首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A deletion of one of the two copies of a 9-bp direct repeat sequence (CCCCCTCTA) in region V of mitochondrial DNA has previously been used as a polymorphic anthropological marker for people of east Asian origin, and to a lesser extent, in Oceanian and African populations. We report the presence of the 9-bp deletion in homoplasmy in skeletal muscle fibers and lymphocytes of a Spanish Caucasian individual. Other mitochondrial DNA polymorphisms associated with the 9-bp deletion characteristic of other populations were not present. Our results suggest that the 9-bp deletion probably originated independently in the maternal lineage of the propositus, and that it can thus be described as a recurrent mutation.  相似文献   

2.
Using mitochondrial lineage analysis of 1,178 individuals from Polynesia, the western Pacific, and Taiwan, we show that the major prehistoric settlement of Polynesia was from the west and involved two or possibly three genetically distinct populations. The predominant lineage group, accounting for 94% of Polynesian mtDNA, shares a 9-bp COII/tRNA(Lys) intergenic deletion and characteristic control region transition variants, compared to the Cambridge reference sequence. In Polynesia, the diversity of this group is extremely restricted, while related lineages in Indonesia, the Philippines, and Taiwan are increasingly diverse. This suggests a relatively recent major eastward expansion into Polynesia, perhaps originating from Taiwan, in agreement with archeological and linguistic evidence, but which experienced one or more severe population bottlenecks. The second mitochondrial lineage group, accounting for 3.5% of Polynesian mtDNA haplotypes, does not have the 9-bp deletion and its characterized by an A-C transversional variant at nt position 16265. Specific oligonucleotides for this variant were used to select individuals from the population sample who, with other sequences, show that the Polynesian lineages were part of a diverse group in Vanuatu and Papua New Guinea. The very low overall diversity of both lineage groups in Polynesia suggests there was severe population restriction during the colonization of remote Oceania. A third group, represented by only four individuals (0.6%) in Polynesia but also present in the Philippines, shares variants at nt positions 16172 and 16304. Two Polynesians had unrelated haplotypes matching published sequences from native South Americans, which may be the first genetic evidence of prehistoric human contact between Polynesia and South America.  相似文献   

3.
Mitochondrial DNAs (mtDNAs) from 167 American Indians including 87 Amerind-speakers (Amerinds) and 80 Nadene-speakers (Nadene) were surveyed for sequence variation by detailed restriction analysis. All Native American mtDNAs clustered into one of four distinct lineages, defined by the restriction site variants: HincII site loss at np 13,259, AluI site loss at np 5,176, 9-base pair (9-bp) COII-tRNA(Lys) intergenic deletion and HaeIII site gain at np 663. The HincII np 13,259 and AluI np 5,176 lineages were observed exclusively in Amerinds and were shared by all such tribal groups analyzed, thus demonstrating that North, Central and South American Amerinds originated from a common ancestral genetic stock. The 9-bp deletion and HaeIII np 663 lineages were found in both the Amerinds and Nadene but the Nadene HaeIII np 663 lineage had a unique sublineage defined by an RsaI site loss at np 16,329. The amount of sequence variation accumulated in the Amerind HincII np 13,259 and AluI np 5,176 lineages and that in the Amerind portion of the HaeIII np 663 lineage all gave divergence times in the order of 20,000 years before present. The divergence time for the Nadene portion of the HaeIII np 663 lineage was about 6,000-10,000 years. Hence, the ancestral Nadene migrated from Asia independently and considerably more recently than the progenitors of the Amerinds. The divergence times of both the Amerind and Nadene branches of the COII-tRNA(Lys) deletion lineage were intermediate between the Amerind and Nadene specific lineages, raising the possibility of a third source of mtDNA in American Indians.  相似文献   

