DOPA (50 microM). De novo synthesis of premelanosomes precedes the onset of tyrosine-induced melanogenesis. Thereafter, increases in the population of melanosomes (likewise inhibited by PTU) correlate positively with increases in tyrosinase activity induced by L-tyrosine. Melanogenesis induced by L-DOPA in the absence of L-tyrosine is rate-limited not by tyrosinase but by inadequate melanosome synthesis. Our findings indicate that in Bomirski Ab amelanotic hamster melanoma cells the synthesis of the subcellular apparatus of melanogenesis is initiated by L-tyrosine and is regulated further by tyrosinase and L-DOPA, which serves as a second messenger subsequent to tyrosine hydroxylase activity.  相似文献   

5.
Riluzole is neuroprotective in patients with amyotrophic lateral sclerosis and may also protect dopamine (DA) neurons in Parkinson's disease. We examined the neuroprotective potential of riluzole on DA neurons using primary rat mesencephalic cultures and human dopaminergic neuroblastoma SH-SY5Y cells. Riluzole (up to 10 microM:) alone affected neither the survival of DA neurons in primary cultures nor the growth of SH-SY5Y cells after up to 72 h. Riluzole (1-10 microM:) dose-dependently reduced DA cell loss caused by exposure to MPP(+) in both types of cultures. These protective effects were accompanied by a dose-dependent decrease of intracellular ATP depletion caused by MPP(+) (30-300 microM:) in SH-SY5Y cells without affecting intracellular net NADH content, suggesting a reduction of cellular ATP consumption rather than normalization of mitochondrial ATP production. Riluzole (1-10 microM:) also attenuated oxidative injury in both cell types induced by exposure to L-DOPA and 6-hydroxydopamine, respectively. Consistent with its antioxidative effects, riluzole reduced lipid peroxidation induced by Fe(3+) and L-DOPA in primary mesencephalic cultures. Riluzole (10 microM) did not alter high-affinity uptake of either DA or MPP(+). However, in the same cell systems, riluzole induced neuronal and glial cell death with concentrations higher than those needed for maximal protective effects (> or =100 microM:). These data demonstrate that riluzole has protective effects on DA neurons in vitro against neuronal injuries induced by (a) impairment of cellular energy metabolism and/or (b) oxidative stress. These results provide further impetus to explore the neuroprotective potential of riluzole in Parkinson's disease.  相似文献   

6.
Oxidative stress generated by dopamine (DA) oxidation could be one of the factors underlying the selective vulnerability of nigral dopaminergic neurons in Parkinson's diseases. Here we show that DA induces apoptosis in SH-SY5Y neuroblastoma cells demonstrated by activation of caspase-9 and caspase-3, cleavage of poly(ADP-ribose) polymerase as well as nuclear condensation. We also show that p38 mitogen-activated protein kinase is activated within 10 min of DA treatment, which precedes the onset of apoptosis because the potent p38 kinase inhibitor SB203580 protects against DA-induced cell death as well as against caspase-9 and caspase-3 activation. In addition, the antioxidant N-acetyl-L-cysteine (NAC) effectively blocks DA-induced p38 kinase activation, caspase-9 and caspase-3 cleavage and subsequent apoptosis, indicating that DA triggers apoptosis via a signaling pathway that is initiated by the generation of reactive oxygen species (ROS). Dopamine exerts its toxicity principally intracellularly as the DA uptake inhibitor, nomifensine significantly reduces DA-induced cell death as well as activation of p38 kinase and caspase-3. Furthermore, DA induces mitochondrial cytochrome c release, which is dependent on p38 kinase activation and precedes the cleavage of caspases. These observations indicate that DA induces apoptosis primarily by generating ROS, p38 kinase activation, cytochrome c release followed by caspase-9 and caspase-3 activation.  相似文献   

7.
Shi YL  Benzie IF  Buswell JA 《Life sciences》2002,70(14):1595-1608
A heat-labile protein has been identified in fruit bodies of the edible mushroom, Agaricus bisporus, which protects Raji cells (a human lymphoma cell line) against H2O2-induced oxidative damage to cellular DNA. This protein has been purified following salt fractionation, combined with ion-exchange, hydrophobic interaction and adsorption chromatography. Based on catalytic and electrophoretic properties, and inhibition studies using tropolone, the protein was identified as tyrosinase. The genoprotective effect of A. bisporus tyrosinase, determined using the single-cell gel electrophoresis met") assay, has been shown to be dependent upon the enzymic hydroxylation of tyrosine to L-DOPA and subsequent conversion of this metabolite to dopaquinone. The possible role of dopaquinone, and other L-DOPA oxidation products, in enhancing the cellular antioxidant defence mechanisms is discussed.  相似文献   

