首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To determine the influence of cerebellar involvement on the preparatory state of the cerebral cortex for voluntary movements, we studied the movement-related cortical potentials (Bereitschaftspotential, BP) preceding sequential and goal-directed finger and arm movements in patients with cerebellar atrophy (CA). The first task (paradigm 1) consisted of a sequential finger movement at a self-placed rate of every 3 sec or longer, in which patients and control subjects pushed rapidly 7 keys on a keyboard in a sequence visually predetermined on a screen. The second task (paradigm 2) consisted of a goal-directed self-paced movement with visual feedback on a screen. In both paradigms, control subjects and patients had distinct movement-related cortical potentials, but peak amplitudes (close to movement onset) were reduced in the patient group (paradigm 2), whereas in the overall analysis the mean amplitude 600–800 msec before movement onset (NS1) was larger in the patient group (paradigms 1 and 2). Accordingly, the difference (NS2) between peak amplitude and NS1 was smaller in the patient group (paradigms 1 and 2). Whereas control subjects' peak amplitude (paradigm 2) and NS2 (paradigm 1) were focused at Cz, this topographical differentiation was abolished in the patient group. The onset of the BP was earlier in the patients than in the control subjects (paradigms 1 and 2). Our results suggest that pathways from the cerebellum to the cortex do play a role in generating movement-related cortical potentials. A strong input from the cerebellum seems to be crucial for the generation of a normal motor potential close to the movement onset, reflecting a specific deficit in patients with CA. Patients with CA may try to compensate for their motor deficits by a longer cortical activation preceding voluntary movements (earlier onset of the BP). The increased NS1 could be the result of larger effort, by which patients try to compensate for their motor deficits as well.  相似文献   

2.
Oculomotor responses to body rotation were investigated in subjects standing with the eyes closed. A rotatable platform was used to provide body rotation relative to the space-stationary head or upper part of the body (fixation of the head; the head and the shoulders; and the head, the shoulders, and the pelvis). A slow rotation of the body about the longitudinal axis by ±6.5° within 10–150 s evoked an illusion of the upper part of the body turning in space, while the moving footplate was perceived as stationary in space. This illusion was accompanied by marked eye movements in the direction of the illusory rotation. In subjects grasping a rigid ground-based handle, the perception of body movements corresponded to the actual rotation of body parts. In this case, the amplitude of eye movements was substantially lower. It was concluded that the eye movement pattern depends not only on the actual relative movement of the body segments but also on the perception of this movement relative to the extrapersonal space.  相似文献   

3.
This review reflects a few of Mike Land''s many and varied contributions to visual science. In it, we show for wood ants, as Mike has done for a variety of animals, including readers of this piece, what can be learnt from a detailed analysis of an animal''s visually guided eye, head or body movements. In the case of wood ants, close examination of their body movements, as they follow visually guided routes, is starting to reveal how they perceive and respond to their visual world and negotiate a path within it. We describe first some of the mechanisms that underlie the visual control of their paths, emphasizing that vision is not the ant''s only sense. In the second part, we discuss how remembered local shape-dependent and global shape-independent features of a visual scene may interact in guiding the ant''s path.  相似文献   

4.
Bees which are held in a fixed position so that only head movements can be made, respond to a moving stripe system in their visual field by a characteristic motion of the antennae. This reflex can be used to measure the bee''s state of photic adaptation. A curve describing the course of dark adaptation is obtained, which shows that the sensitivity of the light adapted bee''s eye increases rapidly during the first few minutes in darkness, then more slowly until it reaches a maximum level after 25 to 30 minutes. The total increase in sensitivity is about 1000 fold. The adaptive range of the human eye is about 10 times greater than for the bee''s eye. The range covered by the bee''s eye corresponds closely to the adapting range which is covered by the rods of the human eye.  相似文献   