4.
Extensive gene rearrangement is reported in the mitochondrial genomes of lungless salamanders (Plethodontidae). In each genome with a novel gene order, there is evidence that the rearrangement was mediated by duplication of part of the mitochondrial genome, including the presence of both pseudogenes and additional, presumably functional, copies of duplicated genes. All rearrangement-mediating duplications include either the origin of light-strand replication and the nearby tRNA genes or the regions flanking the origin of heavy-strand replication. The latter regions comprise nad6, trnE, cob, trnT, an intergenic spacer between trnT and trnP and, in some genomes, trnP, the control region, trnF, rrnS, trnV, rrnL, trnL1, and nad1. In some cases, two copies of duplicated genes, presumptive regulatory regions, and/or sequences with no assignable function have been retained in the genome following the initial duplication; in other genomes, only one of the duplicated copies has been retained. Both tandem and nontandem duplications are present in these genomes, suggesting different duplication mechanisms. In some of these mitochondrial DNAs, up to 25% of the total length is composed of tandem duplications of noncoding sequence that includes putative regulatory regions and/or pseudogenes of tRNAs and protein-coding genes along with the otherwise unassignable sequences. These data indicate that imprecise initiation and termination of replication, slipped-strand mispairing, and intramolecular recombination may all have played a role in generating repeats during the evolutionary history of plethodontid mitochondrial genomes.  相似文献   

5.
We sequenced across all of the gene boundaries in the mitochondrial genome of the cattle tick, Boophilus microplus, to determine the arrangement of its genes. The mtDNA of B. microplus has a coding region, composed of tRNA(Glu) and 60 bp of the 3' end of ND1, that is repeated five times. Boophilus microplus is the first coelomate animal known to have more than two copies of a coding sequence. The mitochondrial genome of B. microplus has other unusual features, including (1) reduced T arms in tRNAs, (2) an AT bias in codon use, (3) two control regions that have evolved in concert, (4) three gene rearrangements, and (5) a stem-loop between tRNA(Gln) and tRNA(Phe). The short T arms and small control regions (CRs) of B. microplus and other ticks suggest strong selection for small genomes. Imprecise termination of replication beyond its origin, which can account for the evolution of tandem repeats of coding regions in other mitochondrial genomes, cannot explain the evolution of the fivefold repeated sequence in the mitochondrial genome of B. microplus. Instead, slipped-strand mispairing or recombination are the most plausible explanations for the evolution of these tandem repeats.  相似文献   

6.
P Brzuzan 《Génome》2000,43(3):584-587
Length variation of the mitochondrial DNA control region was observed with PCR amplification of a sample of 138 whitefish (Coregonus lavaretus). Nucleotide sequences of representative PCR products showed that the variation was due to the presence of an approximately 100-bp motif tandemly repeated two, three, or five times in the region between the conserved sequence block-3 (CSB-3) and the gene for phenylalanine tRNA. This is the first report on the tandem array composed of long repeat units in mitochondrial DNA of salmonids.  相似文献   

7.
Mitochondrial DNA variability of West New Guinea populations.   总被引:3,自引:0,他引:3  
This paper reports human mitochondrial DNA variability in West New Guinea (the least known, western side of the island of New Guinea), not yet described from a molecular perspective. The study was carried out on 202 subjects from 12 ethnic groups, belonging to six different Papuan language families, representative of both mountain and coastal plain areas. Mitochondrial DNA hypervariable region 1 (HVS 1) and the presence of the 9-bp deletion (intergenic region COII-tRNA(Lys)) were investigated. HVS 1 sequencing identified 73 polymorphic sites defining 89 haplotypes; the 9-bp deletion, which is considered a marker of Austronesian migration in the Pacific, was found to be absent in the whole West New Guinea study sample. Statistical analysis applied to the resulting haplotypes reveal high heterogeneity and an intersecting distribution of genetic variability in these populations, despite their cultural and geographic diversity. The results of subsequent phylogenetic approaches subdivide mtDNA diversity in West New Guinea into three main clusters (groups I-III), defined by sets of polymorphisms which are also shared by some individuals from Papua New Guinea. Comparisons with worldwide HVS 1 sequences stored in the MitBASE database show the absence of these patterns outside Oceania and a few Indonesian subjects, who also lack the 9-bp deletion. This finding, which is consistent with the effects of genetic drift and prolonged isolation of West New Guinea populations, lead us to regard these patterns as New Guinea population markers, which may harbor the genetic memory of the earliest human migrations to the island.  相似文献   

