首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Barker GC  Bundy DA 《Gene》1999,229(1-2):131-136
The major E/S protein of Trichuris trichiura, the human whipworm, is a highly immunogenic 47-kDa protein that has a pore forming activity that is thought to be essential for the attachment of the worm to host mucosal epithelium. By gene analysis, we have demonstrated that this protein belongs to a multigene family, and we have obtained genomic and cDNA information for two of these genes. The encoded proteins are composed of tandem arrays of alternating 50- and 51-amino-acid domains within which the positioning of the cysteine residues is highly conserved. This structure resembles that of four disulphide core domain proteins, such as secretory leucocyte proteinase-1 (SLP-1), but the Trichuris protein family differs in being composed of multiple domains of this type (nine in TT50, 17 in TT95). An analysis of the relationship between the domains, and a comparison of the fine arrangement of the genes, suggests that TT95 has arisen relatively recently following duplication of the TT50 gene, which itself arose by duplication of a SLP-1-like ancestor.  相似文献   

2.
Archeological deposits from the 19th century company town of Fayette, Michigan were analyzed for evidence of endoparasitic infection in the human population residing in the town between 1867 and 1891. Three privies were associated with upper-income and middle-income neighborhoods; 2 household refuse disposal areas were found in a predominately lower-income immigrant working class neighborhood. Sediment samples from 2 privies associated with dwellings in the middle-income neighborhood were positive for eggs of the human whipworm Trichuris trichiura. The parasite was probably also present among residents of the lower income neighborhood, but the shallow nature of the refuse deposits in that locality precluded preservation of the eggs. Contemporary epidemiologic studies of helminth infections support the belief that T. trichiura may have been a common parasite of 19th century school-age children given the natural inclination of young children to defecate indiscriminately, play freely in the dirt, and eat without washing their hands.  相似文献   

3.
A cDNA encoding a recombinant Eimeria acervulina antigen, designated EAMZp30-47, that contains an epitope shared among several surface and rhoptry proteins of merozoites was characterized. The respective parasite proteins are between 30 and 47 kDa as revealed by immunostaining of nitrocellulose membrane containing extracts of 125I-labeled merozoites. As indicated by immunofluorescence and immunoelectron microscopic staining, the reactive epitope was localized to both the surface membrane and the internal rhoptries of this asexual stage of the parasite. The recombinant beta-galactosidase fusion protein EAMZp30-47 is 130 kDa, thus representing 15 kDa or 30-50% of the respective parasite protein. Purified EAMZp30-47 stimulates T cells from E. acervulina-immune inbred chickens, but is not recognized by immune chicken serum, suggesting that T cell and not B cell epitopes recognized by the host immune system during a natural infection are present on the recombinant protein. Northern and Southern blot hybridization experiments indicated that expression of EAMZp30-47 is restricted to the merozoite stage of the parasite and the gene occurs as a single copy sequence within the genome.  相似文献   

4.
ABSTRACT. Parasitic dinoflagellates of the genus Amoebophrya play important roles in the ecology of estuaries and open ocean environments. Little is known of the cell and molecular biology of Amoebophrya , but the genus is intermediate on phylogenetic trees between apicomplexans and typical dinophycean dinoflagellates. Here, we constructed four cDNA libraries, from different stages after infecting the host, Karlodinium veneficum , with Amoebophrya sp. These libraries were used to generate 898 expressed sequence tags (ESTs), with sequences attributed to either the host or parasite, based on AT bias, codon usage, and occurrence during infection. Overall, 209 sequences were attributable to the parasite and 685 to the host. The 50 putative parasite sequences with good protein matches in GenBank were used to find the same protein from host ESTs. For 26 genes, both host and parasite sequences were identified, of which 20 encoded ribosomal proteins. PCR for seven predicted parasite and two host genes were used to confirm attributions. The most common host and parasite ESTs were compared to see if multiple gene copies were present. The host plastocyanin gene had multiple sequence variants, but parasite rps 27 a contained only one polymorphism, likely due to an amplification error. Amplification, cloning, and sequencing of five parasite protein-coding genes suggested that the parasite has a single sequence for each gene, but three host genes were found to have multiple variants. The genome of Amoebophrya sp. infecting K. veneficum appears to have an organization more similar to other eukaryotes than to the tandem gene arrangements found in dinoflagellates.  相似文献   