5.
The posterior parietal cortex has long been considered an ''association'' area that combines information from different sensory modalities to form a cognitive representation of space. However, until recently little has been known about the neural mechanisms responsible for this important cognitive process. Recent experiments from the author''s laboratory indicate that visual, somatosensory, auditory and vestibular signals are combined in areas LIP and 7a of the posterior parietal cortex. The integration of these signals can represent the locations of stimuli with respect to the observer and within the environment. Area MSTd combines visual motion signals, similar to those generated during an observer''s movement through the environment, with eye-movement and vestibular signals. This integration appears to play a role in specifying the path on which the observer is moving. All three cortical areas combine different modalities into common spatial frames by using a gain-field mechanism. The spatial representations in areas LIP and 7a appear to be important for specifying the locations of targets for actions such as eye movements or reaching; the spatial representation within area MSTd appears to be important for navigation and the perceptual stability of motion signals.  相似文献   

6.
The dot-probe paradigm is one of the most often used paradigms to investigate attentional biases towards emotional information. However, a large number of the dot-probe studies so far used a long stimulus onset asynchrony allowing for eye movements to occur, which might increase the error variance. This study aimed at addressing this methodological issue by varying the instructions with regard to the gaze behavior and calculating the reaction time (RT) bias score (i.e., RTs for targets presented at the location of the emotional compared to the neutral stimulus) separately for trials with eye movements and trials without eye movements. Results of Experiment 1 (using typical instructions, i.e., instructions that are lenient with regard to eye movements) showed an RT bias, but only in the trials without eye movements The overall RT bias (calculated “blind” for eye movements) was non-significant. In Experiment 2, stricter instructions and small changes in the procedure led to a sharp decrease in the number of eye movements, such that both the RT bias in the trials without eye movements as well as the RT bias across all trials was significant.  相似文献   

7.
In addition to stimulus properties and task factors, memory is an important determinant of the allocation of attention and gaze in the natural world. One way that the role of memory is revealed is by predictive eye movements. Both smooth pursuit and saccadic eye movements demonstrate predictive effects based on previous experience. We have previously shown that unskilled subjects make highly accurate predictive saccades to the anticipated location of a ball prior to a bounce in a virtual racquetball setting. In this experiment, we examined this predictive behaviour. We asked whether the period after the bounce provides subjects with visual information about the ball trajectory that is used to programme the pursuit movement initiated when the ball passes through the fixation point. We occluded a 100 ms period of the ball''s trajectory immediately after the bounce, and found very little effect on the subsequent pursuit movement. Subjects did not appear to modify their strategy to prolong the fixation. Neither were we able to find an effect on interception performance. Thus, it is possible that the occluded trajectory information is not critical for subsequent pursuit, and subjects may use an estimate of the ball''s trajectory to programme pursuit. These results provide further support for the role of memory in eye movements.  相似文献   

8.

Background

Relatively little is known about the degree of inter-specific variability in visual scanning strategies in species with laterally placed eyes (e.g., birds). This is relevant because many species detect prey while perching; therefore, head movement behavior may be an indicator of prey detection rate, a central parameter in foraging models. We studied head movement strategies in three diurnal raptors belonging to the Accipitridae and Falconidae families.

Methodology/Principal Findings

We used behavioral recording of individuals under field and captive conditions to calculate the rate of two types of head movements and the interval between consecutive head movements. Cooper''s Hawks had the highest rate of regular head movements, which can facilitate tracking prey items in the visually cluttered environment they inhabit (e.g., forested habitats). On the other hand, Red-tailed Hawks showed long intervals between consecutive head movements, which is consistent with prey searching in less visually obstructed environments (e.g., open habitats) and with detecting prey movement from a distance with their central foveae. Finally, American Kestrels have the highest rates of translational head movements (vertical or frontal displacements of the head keeping the bill in the same direction), which have been associated with depth perception through motion parallax. Higher translational head movement rates may be a strategy to compensate for the reduced degree of eye movement of this species.

