首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
2.
The influence of three nitrogen salts: NH4NO3, KNO3 and NH4Cl on wheat in vitro cultures was investigated. Both NO 3 and NH 4 + ions were indispensable for proliferation of embryogenic calli and development of wheat somatic embryos. It is possible to obtain wheat somatic embryos when the medium is enriched with NH4NO3 only as a source of inorganic nitrogen. The results of the statistical analysis showed that the level of NH4NO3 and KNO3 in the medium had a great influence on the efficiency of somatic embryogenesis. We observed tendency that calli on media containing 50 mM NH4NO3 and 0 to 20 mM KNO3 turned out to be more embryogenic than on control MS medium. High concentrations of KNO3- 100 mM inhibited somatic embryogenesis, while 100 mM NH4NO3 did not. The level of total N did not have significant influence on wheat somatic embryogenesis. Ratio NO 3 :NH 4 + also turned out to be not substantial. We observed that mutual connection of concentration levels between NH4NO3 and KNO3 and between NH4Cl and KNO3 was more important. The efficiency of somatic embriogenesis obtained in the experiment with NH4Cl and KNO3 was significantly lower than in experiment with NH4NO3 and KNO3.  相似文献   

3.
4.
Supplying both N forms (NH4 ++NO3 ) to the maize (Zea mays L.) plant can optimize productivity by enhancing reproductive development. However, the physiological factors responsible for this enhancement have not been elucidated, and may include the supply of cytokinin, a growth-regulating substance. Therefore, field and gravel hydroponic studies were conducted to examine the effect of N form (NH4 ++NO3 versus predominantly NO3 ) and exogenous cytokinin treatment (six foliar applications of 22 μM 6-benzylaminopurine (BAP) during vegetative growth versus untreated) on productivity and yield of maize. For untreated plants, NH4 ++NO3 nutrition increased grain yield by 11% and whole shoot N content by 6% compared with predominantly NO3 . Cytokinin application to NO3 -grown field plants increased grain yield to that of NH4 ++NO3 -grown plants, which was the result of enhanced dry matter partitioning to the grain and decreased kernel abortion. Likewise, hydroponically grown maize supplied with NH4 ++NO3 doubled anthesis earshoot weight, and enhanced the partitioning of dry matter to the shoot. NH4 ++NO3 nutrition also increased earshoot N content by 200%, and whole shoot N accumulation by 25%. During vegetative growth, NH4 ++NO3 plants had higher concentrations of endogenous cytokinins zeatin and zeatin riboside in root tips than NO3 -grown plants. Based on these data, we suggest that the enhanced earshoot and grain production of plants supplied with NH4 ++NO3 may be partly associated with an increased endogenous cytokinin supply.  相似文献   

5.
The results of the experiments discussed here present changes in the chemical composition of xylem sap of tomato seedlings cultivated in hydroponics on media containing 5 mmol HCO3 and an N-source given as NO3 , NH4 + or these two forms in different proportions. The occurrence of free NH4 + in the xylem sap of NH4 +-seedlings and in NO3 -seedlings indicates that the process of N-assimilation was not only confined to roots. The application of HCO3 to the medium effected a decrease in the concentration of NH4 + in the xylem sap of NH4 +-seedlings, having no effect on changes in the concentration of NO3 or NH4 + in NO3 -seedlings. Malate, citrate, fumarate, and succinate were identified in the xylem sap. The concentration of carboxylates in NO3 -seedlings exceeded by about 50% that recorded in NH4 +-seedlings. The highest concentration of malate constituting from 80% to 93.5% of this fraction, was determined in this group of compounds. The enrichment of the medium with HCO3 ions induced an increase in the content of carboxylates, chiefly of malate. In these experimental conditions an increase in the malate concentration in the xylem sap of NO3 and NH4 +-seedlings reached relative values of 100% and 36%, respectively. The total concentration of amides and amino acids was about 2.6 times higher in the xylem sap of NH4 +-seedlings than in NO3 -seedlings. Amide glutamine was the main component of this fraction in xylem sap and its total concentration was about 3.3 times higher in NH4 +-seedlings than that determined in NO3 -seedlings. Glutamine, glutamate, aspargine, and aspartate constituted from 69% to 77% of this fraction. The concentration of the remaining amino acids varied from 0.6% to 7%. The enrichment of the medium with HCO3  ions also effected an increase in the concentration of amides and amino acids in the xylem sap by about 17% and 56% in the case of NO3 and NH4 +-seedlings, respectively, in comparison with the respective controls (without HCO3 ). Abbreviations: DAG – days after germination; DIC – dissolved inorganic carbon; GOGAT – glutamine:2-oxoglutarate aminotransferase; GS – glutamine synthetase; PAR – photosynthetically active radiation; PEPc – phosphoenolpyruvate carboxylase  相似文献   