8.
In this study, new tyrosinase inhibitors, (+)-catechin-aldehyde polycondensates, have been developed. Tyrosinase is a copper-containing enzyme that catalyzes the hydroxylation of a monophenol (monophenolase activity) and the oxidation of an o-diphenol (diphenolase activity). In the measurement of tyrosinase inhibition activity, (+)-catechin acted as substrate and cofactor of tyrosinase. On the other hand, the polycondensates inhibited the tyrosine hydroxylation and L-DOPA oxidation by chelation to the active site of tyrosinase. The UV-visible spectrum of a mixture of tyrosinase and the polycondensate exhibited a characteristic shoulder peak ascribed to the chelation of the polycondensate to the active site of tyrosinase. Furthermore, circular dichroism measurement showed a small red shift of the band due to the interaction between tyrosinase and the polycondensate. These data support that the polycondensate acts as an inhibitor of tyrosinase.  相似文献   

9.
Enhancing Effect of Manganese on L-DOPA-Induced Apoptosis in PC12 Cells   总被引:8,自引:0,他引:8  
L-DOPA and manganese both induce oxidative stress-mediated apoptosis in catecholaminergic PC12 cells. In this study, exposure of PC12 cells to 0.2 mM MnCl2 or 10-20 microM L-DOPA neither affected cell viability, determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, nor induced apoptosis, tested by flow cytometry, fluorescence microscopy, and the TUNEL technique. L-DOPA (50 microM) induced decreases in both cell viability and apoptosis. When 0.2 mM MnCl2 was associated with 10, 20, or 50 microM L-DOPA, a concentration-dependent decrease in cell viability was observed. Apoptotic cell death also occurred. In addition, manganese inhibited L-DOPA effects on dopamine (DA) metabolism (i.e., increases in DA and its acidic metabolite levels in both cell lysate and incubation medium). The antioxidant N-acetyl-L-cysteine significantly inhibited decreases in cell viability, apoptosis, and changes in DA metabolism induced by the manganese association with L-DOPA. An increase in autoxidation of L-DOPA and of newly formed DA is suggested as a mechanism of manganese action. These data show that agents that induce oxidative stress-mediated apoptosis in catecholaminergic cells may act synergistically.  相似文献   

10.
6-Hydroxydopamine (6-OHDA) has been used for lesioning catecholaminergic neurons and attempted purging of neuroblastoma cells from hematopoietic stem cells in autologous bone marrow transplantation (ABMT). Neurotoxicity is mediated primarily by reactive oxygen species. In ABMT, 6-OHDA, as a purging agent, has been unsuccessful. At physiological pH it autooxidizes before targeted uptake, resulting in nonspecific cytotoxicity of nontarget cells. A catecholamine analogue, similar to 6-OHDA but with a lower rate of autooxidation enabling uptake by target cells, is thus required. Electron paramagnetic resonance spectra in this study show that 6-fluorodopamine (6-FDA) hydrolyzes slowly to 6-OHDA at physiological pH. Oxygen consumption, H(2)O(2), and quinone production are found to be intermediate between those of 6-OHDA and dopamine (DA). Relative neurotoxicity of these compounds was assessed by cell viability and DNA damage in the human neuroblastoma lines SH-SY5Y and SK-N-LO, which express and lack the noradrenaline transporter, respectively. Specific uptake of DA and 6-FDA by SH-SY5Y cells was demonstrated by competitive m-[(131)I]iodobenzylguanidine uptake inhibition. The competition by 6-OHDA was low owing to rapid autooxidation during incubation with equal toxicity toward both cell types. 6-FDA toxicity was preferential for SH-SY5Y cells and reduced in the presence of desipramine, a catecholamine uptake inhibitor. We demonstrate that 6-FDA cytotoxicity is more specific for cells expressing catecholamine reuptake systems than is 6-OHDA cytotoxicity.  相似文献   

