首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Goal and Background  LCIA procedures that have been used in the South Africa manufacturing industry include the CML, Ecopoints, EPS and Eco-indicators 95 and 99 procedures. The aim of this paper is to evaluate and compare the applicability of these European LCIA procedures within the South African context, using a case study. Methods  The five European methods have been evaluated based on the applicability of the respective classification, characterisation, normalization and weighting approaches for the South African situation. Impact categories have been grouped into air, water, land and mined abiotic resources for evaluation purposes. The evaluation and comparison is further based on a cradle-to-gate Screening Life Cycle Assessment (SLCA) case study of the production of dyed two-fold wool yarn in South Africa. Results and Discussion  Where land is considered as a separate category (CML, Eco-indicator 99 and EPS), the case study highlights this inventory constituent as the most important. Similarly, water usage is shown as the second most important in one LCIA procedure (EPS) where it is taken into account. However, the impact assessment modelling for these categories may not be applicable for the variance in South African ecosystems. If land and water is excluded from the interpretation, air emissions, coal usage, ash disposal, pesticides and chrome emissions to water are the important constituents in the South African wool industry. Conclusions  In most cases impact categories and procedures defined in the LCIA methods for air pollution, human health and mined abiotic resources are applicable in South Africa. However, the relevance of the methods is reduced where categories are used that impact ecosystem quality, as ecosystems differ significantly between South Africa and the European continent. The methods are especially limited with respect to water and land resources. Normalisation and weighting procedures may also be difficult to adapt to South African conditions, due to the lack of background information and social, cultural and political differences. Recommendations and Outlook  Further research is underway to develop a framework for a South African LCIA procedure, which will be adapted from the available European procedures. The wool SLCA must be revisited to evaluate and compare the proposed framework with the existing LCIA procedures.  相似文献   

2.
Goal and Background  Current Life Cycle Impact Assessment (LCIA) procedures have demonstrated certain limitations in the South African manufacturing industry context. The aim of this paper is to propose a modified LCIA procedure, which is based on the protection of resource groups. Methods  A LCIA framework is introduced that applies the characterisation procedure of available midpoint categories, with the exception of land use. Characterisation factors for land occupation and transformation is suggested for South Africa. A distanceto-target approach is used for the normalisation of midpoint categories, which focuses on the ambient quality and quantity objectives for four resource groups: Air, Water, Land and Mined Abiotic Resources. The quality and quantity objectives are determined for defined South African Life Cycle Assessment (SALCA) Regions and take into account endpoint or damage targets. Following the precautionary approach, a Resource Impact Indicator (RII) is calculated for the resource groups. Subjective weighting values for the resource groups are also proposed, based on survey results from the manufacturing industry sector and the expenditure trends of the South African national government. The subjective weighting values are used to calculate overall Environmental Performance Resource Impact Indicators (EPRIIs) when comparing life cycle systems with each other. The proposed approaches are evaluated with a known wool case study. Results and Discussion  The calculation of a RJI ensures that all natural resources that are important from a South African perspective are duly considered in a LCIA. The results of a LCIA are consequently not reliant on a detailed Life Cycle Inventory (LCI) and the number of midpoint categories that converge on a single resource group. The case study establishes the importance of region-specificity, for LCIs and LCIAs. Conclusions  The proposed LCIA procedure demonstrates reasonable ease of communication of LCIA results. It further allows for the inclusion of additional midpoint categories and is adaptable for specific regions. Recommendations and Outlook  The acceptance of the LCIA procedure must be evaluated for different industry and government sectors. Also, the adequate incorporation of Environmental Performance Resource Impact Indicators (EPRIIs) into decision-making for Life Cycle Management purposes must be researched further. Specifically, the application of the procedures for supply chain management will be investigated.  相似文献   