8.
The mitochondrial genome of the Komodo dragon (Varanus komodoensis) was nearly completely sequenced, except for two highly repetitive noncoding regions. An efficient sequencing method for squamate mitochondrial genomes was established by combining the long polymerase chain reaction (PCR) technology and a set of reptile-oriented primers designed for nested PCR amplifications. It was found that the mitochondrial genome had novel gene arrangements in which genes from NADH dehydrogenase subunit 6 to proline tRNA were extensively shuffled with duplicate control regions. These control regions had 99% sequence similarity over 700 bp. Although snake mitochondrial genomes are also known to possess duplicate control regions with nearly identical sequences, the location of the second control region suggested independent occurrence of the duplication on lineages leading to snakes and the Komodo dragon. Another feature of the mitochondrial genome of the Komodo dragon was the considerable number of tandem repeats, including sequences with a strong secondary structure, as a possible site for the slipped-strand mispairing in replication. These observations are consistent with hypotheses that tandem duplications via the slipped-strand mispairing may induce mitochondrial gene rearrangements and may serve to maintain similar copies of the control region.  相似文献   

9.

Background

Halibuts are commercially important flatfish species confined to the North Pacific and North Atlantic Oceans. We have determined the complete mitochondrial genome sequences of four specimens each of Atlantic halibut (Hippoglossus hippoglossus), Pacific halibut (Hippoglossus stenolepis) and Greenland halibut (Reinhardtius hippoglossoides), and assessed the nucleotide variability within and between species.

Results

About 100 variable positions were identified within the four specimens in each halibut species, with the control regions as the most variable parts of the genomes (10 times that of the mitochondrial ribosomal DNA). Due to tandem repeat arrays, the control regions have unusually large sizes compared to most vertebrate mtDNAs. The arrays are highly heteroplasmic in size and consist mainly of different variants of a 61-bp motif. Halibut mitochondrial genomes lacking arrays were also detected.

Conclusion

The complexity, distribution, and biological role of the heteroplasmic tandem repeat arrays in halibut mitochondrial control regions are discussed. We conclude that the most plausible explanation for array maintenance includes both the slipped-strand mispairing and DNA recombination mechanisms.  相似文献   

10.
The utility and reliability of mitochondrial DNA sequences in phylogenetic and phylogeographic studies may be compromised by widespread and undetected nuclear mitochondrial copies (numts) as well as heteroplasmy within individuals. Both numts and heteroplasmy are likely to be common across diverse taxa yet few studies have characterised their frequencies and variation at the intra-specific level. Here we report the presence of both numts and heteroplasmy in the mitochondrial control region of the Chinese horseshoe bat Rhinolophus sinicus. In total we generated 123 sequences from 18 bats, which contained two different numt clades (i.e. Numt-1 and Numt-2) and one mtDNA clade. The sequence divergence between Numt-1 and Numt-2 was 16.8% and each numt type was found in all four R. sinicus taxa, suggesting either two ancient translocations of mitochondrial DNA into the nucleus from the same source taxon, or a single translocation from different source taxa that occurred before the split of R. sinicus into different lineages. Within the mtDNA clade, phylogenetic relationships among the four taxa of R. sinicus were similar to those seen in previous results. Based on PCR comparisons, heteroplasmy was inferred between almost all individuals of R. sinicus with respect to sequence variation. Consistent with introgression of mtDNA between Central sinicus and septentrionalis, individuals from these two taxa exhibited similar signatures of repeated sequences in the control region. Our study highlights the importance of testing for the presence of numts and heteroplasmy when applying mtDNA markers to phylogenetic studies.  相似文献   