5.
The whipworm, Trichuris trichiura, causes trichuriasis in ~600 million people worldwide, mainly in developing countries. Whipworms also infect other animal hosts, including pigs (T. suis), dogs (T. vulpis) and non-human primates, and cause disease in these hosts, which is similar to trichuriasis of humans. Although Trichuris species are considered to be host specific, there has been considerable controversy, over the years, as to whether T. trichiura and T. suis are the same or distinct species. Here, we characterised the entire mitochondrial genomes of human-derived Trichuris and pig-derived Trichuris, compared them and then tested the hypothesis that the parasites from these two host species are genetically distinct in a phylogenetic analysis of the sequence data. Taken together, the findings support the proposal that T. trichiura and T. suis are separate species, consistent with previous data for nuclear ribosomal DNA. Using molecular analytical tools, employing genetic markers defined herein, future work should conduct large-scale studies to establish whether T. trichiura is found in pigs and T. suis in humans in endemic regions.  相似文献   

6.
Almost all known human specific parasites have been found in ancient feces. A review of the paleoparasitological helminth and intestinal protozoa findings available in the literature is presented. We also report the new paleoparasitologic findings from the examination performed in samples collected in New and Old World archaeological sites. New finds of ancylostomid, Ascaris lumbricoides, Trichuris trichiura, Enterobius vermicularis, Trichostrongylus spp., Diphyllobothrium latum, Hymenolepis nana and Acantocephalan eggs are reported. According to the findings, it is probable that A. lumbricoides was originally a human parasite. Human ancylostomids, A. lumbricoides and T. trichiura, found in the New World in pre-Columbian times, have not been introduced into the Americas by land via Beringia. These parasites could not supported the cold climate of the region. Nomadic prehistoric humans that have crossed the Bering Land Bridge from Asia to the Americas in the last glaciation, probably during generations, would have lost these parasites, which life cycles need warm temperatures in the soil to be transmitted from host to host. Alternative routes are discussed for human parasite introduction into the Americas.  相似文献   

7.
Around 1900 Laveran and Mesnil discovered that African trypanosomes (prototype: Trypanosoma brucei brucei) do not survive in the blood of some primates and humans. The nature of the trypanolytic factor present in these sera has been the focus of a long-standing debate between different groups, but recent developments have allowed the proposal of a coherent model incorporating most seemingly divergent views and providing an interesting example of the complex interplay that continuously occurs between hosts and parasites. Possibly as an adaptation to their natural environment, great African apes and humans have acquired a new member of the apolipoprotein-L family, termed apoL1. This protein is the only one of the family to be secreted in the blood, where it binds to a subset of HDL particles that also contain another human-specific protein, haptoglobin-related protein or Hpr. T. b. brucei possesses a specific surface receptor for the haptoglobin-hemoglobin (Hp-Hb) complex, as a way to capture heme into hemoproteins that contribute to cell growth and resistance to the oxidative stress of the host. As this receptor does not discriminate between Hp and Hpr, Hpr-containing HDL particles of human serum are efficiently taken up by the parasite, leading to the simultaneous internalization of apoL1, Hpr and Hb-derived heme. Once in the lysosome, apoL1 is targeted to the lysosomal membrane, where its colicin-like anionic pore-forming activity triggers an influx of chloride ions from the cytoplasm. Osmotic effect linked to this ionic flux leads to uncontrolled swelling of the lysosome, ultimately causing the death of the parasite. Two T. brucei clones, termed Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense, have managed to resist this lysis mechanism and, therefore, cause sleeping sickness in humans. While the mechanism of this resistance is still not known in the case of T. b. gambiense, the dominant factor responsible for resistance of T. b. rhodesiense has been identified. This protein, named SRA for Serum Resistance-Associated, is a truncated version of the major and variable surface antigen of the parasite, the Variant Surface Glycoprotein or VSG. Presumably due to its defective nature, SRA is not targeted to the plasma membrane as do regular VSGs, but ends up in the late endosomal compartment. In this location SRA is thought to neutralize apoL1 through coiled-coil interactions between alpha-helices. We discuss the potential of these discoveries in terms of fight against the disease.  相似文献   