3.
The impact assessment of the consumption of abiotic resources, such as fossil fuels or minerals, is usually part of the Life Cycle Impact Assessment (LCIA) in LCA studies. The problem with the consumption of such resources is their decreasing availability for future generations. In currently available LCA methods (e.g. Eco-indicator’ 99/Goedkoop and Spriensma 1999, CML/Guinée 2001), the consumption of various abiotic resources is aggregated into one summarizing indicator within the characterization phase of the LCIA. This neglects that many resources are used for different purposes and are not equivalent to each other. Therefore, the depletion of reserves of functionally non-equivalent resources should be treated as separate environmental problems, i.e. as separate impact sub-categories. Consequently, this study proposes assigning the consumption of abiotic resources to separate impact sub-categories and, if possible, integrating them into indicators only according to their primary function (e.g. coal, natural gas, oil → consumption of fossil fuels; phosphate rock → consumption of phosphate). Since this approach has been developed in the context of LCA studies on agricultural production systems, the impact assessment of the consumption of fossil fuels, phosphate rock, potash salt and lime is of particular interest and serves as an example. Following the general LCA framework (Consoli et al. 1993, ISO 1998), a normalization step is proposed separately for each of the subcategories. Finally, specific weighting factors have been calculated for the sub-categories based on the ’distance-to-target’ principle. The weighting step allows for further interpretation and enables the aggregation of the consumption of different abiotic resources to one summarizing indicator, called the Resource Depletion Index (RDI). The proposed method has been applied to a wheat production system in order to illustrate the conceptual considerations and to compare the approach to an established impact assessment method for abiotic resources (CML method, Guinée 2001).  相似文献   

4.
Purpose

Assessing the potential impacts (characterization) of mineral resource use in life cycle impact assessment (LCIA) has long been debated. One of the most crucial challenges in the characterization models for mineral resource use is the consideration of the changing demand and availability of in-use stocks in the future, which is relevant to the global population and economy growth as well as the increasing low-carbon technologies. We propose an extended characterization model to assess the potential impacts for arbitrary time horizons, considering future demand changes and the availability of in-use stock: temporally explicit abiotic depletion potential (TADP).

Methods

The TADP was developed based on abiotic depletion potential (ADP), which is a widely used characterization model for mineral resource use. While the ADP assesses the potential impacts of mineral resource use based on a natural stock estimate and the current extraction rate, the TADP adopts an average extraction rate for arbitrary time horizons. The average extraction rate was estimated using material flow analysis considering future demand changes and recycling under the five shared socioeconomic pathways (SSPs). TADPs were calculated for six common metals: aluminum, copper, iron, lead, nickel, and zinc.

Results and discussion

As a result of calculating TADPs for the term by 2050 (TADP2050), compared to iron, all other metals showed larger values of characterization factors for all SSPs than the original ADPs. The TADP2050 of copper exhibited the largest difference with ADP among the six metals (approximately 1.9 times), which is mainly attributed to future demand growth. On the other hand, for the longer time perspective, the TADP2100 of lead and zinc exhibited larger differences with ADP than copper (approximately 2.8 times for zinc), which is mainly due to a relatively shorter lifetime for lead and a lower recycling rate for zinc. This suggests that the relative significance of the characterization factors of metals varies depending on the temporal perspective.

Conclusions

With the proposed characterization model, the potential impacts of mineral resource use can be assessed reflecting future situations for the selected time horizons. The results demonstrate that the consideration of future situations greatly influences the relative significance of the potential impacts of using different mineral resources in the results of LCIA studies. By expanding the coverage of mineral resources and future scenario analysis to other relevant factors, the TADP model can improve the robustness of the assessment and further support decision-making towards sustainable resource management.