6.
Pang  Rui  Sun  Yue  Xu  Xingliang  Song  Minghua  Ouyang  Hua 《Plant and Soil》2018,433(1-2):339-352
Plant and Soil - In natural ecosystems, plants generally promote the acquisition of nitrogen (N) through the input of carbon (C) into the soil. The present study aimed to clarify how changes in C...  相似文献   

7.
The effect of various basal salts media, containing different nitrogen levels on in vitro adventitious shoot regeneration from leaf explants of Louise Bonne Panachee and Seckel pear (Pyrus communis L.) were investigated. Among the different basal salt formulae tested, Nitsch (1969) gave significantly better regeneration in most of the experiments. Shoot regeneration was altered with different NH4 +-N/NO3 -N ratios. The best regeneration was obtained when NH4 +:NO3 was either 1:2 or 1:3 regardless of overall N concentration. In addition, these data show that NH4 + was essential for adventitious shoot regeneration from pear leaf explants on White's (1943) medium.  相似文献   

8.
The effect of NH4+/NO3 availability on nitrate reductase (NR) activity in Phragmites australis and Glyceria maxima was studied in sand and water cultures with the goal to characterise the relationship between NR activity and NO3 availability in the rhizosphere and to describe the extent to which NH4+ suppresses the utilization of NO3 in wetland plants.The NR activity data showed that both wetland helophytes are able to utilize NO3. This finding was further supported by sufficient growth observed under the strict NO3 nutrition. The distribution of NR activity within plant tissues differed between species. Phragmites was proved to be preferential leaf NO3 reducer with high NR activity in leaves (NRmax > 6.5 μmol NO2 g dry wt−1 h−1) under all N treatments, and therefore Phragmites seems to be good indicator of NO3 availability in flooded sediment. In the case of Glyceria the contribution of roots to plant NO3 reduction was higher, especially in sand culture. Glyceria also tended to accumulate NO3 in non-reduced form, showing generally lower leaf NR activity levels. Thus, the NR activity does not necessarily correspond with plant ability to take up NO3 and grow under NO3-N source. Moreover, the species differed significantly in the content of compounds interfering with NR activity estimation. Glyceria, but not Phragmites, contained cyanogenic glycosides releasing cyanide, the potent NR inhibitor. It clearly shows that the use of NR activity as a marker of NO3 utilization in individual plant species is impossible without the precise method optimisation.  相似文献   

9.
Anthropogenic nutrient enrichment affects the biogeochemical cycles and nutrient stoichiometry of coastal ecosystems and is often associated with coral reef decline. However, the mechanisms by which dissolved inorganic nutrients, and especially nitrogen forms (ammonium versus nitrate) can disturb the association between corals and their symbiotic algae are subject to controversial debate. Here, we investigated the coral response to varying N : P ratios, with nitrate or ammonium as a nitrogen source. We showed significant differences in the carbon acquisition by the symbionts and its allocation within the symbiosis according to nutrient abundance, type and stoichiometry. In particular, under low phosphate concentration (0.05 µM), a 3 µM nitrate enrichment induced a significant decrease in carbon fixation rate and low values of carbon translocation, compared with control conditions (N : P = 0.5 : 0.05), while these processes were significantly enhanced when nitrate was replaced by ammonium. A combined enrichment in ammonium and phosphorus (N : P = 3 : 1) induced a shift in nutrient allocation to the symbionts, at the detriment of the host. Altogether, these results shed light into the effect of nutrient enrichment on reef corals. More broadly, they improve our understanding of the consequences of nutrient loading on reef ecosystems, which is urgently required to refine risk management strategies.  相似文献   