Conclusions

Cooper''s Hawks, Red-tailed Hawks, and American Kestrels use both regular and translational head movements, but to different extents. We conclude that these diurnal raptors have species-specific strategies to gather visual information while perching. These strategies may optimize prey search and detection with different visual systems in habitat types with different degrees of visual obstruction.  相似文献   

9.
The goal of this study was to test whether a superposition model of smooth-pursuit and vestibulo-ocular reflex (VOR) eye movements could account for the stability of gaze that subjects show as they view a stationary target, during head rotations at frequencies that correspond to natural movements. Horizontal smooth-pursuit and the VOR were tested using sinusoidal stimuli with frequencies in the range 1.0–3.5 Hz. During head rotation, subjects viewed a stationary target either directly or through an optical device that required eye movements to be approximately twice the amplitude of head movements in order to maintain foveal vision of the target. The gain of compensatory eye movements during viewing through the optical device was generally greater than during direct viewing or during attempted fixation of the remembered target location in darkness. This suggests that visual factors influence the response, even at high frequencies of head rotation. During viewing through the optical device, the gain of compensatory eye movements declined as a function of the frequency of head rotation (P < 0.001) but, at any particular frequency, there was no correlation with peak head velocity (P > 0.23), peak head acceleration (P > 0.22) or retinal slip speed (P > 0.22). The optimal values of parameters of smooth-pursuit and VOR components of a simple superposition model were estimated in the frequency domain, using the measured responses during head rotation, as each subject viewed the stationary target through the optical device. We then compared the model's prediction of smooth-pursuit gain and phase, at each frequency, with values obtained experimentally. Each subject's pursuit showed lower gain and greater phase lag than the model predicted. Smooth-pursuit performance did not improve significantly if the moving target was a 10 deg × 10 deg Amsler grid, or if sinusoidal oscillation of the target was superimposed on ramp motion. Further, subjects were still able to modulate the gain of compensatory eye movements during pseudo-random head perturbations, making improved predictor performance during visual-vestibular interactions unlikely. We conclude that the increase in gain of eye movements that compensate for head rotations when subjects view, rather than imagine, a stationary target cannot be adequately explained by superposition of VOR and smooth-pursuit signals. Instead, vision may affect VOR performance by determining the context of the behavior. Received: 16 June 1997 / Accepted: 5 December 1997  相似文献   

10.
Previous studies have indicated that saccadic eye movements correlate positively with perceptual alternations in binocular rivalry, presumably because the foveal image changes resulting from saccades, rather than the eye movement themselves, cause switches in awareness. Recently, however, we found evidence that retinal image shifts elicit so-called onset rivalry and not percept switches as such. These findings raise the interesting question whether onset rivalry may account for correlations between saccades and percept switches.We therefore studied binocular rivalry when subjects made eye movements across a visual stimulus and compared it with the rivalry in a ‘replay’ condition in which subjects maintained fixation while the same retinal displacements were reproduced by stimulus displacements on the screen. We used dichoptic random-dot motion stimuli viewed through a stereoscope, and measured eye and eyelid movements with scleral search-coils.Positive correlations between retinal image shifts and perceptual switches were observed for both saccades and stimulus jumps, but only for switches towards the subjects'' preferred eye at stimulus onset. A similar asymmetry was observed for blink-induced stimulus interruptions. Moreover, for saccades, amplitude appeared crucial as the positive correlation persisted for small stimulus jumps, but not for small saccades (amplitudes < 1°). These findings corroborate our tenet that saccades elicit a form of onset rivalry, and that rivalry is modulated by extra-retinal eye movement signals.  相似文献   