  相似文献   

5.
Background, aim, and scope  Under ISO 14040, normalisation is an optional step in life-cycle impact assessment designed to provide environmental context by indicating the relative contribution that the product system under investigation makes in the various impact categories, in comparison to a suitable reference scenario. The challenge for many studies, however, is to provide the appropriate context by adopting a normalisation reference scenario that is well matched to the product system’s parent environment. Australia has a highly urbanised population, mainly contained in just eight capital cities. In the context of normalising environmental impacts against the profile of an ‘average’ Australian, this poses a unique problem, compared to other industrialised regions of the world. This study aims to use publicly available data on environmentally relevant emissions and non-renewable resource consumption in 2005/2006 to develop regional normalisation data for Australia, at both inventory and characterisation levels. Methods  The regionalised inventory of emissions and resources production is constructed using a framework of 60 regional Statistical Divisions from the Australian Standard Geographical Classification system. Data from the National Pollutant Inventory, Australian Greenhouse Emissions Information System and the Australian Bureau of Agricultural and Resource Economics (energy and mineral statistics) are used as the basis for the inventories. These data could subsequently be used by any LCA practitioner to construct characterisation or normalisation data by impact category, according to any preferred life-cycle impact assessment methodology, for any of 60 regions in the country. In this study, the regionalised inventory data were assessed using the CML 2001 baseline and IMPACT 2002+ life-cycle impact assessment methods in SimaPro v.7.1.5. Results  Characterisation results from the two LCIA methods for Australia’s eight state and territory capital cities are presented, together with an overall national profile. These data are also shown on a per capita basis to highlight the relative environmental profiles of citizens in the different cities. Interestingly, many significant impacts occur outside of the capital cities but are linked to facilities providing the majority of their services and products to these urban centres (e.g. power stations, minerals processing). Comparison of the average Australian data with the Netherlands, Western Europe and the World shows the results to be broadly similar. Discussion  Analysis of the CML 2001 baseline characterisation results, on a per capita basis, shows substantial differences between the major cities of the country. In each impact category, these differences can be successfully traced to specific emissions in the raw data sources, the influence of prevailing climate conditions, or factors such as the mix of non-renewable energy resources in each state. Some weaknesses are also evident in the collection and estimation techniques of the raw data sources and in the application of European-based impact assessment models. Australia is a net exporter of many products, particularly natural resources. Therefore, a significant part of the characterisation data presented here for Australia represents products that will be consumed in other parts of the world. Similarly, at a regional level, there will be many inventory items produced in one area yet consumed in another. In this way, the impacts associated with consumption (particularly in densely populated but largely industry-free cities) are dissipated into other production centres. Conclusions  This study provides the first set of comprehensive inventory and characterisation data for Australia from a production perspective, disaggregated at a regional level. Despite Australia’s unique spatial demography, it is now possible to properly characterise the relative significance of environmental impacts occurring in any of 60 specific regions across the country. Recommendations and perspectives  Australia’s unique concentration of urban populations demonstrates the importance of regionally specific environmental assessments. Whilst the data presented in this study will be of most use to Australian LCA practitioners, it is also demonstrative of the broader global distribution of environmental impacts between urban and non-urban areas. The disconnection of environmental impacts between the place of production and the place of consumption is highlighted by this study and should be considered in any studies using these normalisation data for environmental profiling. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.

Purpose  

Raw material availability is a cause of concern for many industrial sectors. When addressing resource consumption in life cycle assessment (LCA), current characterisation models for depletion of abiotic resources provide characterisation factors based on (surplus) energy, exergy, or extraction–reserve ratios. However, all indicators presently available share a shortcoming as they neglect the fact that large amounts of raw materials can be stored in material cycles within the technosphere. These “anthropogenic stocks” represent a significant source and can change the material availability significantly. With new characterisation factors, resource consumption in LCA will be assessed by taking into account anthropogenic material stocks in addition to the lithospheric stocks. With these characterisation factors, the scarcity of resources should be reflected more realistically.  相似文献   

7.

Purpose

In this paper, we summarize the discussion and present the findings of an expert group effort under the umbrella of the United Nations Environment Programme (UNEP)/Society of Environmental Toxicology and Chemistry (SETAC) Life Cycle Initiative proposing natural resources as an Area of Protection (AoP) in Life Cycle Impact Assessment (LCIA).