8.
9.
Infective trypomastigote stages of the obligate intracellular protozoan parasite Trypanosoma cruzi are capable of entering virtually any mammalian cell in vitro. Entry is a complex process, involving initial parasite attachment to surface moieties of the target cell, internalization of the parasite via formation of a vacuole, and finally disruption of the vacuolar membrane to permit access of the parasite to the host cell cytoplasm. Attachment requires parasite metabolic energy. At sites of parasite entry recruitment of host cell lysosomes may occur, and lysosomal membrane components contribute prominently to formation of the parasitophorous vacuole. Parasite escape from the vacuole depends upon vacuolar acidification and is mediated by the coordinated action of a parasite-derived neuramindase/trans-sialidase that is capable of desialylating host-derived vacuolar membrane constituents, and a parasite-derived trans-membrane pore-forming protein. Dissection of the entry process at both the organellar and molecular level is providing fundamental and complementary insights into microbial pathogenesis and cell biology.  相似文献   

10.
Excreted secreted antigens of the protozoan parasite Toxoplasma gondii play a key role in stimulating the host immune system during acute and chronic infection. With the aim of identifying the immunodominant epitopes of T. gondii antigens involved in the human B-cell response against the parasite, we employed a novel immunological approach. A library of cDNA fragments from T. gondii tachyzoites was displayed as fusion proteins to the amino-terminus of lambda bacteriophage capsid protein D. The lambdaD-tachyzoite library was then affinity-selected by using a panel of sera of pregnant women, all infected with the parasite. Some of the clones identified through this procedure matched the sequence of the dense granule GRA1 protein (p24), allowing us to identify its antigenic regions. In particular, the analysis of human antibody response against the recombinant GRA1 antigen fragments revealed the existence of an immunodominant epitope (epi-24 peptide).  相似文献   

11.
12.
Host cell traversal by Plasmodium, the protozoan cause of malaria, is an essential part of this parasite''s virulence. In this process, the parasite enters a host cell through a parasite-induced pore, traverses the host cell, and then exits the host cell. Two P. berghei proteins, SPECT1 and SPECT2, are required for host cell traversal by the sporozoite form of the parasite. In the absence of either, no pore formation is observed. While SPECT2 has sequence homology to pore-forming proteins, SPECT1 has no homology to proteins of known structure or function. Here we present the 2.75 Å resolution structure of a slightly truncated version of P. berghei SPECT1. The structure reveals that the protein forms a four-helix bundle, with the rare feature of having all of these helices in parallel or antiparallel alignment. Also notable is the presence of a large, conserved, hydrophobic internal cavity in the protein, which may constitute a ligand-binding site or be indicative of partial instability in SPECT1, or both. The structure of SPECT1 will make possible targeted mutagenesis experiments aimed at understanding its mechanism of action in host cell traversal.  相似文献   

13.
Egress is a pivotal step in the life cycle of intracellular pathogens initiating the transition from an expiring host cell to a fresh target cell. While much attention has been focused on understanding cell invasion by intracellular pathogens, recent work is providing a new appreciation of mechanisms and therapeutic potential of microbial egress. This review highlights recent insight into cell egress by apicomplexan parasites and emerging contributions of membranolytic and proteolytic secretory products, along with host proteases. New findings suggest that Toxoplasma gondii secretes a pore-forming protein, TgPLP1, during egress that facilitates parasite escape from the cell by perforating the parasitophorous membrane. Also, in a cascade of proteolytic events, Plasmodium falciparum late-stage schizonts activate and secrete a subtilisin, PfSUB1, which processes enigmatic putative proteases called serine-repeat antigens that contribute to merozoite egress. A new report also suggests that calcium-activated host proteases called calpains aid parasite exit, possibly by acting upon the host cytoskeleton. Together these discoveries reveal important new molecular players involved in the principal steps of egress by apicomplexans.  相似文献   