11.
Patients suffering from homonymous hemianopia after infarction of the posterior cerebral artery (PCA) report different degrees of constraint in daily life, despite similar visual deficits. We assume this could be due to variable development of compensatory strategies such as altered visual scanning behavior. Scanning compensatory therapy (SCT) is studied as part of the visual training after infarction next to vision restoration therapy. SCT consists of learning to make larger eye movements into the blind field enlarging the visual field of search, which has been proven to be the most useful strategy1, not only in natural search tasks but also in mastering daily life activities2. Nevertheless, in clinical routine it is difficult to identify individual levels and training effects of compensatory behavior, since it requires measurement of eye movements in a head unrestrained condition. Studies demonstrated that unrestrained head movements alter the visual exploratory behavior compared to a head-restrained laboratory condition3. Martin et al.4 and Hayhoe et al.5 showed that behavior demonstrated in a laboratory setting cannot be assigned easily to a natural condition. Hence, our goal was to develop a study set-up which uncovers different compensatory oculomotor strategies quickly in a realistic testing situation: Patients are tested in the clinical environment in a driving simulator. SILAB software (Wuerzburg Institute for Traffic Sciences GmbH (WIVW)) was used to program driving scenarios of varying complexity and recording the driver''s performance. The software was combined with a head mounted infrared video pupil tracker, recording head- and eye-movements (EyeSeeCam, University of Munich Hospital, Clinical Neurosciences).The positioning of the patient in the driving simulator and the positioning, adjustment and calibration of the camera is demonstrated. Typical performances of a patient with and without compensatory strategy and a healthy control are illustrated in this pilot study. Different oculomotor behaviors (frequency and amplitude of eye- and head-movements) are evaluated very quickly during the drive itself by dynamic overlay pictures indicating where the subjects gaze is located on the screen, and by analyzing the data. Compensatory gaze behavior in a patient leads to a driving performance comparable to a healthy control, while the performance of a patient without compensatory behavior is significantly worse. The data of eye- and head-movement-behavior as well as driving performance are discussed with respect to different oculomotor strategies and in a broader context with respect to possible training effects throughout the testing session and implications on rehabilitation potential.  相似文献   

12.
The aim of this methods paper is to describe how to implement a neuroimaging technique to examine complementary brain processes engaged by two similar tasks. Participants'' behavior during task performance in an fMRI scanner can then be correlated to the brain activity using the blood-oxygen-level-dependent signal. We measure behavior to be able to sort correct trials, where the subject performed the task correctly and then be able to examine the brain signals related to correct performance. Conversely, if subjects do not perform the task correctly, and these trials are included in the same analysis with the correct trials we would introduce trials that were not only for correct performance. Thus, in many cases these errors can be used themselves to then correlate brain activity to them. We describe two complementary tasks that are used in our lab to examine the brain during suppression of an automatic responses: the stroop1 and anti-saccade tasks. The emotional stroop paradigm instructs participants to either report the superimposed emotional ''word'' across the affective faces or the facial ''expressions'' of the face stimuli1,2. When the word and the facial expression refer to different emotions, a conflict between what must be said and what is automatically read occurs. The participant has to resolve the conflict between two simultaneously competing processes of word reading and facial expression. Our urge to read out a word leads to strong ''stimulus-response (SR)'' associations; hence inhibiting these strong SR''s is difficult and participants are prone to making errors. Overcoming this conflict and directing attention away from the face or the word requires the subject to inhibit bottom up processes which typically directs attention to the more salient stimulus. Similarly, in the anti-saccade task3,4,5,6, where an instruction cue is used to direct only attention to a peripheral stimulus location but then the eye movement is made to the mirror opposite position. Yet again we measure behavior by recording the eye movements of participants which allows for the sorting of the behavioral responses into correct and error trials7 which then can be correlated to brain activity. Neuroimaging now allows researchers to measure different behaviors of correct and error trials that are indicative of different cognitive processes and pinpoint the different neural networks involved.  相似文献   