Methods

As a first step, natural resources have been defined for the LCA context with reference to the overall UNEP/SETAC Life Cycle Impact Assessment (LCIA) framework. Second, existing LCIA methods have been reviewed and discussed. The reviewed methods have been evaluated according to the considered type of natural resources and their underlying principles followed (use-to-availability ratios, backup technology approaches, or thermodynamic accounting methods).

Results and discussion

There is currently no single LCIA method available that addresses impacts for all natural resource categories, nor do existing methods and models addressing different natural resource categories do so in a consistent way across categories. Exceptions are exergy and solar energy-related methods, which cover the widest range of resource categories. However, these methods do not link exergy consumption to changes in availability or provisioning capacity of a specific natural resource (e.g., mineral, water, land etc.). So far, there is no agreement in the scientific community on the most relevant type of future resource indicators (depletion, increased energy use or cost due to resource extraction, etc.). To address this challenge, a framework based on the concept of stock/fund/flow resources is proposed to identify, across natural resource categories, whether depletion/dissipation (of stocks and funds) or competition (for flows) is the main relevant aspect.

Conclusions

An LCIA method—or a set of methods—that consistently address all natural resource categories is needed in order to avoid burden shifting from the impact associated with one resource to the impact associated with another resource. This paper is an important basis for a step forward in the direction of consistently integrating the various natural resources as an Area of Protection into LCA.
  相似文献   

8.
Background The quantification of resource depletion in Life Cycle Assessment has been the topic of much debate; to date no definitive approach for quantifying effects in this impact category has been developed. In this paper we argue that the main reason for this extensive debate is because all methods for quantifying resource depletion impacts have focussed on resource extraction. - Aim and Scope. To further the state of the debate we present a general framework for assessing the impacts of resource use across the entire suite of biotic and abiotic resources. The main aim of this framework is to define the necessary and sufficient set of information required to quantify the effects of resources use. Method logy. Our method is based on a generic concept of the quality state of resource inputs and outputs to and from a production system. Using this approach we show that it is not the extraction of materials which is of concern, but rather the dissipative use and disposal of materials. Using this as a point of departure we develop and define two key variables for use in the modelling of impacts of resource use, namely the ultimate quality limit, which is related to the functionality of the material, and backup technology. Existing methodologies for determining the effects of resource depletion are discussed in the context of this framework. Results We demonstrate the ability of the general framework to describe impacts related to all resource categories: metallic and non-metallic minerals, energy minerals, water, soil, and biotic resources (wild or domesticated plants and animals). Recommendation focus on suggestions for a functionality measure for each of these categories; and how best the two modelling variables derived can be determined.  相似文献   

9.

Purpose

The purpose of this study was to answer the following three questions: (1) What are the reference values of normalisation for Finnish production and Finnish consumption and how do they differ from the European reference values?, (2) How do these differences influence the interpretation of normalised LCIA results?, and (3) How can normalised LCIA results be made more comprehensible to non-LCA experts with the help of communication material?

Methods

Finnish reference values for normalisation were calculated on the basis of the Finnish environmentally extended input–output model and ReCiPe LCIA method. The influence of different normalised results on the interpretation of LCIA was assessed based on an LCA study of print products. LCA communication material (product-specific fact sheets) was developed by organising workshops and interviews with stakeholders in the paper and printing industry.

Results and discussion

A comparison of the production based Finnish reference values to the European reference values shows that Finland contributes roughly 1 % to the European values in all impact categories except in the fossil depletion category where the contribution is 3 %. The order of magnitude of the impact categories varies depending on the reference system used for normalisation, which influences the interpretation of LCIA results. The normalised results were made more comprehensible by developing fact sheets including background information and guidance for interpretation of the LCIA results.