11.
Zou L  Jankovic J  Rowe DB  Xie W  Appel SH  Le W 《Life sciences》1999,64(15):1275-1285
Pramipexole, a novel non-ergoline dopamine (DA) agonist, has been applied successfully for treatment of Parkinson's disease (PD). We report here that pramipexole can protect dopaminergic cell line Mes23.5 against dopamine- and levodopa-induced cytotoxicity possibly through a mechanism related to antioxidant activity. In the MES 23.5 cultures, DA and L-DOPA induce a dose- and time-dependent cytotoxicity, as determined by tetrazolium salt and trypan blue assays. Furthermore, an in situ terminal deoxynucleotidyl transferase assay demonstrates that DA-induced cell death is apoptotic. Pretreatment with pramipexole in a concentration range (4-100 microM) significantly attenuates DA- or L-DOPA-induced cytotoxicity and apoptosis, an action which is not blocked by D3 antagonist U-99194 A or D2 antagonist raclopride. Pramipexole also protects MES 23.5 cells from hydrogen peroxide-induced cytotoxicity in a dose-dependent manner. In cell-free system, pramipexole can effectively inhibit the formation of melanin, an end product resulting from DA or L-DOPA oxidation. These results indicate that pramipexole exerts its neuroprotective effect possibly through a mechanism, which is independent of DA receptors but related to antioxidation or scavenging of free radicals (e.g. hydrogen peroxide). As a direct DA agonist and potentially neuroprotective agent, pramipexole remains attractive in the treatment of PD.  相似文献   

12.
A Slominski  R Costantino 《Life sciences》1991,48(21):2075-2079
Exposure of hamster amelanotic melanoma cells to L-dihydroxyphenylalanine (L-DOPA) resulted in a time dependent increase of cell pigmentation, tyrosinase concentration and activity with peak after 24 hours. Northern blot analysis showed a small but reproducible increase of tyrosinase mRNA after 3 hours and a decrease below the control level after 9 hours. After 24 and 48 hours tyrosinase mRNA was undetectable. It is suggested that L-DOPA or its oxidation products can stimulate intracellular tyrosinase concentration and regulate tyrosinase mRNA level both in positive and negative fashion.  相似文献   

13.
Manganese as environmental factor is considered to cause parkinsonism and induce endoplasmic reticulum stress-mediated dopaminergic cell death. We examined the effects of manganese on parkin, identified as the gene responsible for familial Parkinson's disease, and the role of parkin in manganese-induced neuronal cell death. Manganese dose-dependently induced cell death of dopaminergic SH-SY5Y and CATH.a cells and cholinergic Neuro-2a cells, and that the former two cell types were more sensitive to manganese toxicity than Neuro-2a cells. Moreover, manganese increased the expression of endoplasmic reticulum stress-associated genes, including parkin, in SH-SY5Y cells and CATH.a cells, but not in Neuro-2a cells. Treatment with manganese resulted in accumulation of parkin protein in SH-SY5Y cells and its redistribution to the perinuclear region, especially aggregated Golgi complex, while in Neuro-2a cells neither expression nor redistribution of parkin was noted. Manganese showed no changes in proteasome activities in either cell. Transient transfection of parkin gene inhibited manganese- or manganese plus dopamine-induced cell death of SH-SY5Y cells, but not of Neuro-2a cells. Our results suggest that the attenuating effects of parkin against manganese- or manganese plus dopamine-induced cell death are dopaminergic cell-specific compensatory reactions associated with its accumulation and redistribution to perinuclear regions but not with proteasome system.  相似文献   

14.
Dopamine (DA) oxidation and the generation of reactive oxygen species (ROS) may contribute to the degeneration of dopaminergic neurons underlying various neurological conditions. The present study demonstrates that DA-induced cytotoxicity in differentiated PC12 cells is mediated by ROS and mitochondrial inhibition. Because cyanide induces parkinson-like symptoms and is an inhibitor of the antioxidant system and mitochondrial function, cells were treated with KCN to study DA toxicity in an impaired neuronal system. Differentiated PC12 cells were exposed to DA, KCN, or a combination of the two for 12-36 h. Lactate dehydrogenase (LDH) assays indicated that both DA (100-500 microM) and KCN (100-500 microM) induced a concentration- and time-dependent cell death and that their combination produced an increase in cytotoxicity. Apoptotic death, measured by Hoechst dye and TUNEL (terminal deoxynucleotidyltransferase dUTP nick end-labeling) staining, was also concentration- and time-dependent for DA and KCN. DA plus KCN produced an increase in apoptosis, indicating that KCN, and thus an impaired system, enhances DA-induced apoptosis. To study the mechanism(s) of DA toxicity, cells were pretreated with a series of compounds and incubated with DA (300 microM) and/or KCN (100 microM) for 24 h. Nomifensine, a DA reuptake inhibitor, rescued nearly 60-70% of the cells from DA- and DA plus KCN-induced apoptosis, suggesting that DA toxicity is in part mediated intracellularly. Pretreatment with antioxidants attenuated DA- and KCN-induced apoptosis, indicating the involvement of oxidative species. Furthermore, buthionine sulfoximine, an inhibitor of glutathione synthesis, increased the apoptotic response, which was reversed when cells were pretreated with antioxidants. DA and DA plus KCN produced a significant increase in intracellular oxidant generation, supporting the involvement of oxidative stress in DA-induced apoptosis. The nitric oxide synthase inhibitor N(G)-nitro-L-arginine methyl ester and the peroxynitrite scavenger uric acid blocked apoptosis and oxidant production, indicating involvement of nitric oxide. These results suggest that DA neurotoxicity is enhanced under the conditions induced by cyanide and involves both ROS and nitric oxide-mediated oxidative stress as an initiator of apoptosis.  相似文献   