14.
In its host erythrocyte, the malaria parasite Plasmodium falciparum resides within a parasitophorous vacuole, the membrane of which forms a barrier between the host cell cytosol and the parasite surface. The vacuole is a unique compartment because it contains specific proteins that are believed to be involved in cell biological functions essential for parasite survival. As a prerequisite for the characterization of the vacuolar proteome, we have developed an experimental approach that allows the selective biotinylation of soluble vacuolar proteins. This approach utilizes nonpermeant biotin derivatives that can be introduced into infected erythrocytes after selective permeabilization of the erythrocyte membrane with the pore-forming protein streptolysin O. The derivatives gain access to the vacuolar lumen but not to the parasite cytosol, thus providing supportive evidence for the existence of nonselective pores within the vacuolar membrane that have been postulated based on electrophysiological studies. Soluble vacuolar proteins that are biotin-labeled can be isolated by affinity chromatography using streptavidin-agarose.  相似文献   

15.
Human helminthiases are common in China, especially in rural areas where sanitation conditions are poor. Co- and multiple infections with helminths are strikingly frequent. A cross-sectional parasitological and questionnaire survey was carried out in a population of 3205 individuals belonging to 498 families from five villages in the Poyang Lake region, Jiangxi Province, China, to assess their helminth infection status and to collect information on risk factors for infection. The prevalences for Ascaris lumbricoides, Schistosoma japonicum and Trichuris trichiura were 30.9%, 15.7% and 47%, respectively. Hookworm infection prevalence was low (0.7%). A significant association was observed between A. lumbricoides and T. trichiura infection, and also between S. japonicum and T. trichiura infection. Variance components analysis was undertaken to investigate the aggregation of S. japonicum and the soil-transmitted helminths, A. lumbricoides and T. trichiura. While A. lumbricoides was found to aggregate only at a household level, T. trichiura was shown to cluster predominantly in families. Both genetic and household effects were found to be important in determining the risk of infection with S. japonicum. Variance components analysis for A. lumbricoides/T. trichiura co-infections indicated a significant domestic environmental effect, attributable for 32.7% of the co-infection risk. Aggregation of S. japonicum/T. trichiura co-infection was also observed at a household level. The risk of infection with multiple helminth species, although mainly environmentally influenced, was also shown to have significant involvement of genetic and household components. The results of this study indicate that a shared household is a major contributing risk factor for helminth co-infections and emphasises the need for increased standards of sanitation and hygiene to prevent parasite transmission. Further, the results suggest that susceptibility to one helminth infection is not completely independent of another, and that there exist common genetic factors underlying infection with multiple helminth species.  相似文献   

16.
Among the monoclonal antibodies (mAb) against Toxoplasma gondii, mAb Tg485 specifically reacted with an 82-kDa cytoplasmic protein of tachyzoites. The protein was secreted from extracellular tachyzoites, but was not released into the parasitophorous vacuole after invasion. The cDNA fragment encoding the protein was obtained by screening a T. gondii cDNA expression library with Tg485. The full-length cDNA was amplified by the 5(')-RACE method and sequenced. The deduced amino acid sequence of the 82 kDa protein reacting with Tg485 revealed a polypeptide of 708 amino acids showing significant homology to the heat shock protein 90 (HSP90) family of other organisms, especially to those of apicomplexan species. Treatment with geldanamycin, a drug known to interfere with HSP90 function, did not affect the secretion of TgHSP90 from extracellular tachyzoites, but the entry of the tachyzoites into host cells and the intracellular growth of the parasite were significantly disturbed.  相似文献   

17.
Hoff, E. F., Cook, S. H., Sherman, G. D., Harper, J. M., Ferguson, D. J. P., Dubremetz, J. F., and Carruthers, V. B. 2001. Toxoplasma gondii: Molecular cloning and characterization of a novel 18-kDa secretory antigen, TgMIC10. Experimental Parasitology, 97, 77-88. During host cell invasion, Toxoplasma gondii secretes proteins from specialized organelles (micronemes and rhoptries) located at the apical end of the parasite. The contents of the micronemes appear to be crucial to T. gondii invasion, as inhibition of microneme secretion prevents parasite entry into host cells. Here we describe a new T. gondii microneme protein, TgMIC10. Molecular characterization of a full-length TgMIC10 cDNA revealed that TgMIC10 lacks homology to any previously characterized proteins, although a homologue, NcMIC10, was identified in a closely related parasite, Neospora caninum. TgMIC10 has an unusually long secretory leader sequence of 58 amino acids; the mature TgMIC10 is 18 kDa, possesses nine diglutamic acid repeats and an imperfect repeat sequence (RK(R/Y)HEEL), and is entirely devoid of cysteines. Antibodies raised against recombinant TgMIC10 recognized the native TgMIC10 and localized the protein to the micronemes in indirect immunofluorescence and immunoEM experiments. Comparison of immunofluorescence images indicates that TgMIC10 expression is higher in T. gondii tachyzoites, which are responsible for active infection, than in bradyzoites, which are responsible for latent infection.  相似文献   