Conclusions

The interpreter of normalised LCIA results does not usually have the information to estimate how the chosen reference system influences the results. A sensitivity analysis with different reference values may help to highlight this effect. When communicating to non-LCA-practitioners, LCIA results need to be connected to a wider context, which can be achieved by using normalisation to give an idea of the order of magnitude of the results. However, the harmfulness of the impact categories in relation to each other cannot be judged on the basis of the normalised results, which seems to be a difficult concept for non-LCA-practitioners to understand.  相似文献   

10.
In life cycle impact assessment (LCIA), limited attention is generally given to a consistent inclusion of a fate analysis in the derivation of aquatic eutrophication potentials. This paper includes fate and potential effects in the calculation of aquatic eutrophication potentials of NH3 and NOx emitted to the ait, N and P emitted to water, and N and P emitted to soil. These characterisation factors were calculated for the Netherlands, West-Europe and the world, respectively. Implementation in current LCIA practice is further facilitated by calculating normalisation scores for the Netherlands in 1997, West-Europe in 1995 and the world in 1990. Although the results presented may be a step forward, significant improvements are still needed in the assessment of pollutants causing aquatic eutrophication. In particular, the fate factors representing transport of NOx and NH3, air emissions via soils to the aquatic environment should be improved. In addition, differences in the biological availability of nutrients and differences in the sensitivity of aquatic environments should be included in the calculation of effect factors for aquatic eutrophication.  相似文献   

11.

Purpose

Renewable energies are promoted in order to reduce greenhouse gas emissions and the depletion of fossil fuels. However, plants for renewable electricity production incorporate specifically higher amounts of materials being rated as potentially scarce. Therefore, it is in question which (mineral) resources contribute to the overall resource consumption and which of the manifold impact assessment methods can be recommended to cover an accurate and complete investigation of resource use for renewable energy technologies.

Methods

Life cycle assessment is conducted for different renewable electricity production technologies (wind, photovoltaics, and biomass) under German conditions and compared to fossil electricity generation from a coal-fired power plant. Focus is given on mineral resource depletion for these technologies. As no consensus has been reached so far as to which impact assessment method is recommended, different established as well as recently developed impact assessment methods (CML, ReCiPe, Swiss Ecoscarcity, and economic scarcity potential (ESP)) are compared. The contribution of mineral resources to the overall resource depletion as well as potential scarcity are identified.

Results and discussion

Overall resource depletion of electricity generation technologies tends to be dominated by fossil fuel depletion; therefore, most renewable technologies reduce the overall resource depletion compared to a coal-fired power plant. But, in comparison to fossil electricity generation from coal, mineral resource depletion is increased by wind and solar power. The investigated methods rate different materials as major contributors to mineral resource depletion, such as gallium used in photovoltaic plants (Swiss Ecoscarcity), gold and copper incorporated in electrical circuits and in cables (CML and ReCiPe), and nickel (Swiss Ecoscarcity and ReCiPe) and chromium (ESP) for stainless steel production. However, some methods lack characterization factors for potentially important materials.

Conclusions

If mineral resource use is investigated for technologies using a wider spectrum of potentially scarce minerals, practitioners need to choose the impact assessment method carefully according to their scope and check if all important materials are covered. Further research is needed for an overall assessment of different resource compartments.
  相似文献   

12.

Background, aim and scope

The mining sector provides materials that are essential elements in a wide range of goods and services, which create value by meeting human needs. Mining and processing activities are an integral part of most complex material cycles so that the application of life cycle assessment (LCA) to minerals and metals has therefore gained prominence. In the past decade, increased use of LCA in the mineral and metal sector has advanced the scientific knowledge through the development of scientifically valid life cycle inventory databases. Though scientifically valid, LCA still needs to depend on several technical assumptions. In particular, measuring the environmental burden issues related to abiotic resource depletion, land use impacts and open-loop recycling within the LCA are widely debated issues. Also, incorporating spatial and temporal sensitivities in LCA, to make it a consistent scientific tool, is yet to be resolved. This article discusses existing LCA methods and proposed models on different issues in relation to minerals and metals sector.