15.
Tyrosinase isozyme heterogeneity in differentiating B16/C3 melanoma   总被引:2,自引:0,他引:2  
The B16/C3 murine melanoma is a pigmented tumor that is rich in the copper-containing enzyme, tyrosinase. This enzyme, which converts tyrosine to melanin precursors, is largely associated with membrane fractions of cells and exists in a number of discrete isozymic forms ranging in molecular mass from 58,000 to 150,000 daltons and pI from 3.4 to 5.2. One of these isozymes (Mr = 58,000, pI 3.4) has been purified to homogeneity. The purified enzyme catalyzes the hydroxylation of L-tyrosine to L-dihydroxyphenylalanine (L-DOPA) and the conversion of L-DOPA to dopaquinone. Ascorbic acid, tetrahydrofolate, and dopamine can serve as cofactors in the hydroxylase reaction. The Michaelis constants for the purified enzyme were 7 X 10(-4) M for L-tyrosine and 6 X 10(-4) M for L-DOPA. The Vmax for L-DOPA was much greater than the Vmax for L-tyrosine indicating that tyrosine hydroxylation is rate-limiting in melanin precursor biosynthesis. Two putative copper chelators, phenylthiourea and diethyldithiocarbamide inhibited both the tyrosine hydroxylase and L-DOPA oxidase activities of the enzyme. Phenylthiourea was a noncompetitive inhibitor while diethyldithiocarbamide was a competitive inhibitor indicating that these agents act by different mechanisms. When digested with proteases and glycosidases, higher molecular weight forms of tyrosinase co-migrated with the purified enzyme in isoelectric focusing and sodium dodecyl sulfate-polyacrylamide gel electrophoresis suggesting that the isozyme was derived from larger precursors. Thus, post-translational processing of tyrosinase may underlie isozyme diversity and this may be important in the control of melanogenesis in this tumor model.  相似文献   

16.
Deleterious effects of dopamine (DA) involving mitochondrial dysfunction have an important role in DA-associated neuronal disorders, including schizophrenia and Parkinson's disease. DA detrimental effects have been attributed to its ability to be auto-oxidized to toxic reactive oxygen species. Since, unlike Parkinson's disease, schizophrenia does not involve neurodegenerative processes, we suggest a novel mechanism by which DA impairs mitochondrial function without affecting cell viability. DA significantly dissipated mitochondrial membrane potential (delta psi m) in SH-SY5Y cells. Bypassing complex I prevented the DA-induced depolarization. Moreover, DA inhibited complex I but not complex II activity in disrupted mitochondria, suggesting complex I participation in DA-induced mitochondrial dysfunction. We further demonstrated that intact mitochondria can accumulate DA in a saturated manner, with an apparent Km=122.1+/-28.6 nM and Vmax=1.41+/-0.15 pmol/mg protein/min, thereby enabling the interaction between DA and complex I. DA accumulation was an energy and Na+-dependent process. The pharmacological profile of mitochondrial DA uptake differed from that of other characterized DA transporters. Finally, relevance to schizophrenia is demonstrated by an abnormal interaction between DA and complex I in schizophrenic patients. These results suggest a non-lethal interaction between DA and mitochondria possibly via complex I, which can better explain DA-related pathological processes observed in non-degenerative disorders, such as schizophrenia.  相似文献   