18.
Pathogenic microbes rely on environmental cues to initiate key events during infection such as differentiation, motility, egress and invasion of cells or tissues. Earlier investigations showed that an acidic environment activates motility of the protozoan parasite T. gondii. Conversely, potassium ions, which are abundant in the intracellular milieu that bathes immotile replicating parasites, suppress motility. Since motility is required for efficient parasite cell invasion and egress we sought to better understand its regulation by environmental cues. We found that low pH stimulates motility by triggering Ca2+-dependent secretion of apical micronemes, and that this cue is sufficient to overcome suppression by potassium ions and drive parasite motility, cell invasion and egress. We also discovered that acidification promotes membrane binding and cytolytic activity of perforin-like protein 1 (PLP1), a pore-forming protein required for efficient egress. Agents that neutralize pH reduce the efficiency of PLP1-dependent perforation of host membranes and compromise egress. Finally, although low pH stimulation of microneme secretion promotes cell invasion, it also causes PLP1-dependent damage to host cells, suggesting a mechanism by which neutral extracellular pH subdues PLP1 activity to allow cell invasion without overt damage to the target cell. These findings implicate acidification as a signal to activate microneme secretion and confine cytolytic activity to egress without compromising the viability of the next cell infected.  相似文献   

19.
The African trypanosome Trypanosoma brucei has a digenetic life cycle that involves the insect vector and the mammalian host. This is underscored by biochemical switches in its nutritional requirements. In the insect vector, the parasite relies on amino acid catabolism, but in the mammalian host, it derives its energy exclusively from blood glucose. Glucose transport is facilitated, and constitutes the rate-limiting step in ATP synthesis. Here, we report the cloning of a novel glucose transporter-related gene by heterologous screening of a lambdaEMBL4 genomic library of T. brucei EATRO 164 using a rat liver glucose transporter cDNA clone. Genomic analysis shows that the gene is present as a single copy within the parasite genome. The gene encodes a protein with an estimated molecular mass of 55.9 kDa, which shares only segmental homology with members of the glucose transporter superfamily. Several potential post-translational modification sites including phosphorylation, N-glycosylation, and cotranslational myristoylation sites also punctuate the sequence. It is distinguished from classical transporter proteins by the absence of putative hydrophobic membrane-spanning domains. However, this protein was capable of complementing Schizosaccharomyces pombe glucose transporter mutants. The rescued phenotype conferred the ability of the cells to grow on a broad range of sugars, both monosaccharides and disaccharides. The kinetics of glucose uptake reflected those in T. brucei. In addition to complementation in yeast, we also showed that the gene enhanced glucose uptake in cultured mammalian cells.  相似文献   

20.
ABSTRACT It has been suggested that several Trypanosoma cruzi antigens have possible protective epitopes which may be suitable vaccine candidates. We found previously that animals resistant to T. cruzi infection produced antibodies against the 75-77-kDa parasite antigen. To test the ability of the recombinant form of this antigen to protect animals from T. cruzi infection, the cDNA which encodes a portion of the 75-77-kDa antigen was cloned using a cDNA library constructed in an orientation-specific bacteriophage expression vector (λgt11) from poly (A)+ RNA of Brazil strain epimastigotes. One clone, named SFS-40, was selected by screening the library using affinity purified antibodies specific for the 75-77-kDa parasite antigen as probe. The cDNA corresponding to the 1.7-kilobase insert of SFS-40 was subcloned into plasmid vectors and characterized. The cDNA sequence encodes a polypeptide of about 40 kDa. The putative product of the cDNA was homologous to members of the 70-kDa stress protein family. When epimastigotes were shifted from 29° C to 37° C, there was no change in the level of SFS-40 mRNA. In contrast, the 70-kDa heat shock protein mRNA of the parasite was increased about four fold by this treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号