Main features

A critical review was conducted of existing LCA methods in the minerals and metals sector in relation to allocation issues related to indicators of land use impacts, abiotic resource depletion, allocation in open-loop recycling and the system expansions and accounting of spatial and temporal dimension in LCA practice.

Results

Evolving a holistic view about these contentious issues will be presented with view for future LCA research in the minerals and metals industry. This extensive literature search uncovers many of the issues that require immediate attention from the LCA scientific community.

Discussion

The methodological drawbacks, mainly problems with inconsistencies in LCA results for the same situation under different assumptions and issues related to data quality, are considered to be the shortcomings of current LCA. In the minerals and metals sector, it is important to increase the objectivity of LCA by way of fixing those uncertainties, for example, in the LCA of the minerals and metals sector, whether the land use has to be considered in detail or at a coarse level. In regard to abiotic resource characterisation, the weighting and time scales to be considered become a very critical issue of judgement. And, in the case of open-loop recycling, which model will best satisfy all the stake holders? How the temporal and spatial dimensions should be incorporated into LCA is one of the biggest challenges ahead of all those who are concerned. Addressing these issues shall enable LCA to be used as a policy tool in environmental decision-making. There has been enormous debate with respect to on land use impacts, abiotic resource depletion, open-loop recycling and spatial and temporal dimensions, and these debates remain unresolved. Discussions aimed at bringing consensus amongst all the stake holders involved in LCA (i.e. industry, academia, consulting organisations and government) will be presented and discussed. In addition, a commentary of different points of view on these issues will be presented.

Conclusions

This review shall bring into perspective some of those contentious issues that are widely debated by many researchers. The possible future directions proposed by researchers across the globe shall be presented. Finally, authors conclude with their views on the prospects of LCA for future research endeavours.

Recommendations and outlook

Specific LCA issues of minerals and metals need to be investigated further to gain more understanding. To facilitate the future use of LCA as a policy tool in the minerals and metals sector, it is important to increase the objectivity with more scientific validity. Therefore, it is essential that the issues discussed in this paper are addressed to a great detail.  相似文献   

13.
Life cycle assessment (LCA) is a promising tool in the pursuit of sustainable mining. However, the accounting methodologies used in LCA for abiotic resource depletion still have some shortcomings and need to be improved. In this article a new thermodynamic approach is presented for the evaluation of the depletion of nonfuel minerals. The method is based on quantifying the exergy costs required to replace the extracted minerals with current available technologies, from a completely degraded state in what we term “Thanatia” to the conditions currently found in nature. Thanatia is an estimated reference model of a commercial end of the planet, where all resources have been extracted and dispersed, and all fossil fuels have been burned. Mineral deposits constitute an exergy bonus that nature gives us for free by providing minerals in a concentrated state and not dispersed in the crust. The exergy replacement costs provide a measure of the bonus lost through extraction. This approach allows performing an LCA by including a new stage in the analysis: namely the grave to cradle path. The methodology is explained through the case study of nickel depletion.  相似文献   

14.
Natural forest clearings (bais) in the Central African rain forest attract large numbers of mammals. Little is known about the factors influencing bai use by forest species, though geophagy and hydro-mineral resources are assumed to be important attractants. In the present study, clay and mineral concentrations in water and soil were examined at 15 bais. Water samples from elephant excavated pits showed significantly higher concentrations of most minerals sampled relative to surface waters. But mineral portfolios varied markedly between bais. Geophagy sites were less differentiated from control soil samples, leading to the interpretation that geophagy may not structure bai visitation. Monthly sampling of pit water at one bai suggested higher dry season mineral concentrations, which may relate to seasonal wildlife visitation patterns. The complexity and variability in bai-specific mineral resources suggest there is not a single determining factor (or mineral) driving bai use. The protection of bai mosaics should be a conservation priority in order to ensure access to the portfolio of minerals likely required by endangered species such as the African forest elephant Loxodonta africana cyclotis.  相似文献   