10.
After growth for 17 to 36 days on nutrient solutions with NH4NO3 as nitrogen source (pH 4.2) dry matter of sorghum genotype SC0283 was much less affected by Al (1.5 and 3.0 ppm) than that of genotype NB9040. In the absence of Al both cultivars released protons into the nutrient solution as a result of an excess of cationic nutrients taken up. When Al was present, this proton efflux per unit dry weight increased drastically, especially with the sensitive genotype NB9040. Chemical analysis of plant material and continuous analyses of NO 3 and NH 4 + in the nutrient solution indicated, that the Al-induced shift in H+-balance of both genotypes could almost completely be attributed to a decreased NO 3 /NH 4 + uptake ratio. In vivo nitrate reductase activity (NRA) was reduced in the shoot of NB9040 and to a lesser degree in SC0283. Al-induced decrease in NRA was accompanied by similar percentual decreases in NO 3 tissue concentrations. Therefore this decrease is interpreted as being indirect,i.e., the consequence of the reduced NO 3 uptake of the plants. A direct repression of NRA by Al seems also unlikely because nitrate reductase activity of the roots (where cellular Al-concentrations should be higher than in shoots) was not affected in Al-treated plants of either genotype.  相似文献   

11.
Influx, efflux and net uptake of NO 3 was studied in Pisum sativum L. cv. Marma in short-term experiments where 13NO 3 was used to trace influx. The influx rate in N-limited plants was similar both during net uptake at external concentrations of around 50 M, and at low external NO 3 concentrations (4–6 M) when net uptake was practically zero. Efflux could be inferred from discrepancies between influx and net uptake but was never very high in the N-limited plants during net uptake. Close to the threshold concentration for not NO 3 uptake, efflux was high and equalled influx. Thus, the threshold concentration can be regarded as a NO 3 compensation point. The inclusion of NH 4 + in the outer medium decreased influx by about 40% but did not significantly affect efflux. The roles of NO 3 fluxes and nitrate-reductase activity in regulating/limiting NO 3 utilization are discussed.Abbreviations DW dry weight - FW fresh weight - RN relative nitrogen addition rate  相似文献   

12.
13.
Summary Distinctly different patterns of15N enrichment were observed in the nitrate and reduced-N fractions of xylem exudate from soybean plants during and after 5 to 6 days of exposure to15NO 3 . Within 1 d after changes in solution NO 3 label, more than 90% of the exudate NO 3 originated from the exogenous supply. Alterations in the enrichment of exudate reduced-N were much slower, however, and the enrichment reached only 40% even after 5 d of continuous exposure to15NO 3 . Taking into account possible reduction of endogenous NO 3 and delayed translocation of NO 3 reduction products, it was concluded that root reduction could have contributed only 30 to 42% of the reduced-N found in the exudate.  相似文献   

14.
In many forests of Europe and north-eastern North America elevated N deposition has opened the forest N cycle, resulting in NO3 ? leaching. On the other hand, despite this elevated N deposition, the dominant fate of NO3 ? and NH4 + in some of these forests is biotic or abiotic immobilization in the soil organic matter pool, preventing N losses. The environmental properties controlling mineral N immobilization and the variation and extent of mineral N immobilization in forest soils are not yet fully understood. In this study we investigated a temperate mixed deciduous forest, which is subjected to an average N deposition of 36.5 kg N ha?1 yr?1, but at the same time shows low NO3 ? concentrations in the groundwater. The aim of this study was to investigate whether the turnover rate of the mineral N pool could explain these low N leaching losses. A laboratory 15N pool dilution experiment was conducted to study gross and net N mineralization and nitrification and mineral N immobilization in the organic and uppermost (0–10 cm) mineral layer of the forest soil. Two locations, one at the forest edge (GE) and another one 145 m inside the forest (GF1), were selected. In the organic layers of GE and GF1, the gross N mineralization averaged 10.9 and 11.1 mg N kg?1 d?1, the net N mineralization averaged 6.1 and 6.8 mg N kg?1 d?1 and NH4 + immobilization rates averaged 3.8 and 3.6 mg N kg?1 d?1. In the organic layer of GE and GF1, the average gross nitrification was 3.8 and 4.6 mg N kg?1 d?1, the average net nitrification was ?25.2 and ?31.3 mg N kg?1 d?1 and the NO3 ? immobilization rates averaged 29.0 and 35.9 mg N kg?1 d?1. For the mineral (0–10 cm) layer the same trend could be observed, but the N transformation rates were much lower for the NH4 + pool and not significantly different from zero for the NO3 ? pool. Except for the turnover of the NH4 + pool in the mineral layer, no significant differences were observed between location GE and GF1. The ratio of NH4 + immobilization to gross N mineralization, gross N mineralization to gross nitrification, and NO3 ? immobilisation to gross nitrification led to the following observations. The NH4 + pool of the forest soil was controlled by N mineralization and NO3 ? immobilization was importantly controlling the forest NO3 ? pool. Therefore it was concluded that this process is most probably responsible for the limited NO3 ? leaching from the forest ecosystem, despite the chronically high N deposition rates.  相似文献   