13.
We used the three-dimensional magnetic search-coil recording technique to study the range of active angular head movements made by squirrel monkeys. There were two goals in this study: (1) to determine the range of angular velocities and accelerations as well as the bandwidth and other frequency characteristics of active head movements and (2) to compare analyses of transients of velocity and acceleration that are studied by residual analysis, Fourier transform, and wavelet transform of the head velocity signal.The residual analysis showed that the shape and duration of the transients affected the bandwidth. During the time after the head had begun to accelerate, the frequency content of the head movement extended into the range of 6 to 12 Hz. When considering all three planes of rotation, approximately 75% of the transients had peak acceleration between 2,000 and 10,000 deg/s2 and a peak velocity of 50 to 400 deg/s. A peak acceleration of >10,000 deg/s2 was recorded in 10% of the transients.These findings indicate that active head movements in squirrel monkeys cover a higher range of frequencies, accelerations, and velocities than have typically been used in previous eye-movement and neuronal studies of the reflexes that control gaze. We further conclude that the choice of a method for analyzing transient, time-varying biological signals is dependent on the desired information. Residual analysis provides detailed resolution in the time domain, but estimation of the frequency content of the signal is dependent on the portions selected for analysis and the choice of filters. Fourier transform provides a representation of the power spectrum in the frequency domain but without any inherent temporal resolution. We show that the wavelet transform, a novel method as applied to the signal analysis goals of this study, is the most useful technique for relating time- and frequency-domain information during a continuous signal.  相似文献   

14.
How is movement of individuals coordinated as a group? This is a fundamental question of social behaviour, encompassing phenomena such as bird flocking, fish schooling, and the innumerable activities in human groups that require people to synchronise their actions. We have developed an experimental paradigm, the HoneyComb computer-based multi-client game, to empirically investigate human movement coordination and leadership. Using economic games as a model, we set monetary incentives to motivate players on a virtual playfield to reach goals via players'' movements. We asked whether (I) humans coordinate their movements when information is limited to an individual group member''s observation of adjacent group member motion, (II) whether an informed group minority can lead an uninformed group majority to the minority''s goal, and if so, (III) how this minority exerts its influence. We showed that in a human group – on the basis of movement alone – a minority can successfully lead a majority. Minorities lead successfully when (a) their members choose similar initial steps towards their goal field and (b) they are among the first in the whole group to make a move. Using our approach, we empirically demonstrate that the rules of swarming behaviour apply to humans. Even complex human behaviour, such as leadership and directed group movement, follow simple rules that are based on visual perception of local movement.  相似文献   

15.
A prevailing theory proposes that the brain''s two visual pathways, the ventral and dorsal, lead to differing visual processing and world representations for conscious perception than those for action. Others have claimed that perception and action share much of their visual processing. But which of these two neural architectures is favored by evolution? Successful visual search is life-critical and here we investigate the evolution and optimality of neural mechanisms mediating perception and eye movement actions for visual search in natural images. We implement an approximation to the ideal Bayesian searcher with two separate processing streams, one controlling the eye movements and the other stream determining the perceptual search decisions. We virtually evolved the neural mechanisms of the searchers'' two separate pathways built from linear combinations of primary visual cortex receptive fields (V1) by making the simulated individuals'' probability of survival depend on the perceptual accuracy finding targets in cluttered backgrounds. We find that for a variety of targets, backgrounds, and dependence of target detectability on retinal eccentricity, the mechanisms of the searchers'' two processing streams converge to similar representations showing that mismatches in the mechanisms for perception and eye movements lead to suboptimal search. Three exceptions which resulted in partial or no convergence were a case of an organism for which the targets are equally detectable across the retina, an organism with sufficient time to foveate all possible target locations, and a strict two-pathway model with no interconnections and differential pre-filtering based on parvocellular and magnocellular lateral geniculate cell properties. Thus, similar neural mechanisms for perception and eye movement actions during search are optimal and should be expected from the effects of natural selection on an organism with limited time to search for food that is not equi-detectable across its retina and interconnected perception and action neural pathways.  相似文献   