15.
Drought, high/low temperature, and salinity are abiotic stress factors accepted as the main reason for crop yield losses in a world with growing population and food price increases. Additional problems create nutrient limitations and particularly low P soil status. The problem of phosphate fertilizers, P plant nutrition, and existing phosphate bearing resources can also be related to the scarcity of rock phosphate. The modern agricultural systems are highly dependent on the existing fertilizer industry based exclusively of this natural, finite, non-renewable resource. Biotechnology offers a number of sustainable solutions that can mitigate these problems by using plant beneficial, including P-solubilizing, microorganisms. This short review paper summarizes the current and future trends in isolation, development, and application of P-solubilizing microorganisms in stress environmental conditions bearing also in mind the imbalanced cycling and unsustainable management of P. Special attention is devoted to the efforts on development of biotechnological strategies for formulation of P-solubilizing microorganisms in order to increase their protection against adverse abiotic factors.  相似文献   

16.
The development of the LCIA programme of the UNEP/SETAC Life Cycle Initiative started with a global survey of LCA practitioners. There were 91 LCIA-specific responses from all global regions. Respondents gave an indication of how they use LCA with respect to both the stage of LCA that they base decisions on (LCI, LCIA or a combination of both) as well as the types of decisions which they support with LCA information. The issues requiring immediate attention within the UNEP SETAC Life Cycle Initiative identified from this User Needs analysis are the need for transparency in the methodology, for scientific confidence and for scientific co-operation as well as the development of a recommended set of factors and methodologies. Of interest is the fact that results from the different regions highlighted the need for different impact categories. Based on this information proposals were made for new impact categories to be included in LCA (and thus LCIA). The LCIA programme aims to enhance the availability of sound LCA data and methods and to deliver guidance on their use. More specifically, it aims to 1) make results and recommendations widely available for users through the creation of a worldwide accessible information system and 2) establish recommended characterisation factors and related methodologies for the different impact categories, possibly consisting of sets at both midpoint and damage level. The work of the LCIA programme of the UNEP/SETAC Life Cycle Initiative has been started within four task forces on 1) LCIA information system and framework, 2) natural resources and land use, 3) toxic impacts, and 4) transboundary impacts. All participants willing to contribute to these efforts are invited to contact the LCIA programme manager or to join the next LCIA workgroup meeting that will take place in at the world SETAC congress in Portland on Thursday 18 November 2004.  相似文献   

17.

Purpose

Life cycle impact assessment (LCIA) translates emissions and resource extractions into a limited number of environmental impact scores by means of so-called characterisation factors. There are two mainstream ways to derive characterisation factors, i.e. at midpoint level and at endpoint level. To further progress LCIA method development, we updated the ReCiPe2008 method to its version of 2016. This paper provides an overview of the key elements of the ReCiPe2016 method.

Methods

We implemented human health, ecosystem quality and resource scarcity as three areas of protection. Endpoint characterisation factors, directly related to the areas of protection, were derived from midpoint characterisation factors with a constant mid-to-endpoint factor per impact category. We included 17 midpoint impact categories.

Results and discussion

The update of ReCiPe provides characterisation factors that are representative for the global scale instead of the European scale, while maintaining the possibility for a number of impact categories to implement characterisation factors at a country and continental scale. We also expanded the number of environmental interventions and added impacts of water use on human health, impacts of water use and climate change on freshwater ecosystems and impacts of water use and tropospheric ozone formation on terrestrial ecosystems as novel damage pathways. Although significant effort has been put into the update of ReCiPe, there is still major improvement potential in the way impact pathways are modelled. Further improvements relate to a regionalisation of more impact categories, moving from local to global species extinction and adding more impact pathways.