15.
Summary The effect of mercury (Hg2+) in the absence and presence of methylmercury (CH3Hg+), cadmium (Cd2+), copper (Cu2+), nickel (Ni2+) and calcium (Ca2+) on Nostoc calcicola Bréb. has been studied in terms of electrolyte leakage, NO3 uptake and in vivo nitrate reductase (NR) activity to discover any possible correlation among such parameters under Hg2+ stress. Leakage of electrolytes from Hg2+-treated cyanobacterial cells was directly proportional to Hg2+ concentrations and exposure time. In comparison to NO3 uptake, an about 60-fold slower rate of NR activity was observed in the untreated cultures, the former being five times more Hg2+-sensitive. A non-competitive synergistic interaction of Hg2+ with CH3Hg+ or Cd2+ and antagonistic with that of Ni2+ or Ca2+ has been observed for both the processes of NO3 utilization. The antagonistic interaction of Cu2+ with Hg2+ in terms of NO3 uptake and synergistic with respect to NR activity, has been attributed to the dual bonding preference of Cu2+ for cellular ligands. These findings suggest that (a) a statistically significant correlation exists among such parameters; (b) Hg2+ predominantly attacks the cyanobacterial cell membrane; (c) Hg2+ inhibits NO3 utilization; (d) the presence of other cations increases or decreases the inhibitory actions of Hg2+.  相似文献   

16.
浅谈NH4NO3和植物根部环境pH的关系   总被引:1,自引:1,他引:0  
1897年在灭菌条件下证明铵盐不经转变成硝酸盐也能为植物吸收,此后,植物既能吸收NO_3~--N,又能吸收NH_4~_ N已为人所共知。为此,有些学者认为,植物吸收NH_4NO_3的阴阳离子的量很  相似文献   

17.
The inducibility and kinetics of the NO3, NO2, and NH4+ transporters in roots of wheat seedlings (Triticum aestivum cv Yercora Rojo) were characterized using precise methods approaching constant analysis of the substrate solutions. A microcomputer-controlled automated high performance liquid chromatography system was used to determine the depletion of each N species (initially at 1 millimolar) from complete nutrient solutions. Uptake rate analyses were performed using computerized curve-fitting techniques. More precise estimates were obtained for the time required for and the extent of the induction of each transporter. Up to 10 and 6 hours, respectively, were required to achieve apparent full induction of the NO3 and NO2 transporters. Evidence for substrate inducibility of the NH4+ transporters requiring 5 hours is presented. The transport of NO3 was mediated by a dual system (or dual phasic), whereas only single systems were found for transport of NO2 and NH4+. The Km values for NO3, NO2, and NH4+ were, respectively, 0.027, 0.054, and 0.05 millimolar. The Km for mechanism II of NO3 transport could not be defined in this study as it exhibited only apparent first order kinetics up to 1 millimolar.  相似文献   