17.
Mushroom tyrosinase (EC 1.14.18.1) is a copper containing oxidase that catalyzes both the hydroxylation of tyrosine into o-diphenols and the oxidation of o-diphenols into o-quinones. In the present study, the kinetic assay was performed in air-saturated solutions and the kinetic behavior of this enzyme in the oxidation of L-tyrosine and L-DOPA has been studied. The effects of cupferron on the monophenolase and diphenolase activity of mushroom tyrosinase have been studied. The results show that cupferron can inhibit both monophenolase and diphenolase activity of mushroom tyrosinase. The lag phase of tyrosine oxidation catalyzed by the enzyme was obviously lengthened and the steady-state activity of the enzyme decreased sharply. Cupferron can lead to reversible inhibition of the enzyme, possibly by chelating copper at the active site of the enzyme. The IC(50) value was estimated as 0.52 microM for monophenolase and 0.84 microM for diphenolase. A kinetic analysis shows that the cupferron is a competitive inhibitor for both monophenolase and diphenolase. The apparent inhibition constant for cupferron binding with free enzyme has been determined to be 0.20 microM for monophenolase and 0.48 microM for diphenolase.  相似文献   

18.
GRP94 reduces cell death in SH-SY5Y cells perturbated calcium homeostasis   总被引:2,自引:0,他引:2  
The endoplasmic reticulum (ER) resident-94 kDa glucose-regulated protein (GRP94), plays a pivotal role in cell death due to ER stress. In our study expression of GRP94 was increased in human neuroblastoma SH-SY5Y cells due to exposure to calcium ionophore A23187. A23187-mediated cell death was associated with activation of the major cysteine proteases, caspase-3 and calpain. Pretreatment with adenovirus-mediated antisense GRP94 (AdGRP94AS) reduced viability of SH-SY5Y cells subjected to A23187 treatment compared with wild type cells or cells with adenovirus-mediated overexpression of GRP94 (AdGRP94S). These results indicated that suppression of GRP94 is associated with accelerated cell death. Moreover, expression of GRP94 suppressed A23187-induced cell death and stabilized calcium homeostasis.  相似文献   

19.
Parkin, a product of the gene responsible for autosomal recessive juvenile parkinsonism (AR-JP), is an important player in the pathogenic process of Parkinson's disease (PD). Despite numerous studies including search for the substrate of parkin as an E3 ubiquitin-protein ligase, the mechanism by which loss-of-function of parkin induces selective dopaminergic neuronal death remains unclear. Related to this issue, here we show that antisense knockdown of parkin causes apoptotic cell death of human dopaminergic SH-SY5Y cells associated with caspase activation and accompanied by accumulation of oxidative dopamine (DA) metabolites due to auto-oxidation of DOPA and DA. Forced expression of alpha-synuclein (alpha-SN), another familial PD gene product, prevented accumulation of oxidative DOPA/DA metabolites and cell death caused by parkin loss. Our findings indicate that both parkin and alpha-SN share a common pathway in DA metabolism whose abnormality leads to accumulation of oxidative DA metabolites and subsequent cell death.  相似文献   

20.
Crude venom isolated from the ectoparasitic wasp Nasonia vitripennis was found to possess phenoloxidase (PO) activity. Enzyme activity was detected by using a modified dot blot analysis approach in which venom samples were applied to nylon membranes and incubated with either L-DOPA or dopamine. Dot formation was most intense with dopamine as the substrate and no activators appeared to be necessary to evoke a melanization reaction. No melanization occurred when venom was incubated in Schneider's insect medium containing 10% fetal bovine serum or when using tyrosine as a substrate, but melanization did occur when larval or pupal plasma from the fly host, Sarcophaga bullata, was exposed to tyrosine. Only fly larval plasma induced an enzyme reaction with the Schneider's insect medium. The PO inhibitor phenylthiourea (PTU) and serine protease inhibitor phenylmethylsulfonylfluoride (PMSF) abolished PO activity in venom and host plasma samples, but glutathione (reduced) only inhibited venom PO. Elicitors of PO activity (sodium dodecyl sulfate and trypsin) had no or a modest effect (increase) on the ability of venom, or larval and pupal plasma to trigger melanization reactions. SDS-PAGE separation of crude venom followed by in-gel staining using L-DOPA as a substrate revealed two venom proteins with PO activity with estimated molecular weights of 68 and 160 kDa. In vitro assays using BTI-TN-5B1-4 cells were performed to determine the importance of venom PO in triggering cellular changes and evoking cell death. When cell monolayers were pre-treated with 10 mM PTU or PMSF prior to venom exposure, the cells were protected from the effects of venom intoxication as evidenced by no observable cellular morphological changes and over 90% cell viability by 24 h after venom treatment. Simultaneous addition of inhibitors with venom or lower concentrations of PMSF were less effective in affording protection. These observations collectively argue that wasp venom PO is unique from that of the fly hosts, and that the venom enzyme is critical in the intoxication pathway leading to cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号