Conclusions

Life cycle impact assessment is a fast evolving field of research. ReCiPe2016 provides a state-of-the-art method to convert life cycle inventories to a limited number of life cycle impact scores on midpoint and endpoint level.
  相似文献   

18.
Purpose

The biosphere is progressively subjected to a variety of pressures resulting from anthropogenic activities. Habitat conversion, resulting from anthropogenic land use, is considered the dominant factor driving terrestrial biodiversity loss. Hence, adequate modelling of land use impacts on biodiversity in decision-support tools, like life cycle assessment (LCA), is a priority. State-of-the-art life cycle impact assessment (LCIA) characterisation models for land use impacts on biodiversity translate natural habitat transformation and occupation into biodiversity impacts. However, the currently available models predominantly focus on total habitat loss and ignore the spatial configuration of the landscape. That is, habitat fragmentation effects are ignored in current LCIAs with the exception of one recently developed method.

Methods

Here, we review how habitat fragmentation may affect biodiversity. In addition, we investigate how land use impacts on biodiversity are currently modelled in LCIA and how missing fragmentation impacts can influence the LCIA model results. Finally, we discuss fragmentation literature to evaluate possible methods to include habitat fragmentation into advanced characterisation models.

Results and discussion

We found support in available ecological literature for the notion that habitat fragmentation is a relevant factor when assessing biodiversity loss. Moreover, there are models that capture fragmentation effects on biodiversity that have the potential to be incorporated into current LCIA characterisation models.

Conclusions and recommendations

To enhance the credibility of LCA biodiversity assessments, we suggest that available fragmentation models are adapted, expanded and subsequently incorporated into advanced LCIA characterisation models and promote further efforts to capture the remaining fragmentation effects in LCIA characterisation models.

  相似文献   

19.

Purpose

This paper compares environmental impacts of the rental business model with the conventional model of manufacturing and selling. The case study examines a home use-water purifier by defining scenarios for operation and maintenance of the conventional and rental business models. Another purpose is to explore the potential improvement for the environmental performance of the rental business model in terms of the resource consumption and climate change.

Methods

The functional unit was supplying hot/cold drinking water for 15 years between 1998 and 2013. Primary data were from a Korean company that manufactures and servicizes water purifier; secondary data were from the Korean national LCI database, literatures, and interviews. Scenarios associated with all life cycle stages of a water purifier including operation and maintenance were based on current sales and rental market. Impact assessments were conducted according to the International Organization for Standardization’s 14044, and impact categories considered were global warming and abiotic resource depletion. The key issues and improvement potential of the rental business model were determined with the impact categories of global warming and abiotic resource depletion.

Results and discussion

This study indicates that the rental business model is more environmentally friendly than the conventional model in the impact on global warming while the conventional model shows lower abiotic resource depletion. Product operation was the most significant contributor to the selected environmental impacts for both conventional and rental models. Product maintenance was the second major contributor for the rental business model in terms of abiotic resource depletion. For the conventional model, however, production was a more significant contributor to the selected environmental impacts. The rental model showed approximately 32~37% improvements in the selected environmental impacts by focusing on the environmental education or information to consumers.

Conclusions

This quantitative life cycle assessment can be a tool for service business providers to understand the life cycle environmental impacts of Korean water purifier and explore potential improvement opportunities for sustainability. The lower life cycle impacts of the water purifier-rental business model can be attributed to the following: the preparation of instruction or environmental education regarding the consumer’s turning off behavior when the product is not in use, thus lower energy consumption during the use stage and shorter distance traveled for maintenance.
  相似文献   

20.
Constructing an economic growth model comprising dual resource and environmental constraints by introducing both environmental quality and non-renewable resources as endogenous factors also introducing the production and utility functions. This was used to systematically analyze the endogenous mechanism through factors such as non-renewable resource consumption, environmental pollution externalities, the accumulation of physical capital, human capital development, and endogenous technological advancement could influence long-term economic growth. The basic conclusion of the model suggests that under both resource and environmental constraints, it is investment in both human capital and research & innovation that is the main driving and determining factor for long-term sustainable economic growth. The optimal development strategy of economic sustainability can be achieved through supporting human capital accumulation and technological innovation activities, promoting the advancement of clean production technologies, and formulating stringent environmental standards, as well as strengthening the society’s awareness of the environment and sustainable development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号