18.
High-affinity nitrate transport was examined in intact hyphae of Neurospora crassa using electrophysiological recordings to characterize the response of the plasma membrane to NO 3 challenge and to quantify transport activity. The NO 3-associated membrane current was determined using a three electrode voltage clamp to bring membrane voltage under experimental control and to compensate for current dissipation along the longitudinal cell axis. Nitrate transport was evident in hyphae transferred to NO 3-free, N-limited medium for 15 hr, and in hyphae grown in the absence of a nitrogen source after a single 2-min exposure to 100 μm NO 3. In the latter, induction showed a latency of 40–80 min and rose in scalar fashion with full transport activity measurable approx. 100 min after first exposure to NO 3; it was marked by the appearance of a pronounced sensitivity of membrane voltage to extracellular NO 3 additions which, after induction, resulted in reversible membrane depolarizations of (+)54–85 mV in the presence of 50 μm NO 3; and it was suppressed when NH4 + was present during the first, inductive exposure to NO 3. Voltage clamp measurements carried out immediately before and following NO 3 additions showed that the NO 3-evoked depolarizations were the consequence of an inward-directed current that appeared in parallel with the depolarizations across the entire range of accessible voltages (−400 to +100 mV). Measurements of NO 3 uptake using NO 3-selective macroelectrodes indicated a charge stoichiometry for NO 3 transport of 1(+):1(NO 3) with common K m and J max values around 25 μm and 75 pmol NO 3 cm−2sec−1, respectively, and combined measurements of pH o and [NO 3] o showed a net uptake of approx. 1 H+ with each NO 3 anion. Analysis of the NO 3 current demonstrated a pronounced voltage sensitivity within the normal physiological range between −300 and −100 mV as well as interactions between the kinetic parameters of membrane voltage, pH o and [NO 3] o . Increasing the bathing pH from 5.5 to 8.0 reduced the current and the associated membrane depolarizations 2- to 4-fold. At a constant pH o of 6.1, driving the membrane voltage from −350 to −150 mV resulted in an approx. 3-fold reduction in the maximum current and a 5-fold rise in the apparent affinity for NO 3. By contrast, the same depolarization effected an approx. 20% fall in the K m for transport as a function in [H+] o . These, and additional results are consistent with a charge-coupling stoichiometry of 2(H+) per NO 3 anion transported across the membrane, and implicate a carrier cycle in which NO 3 binding is kinetically adjacent to the rate-limiting step of membrane charge transit. The data concur with previous studies demonstrating a pronounced voltage-dependence to high-affinity NO 3 transport system in Arabidopsis, and underline the importance of voltage as a kinetic factor controlling NO 3 transport; finally, they distinguish metabolite repression of NO 3 transport induction from its sensitivity to metabolic blockade and competition with the uptake of other substrates that draw on membrane voltage as a kinetic substrate. Received: 17 March 1997/Revised: 20 June 1997  相似文献   

19.
Summary During 1976 through 1978, 10N treatments (combinations of N application times and rates) were used in a corn study. Those treatments created different levels of soil NO 3 –N content that were well-suited to a study of the influence of residual NO 3 –N and applied N on soybean yield. In April 1979 we applied ammonium nitrate at rates of 0, 75, or 150 kg N/ha to three subplots formed from each of the whole plots (previous N treatment plots). With N fertilization in 1979, seed yield increased where the residual NO 3 –N amount was less than 190 kg/ha but decreased where the residual amount was greater than 190 kg/ha. As the NO 3 –N content in the soil increased by 1 kg/ha, the soybean yield increase due to N fertilization in 1979 decreased by approximately 4 kg/ha.Contribution no. 82-368-J, Dep. of Agronomy, Kansas Agric. Exp. Stn., Manhattan, KS 66506, USA  相似文献   

20.
Thylakoids were isolated from the leaves of three different plants (Pisum sativium L., Lactuca sativa L., and Raphanus sativus L.). The addition of HCO 3 ? to a suspension of salt-and HCO 3 ? -epleted thylakoids (suspended in salt-free medium) raised the rate of O2 evolution up to fourfold. This stimulation could be partially replaced by the addition of chloride or nitrate ions. However, the addition of HCO 3 ? in the presence of Cl? or NO 3 ? resulted in a higher stimulation of O2 evolution (sixfold in the presence of nitrate and sevenfold in the presence of chloride). On the other hand, the addition of HCO 3 ? to the thylakoids depleted from salt only raised the rate of O2 evolution by 10–15%, whereas 40–70% was obtained by the addition of nitrate or chloride ions. The fluorescence induction studies indicated a significant decrease in the yield of the variable fluorescence of the salt- and HCO 3 ? -depleted thylakoids. A partial increase in the fluorescence yield was obtained by the addition of HCO 3 ? alone. A typical fluorescence induction curves were obtained by the addition of HCO 3 ? in the presence of Cl? or NO 3 ? ions. The data obtained suggest a similar role for chloride and nitrate ions in O2 evolution in the Hill-reaction, which is restricted at the donor side of photosystem II, whereas bicarbonate plays its role at both sides (acceptor and donor sides). The presented data are those obtained for the thylakoids of P. sativium, which were more or less similar to those obtained for L. sativa and R. sativus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号