16.
17.
In the true flies (Diptera), the hind wings have evolved into specialized mechanosensory organs known as halteres, which are sensitive to gyroscopic and other inertial forces. Together with the fly''s visual system, the halteres direct head and wing movements through a suite of equilibrium reflexes that are crucial to the fly''s ability to maintain stable flight. As in other animals (including humans), this presents challenges to the nervous system as equilibrium reflexes driven by the inertial sensory system must be integrated with those driven by the visual system in order to control an overlapping pool of motor outputs shared between the two of them. Here, we introduce an experimental paradigm for reproducibly altering haltere stroke kinematics and use it to quantify multisensory integration of wing and gaze equilibrium reflexes. We show that multisensory wing-steering responses reflect a linear superposition of haltere-driven and visually driven responses, but that multisensory gaze responses are not well predicted by this framework. These models, based on populations, extend also to the responses of individual flies.  相似文献   

18.
手动与眼动反应抑制是指抑制与当前环境不相适应的优势手动或眼动反应.与经典的Go/Nogo任务、停止信号任务测量的抑制水平相比,眼动抑制任务可提供更为丰富的指标,并分离出语言及手部运动反应的污染.手动与眼动反应抑制在不同神经精神疾病以及个体发展的不同阶段表现均有不同.额叶-基底神经节网络在手动和眼动抑制中发挥类似的作用,但额下回是手动抑制的关键脑区,额叶眼区和上丘则与眼动抑制关系更密切.目前,主要的争议集中在两者的神经机制、两者涉及的高级认知加工以及在神经心理学和发展心理学中的不同行为表现和发展趋势.  相似文献   

19.
视觉图像辨认眼动中的Top-down信息处理   总被引:2,自引:0,他引:2  
在视觉图像辨认过程中,眼球不是均匀地扫描全幅图像,而是通过一系列快速的眼球跳动来改变注视点位置,有选择地通过注视停顿来采集图象中的关键信息。通过实验对不同图像刺激时的眼动轨迹进行记录与分析,发现:(1)对于简单的几何图形,眼动注视停顿主要集中在图像中几何特征之处,亦即与周围不同的奇异点上;(2)对复杂图象刺激,眼动注视点位置决定于受试者的已有概念模型及其兴趣所在;(3)对中文单字进行辩认时,其眼动模式也是取决于受试者对该单字的知识(也即概念模型)。以上结果提示,视觉图象辨认主要是通过自上而下(top-down)的信息处理方式才完成.由中枢控制眼球运动,将注视点落到中枢决定的图形奇点上来,通过注视停顿对中枢认为的关键信息之处进行抽提,以实现辨认。这种处理方式不是只取决于输入的图像信息,也不必对目标图像的每个象素进行处理,而只需对图象中少量的关键信息部位进行重点的检测和处理,从而提高了图象信息处理的能力及效率。  相似文献   

20.
视觉图像辨认眼动中的Top-down信息处理   总被引:2,自引:0,他引:2  
在视觉图像辨认过程中,眼球不是均匀地扫描全幅图像,而是通过一系列快速的眼球跳动来改变注视点位置,有选择地通过注视停顿来采集图象中的关键信息。通过实验对不同图像刺激时的眼动轨迹进行记录与分析,发现:(1)对于简单的几何图形,眼动注视停顿主要集中在图像中几何特征之处,亦即与周围不同的奇异点上;(2)对复杂图象刺激,眼动注视点位置决定于受试者的已有概念模型及其兴趣所在;(3)对中文单字进行辩认时,其眼动模式也是取决于受试者对该单字的知识(也即概念模型)。以上结果提示,视觉图象辨认主要是通过自上而下(top-down)的信息处理方式才完成.由中枢控制眼球运动,将注视点落到中枢决定的图形奇点上来,通过注视停顿对中枢认为的关键信息之处进行抽提,以实现辨认。这种处理方式不是只取决于输入的图像信息,也不必对目标图像的每个象素进行处理,而只需对图象中少量的关键信息部位进行重点的检测和处理,从而提高了图象信息处理的能力及效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号