11.
Length differences in animal mitochondrial DNA (mtDNA) are common, frequently due to variation in copy number of direct tandem duplications. While such duplications appear to form without great difficulty in some taxonomic groups, they appear to be relatively short-lived, as typical duplication products are geographically restricted within species and infrequently shared among species. To better understand such length variation, we have studied a tandem and direct duplication of approximately 260 bp in the control region of the cyprinid fish, Cyprinella spiloptera. Restriction site analysis of 38 individuals was used to characterize population structure and the distribution of variation in repeat copy number. This revealed two length variants, including individuals with two or three copies of the repeat, and little geographic structure among populations. No standard length (single copy) genomes were found and heteroplasmy, a common feature of length variation in other taxa, was absent. Nucleotide sequence of tandem duplications and flanking regions localized duplication junctions in the phenylalanine tRNA and near the origin of replication. The locations of these junctions and the stability of folded repeat copies support the hypothesized importance of secondary structures in models of duplication formation.  相似文献   

12.
Polynesian genetic affinities to populations of Asia were studied using mtDNA markers. A total of 1,037 individuals from 12 populations were screened for a 9-bp deletion in the intergenic region between the COII and tRNA(Lys) genes that approaches fixation in Polynesians. Sequence-specific oligonucleotide probes that identify specific mtDNA control region nucleotide substitutions were used to describe variation in individuals with the 9-bp deletion. The 9-bp deletion was not observed in northern Indians, Bangladeshis, or Pakistanis but was seen at low to moderate frequencies in the nine other Southeast Asian populations. Three substitutions in the control region at positions 16217, 16247, and 16261 have previously been observed at high frequency in Polynesian mtDNAs; this "Polynesian motif" was observed in 20% of east Indonesians with the 9-bp deletion but was observed in only one additional individual. mtDNA types related to the Polynesian motif are highest in frequency in the corridor from Taiwan south through the Philippines and east Indonesia, and the highest diversity for these types is in Taiwan. These results are consistent with linguistic evidence of a Taiwanese origin for the proto-Polynesian expansion, which spread throughout Oceania by way of Indonesia.  相似文献   

13.
We investigated the incidence of the Region V mitochondrial DNA 9-base-pair (bp) deletion from human remains recovered from several archaeological sites and contexts throughout Argentina. Of the 34 samples analyzed, 24 yielded DNA extractions that gave clear amplification results. All of the individuals carried two repeats of the 9 bp, one of which has been shown to be deleted in some individuals of Asian origin and defines mitochondrial lineage B. Although most of the modern Amerindian groups in the region exhibit the deletion in high frequencies, the absence of the 9-bp deletion among ancient populations of South America seems to be the rule rather than the exception, as was reported by several studies involving extinct populations. The evidence gathered until now suggests that the earliest settlers of this region of South America did not carry mitochondrial lineage B.  相似文献   

14.
Summary A spontaneously arising mitochondrial DNA (mtDNA) variant ofSaccharomyces cerevisiae has been formed by two exta copies of a 14-bp sequence (TTAATTAAATTATC) being added to a tandem repeat of this unit. Similar polymorphisms in tandemly repeated sequences have been found in a comparison between mtDNAs from our strain and others. In 5850 bp of intergenic mtDNA squence, polymorphisms in tandemly repeated sequences of three or more base pairs occur approximately every 400–500 bp whereas differences in 1–2 bp occur approximately every 60 bp. Some polymorphisms are associated wit optional G+C-rich sequences (GC clusters). Two such optional GC clusters and one A+T repeat polymorphism have been discovered in the tRNA synthesis locus. In addition, the variable presence of large open reading frames are documented and mechanisms for generating intergenic sequence diversity inS. cerevisiae mtDNA are discussed.  相似文献   

15.
Mitochondrial DNA (mtDNA) polymorphisms in the D-loop region and the intergenic COII/tRNA(Lys) 9-bp deletion were examined in 180 individuals from all nine aboriginal Taiwanese groups: Atayal, Saisiat, Bunun, Tsou, Rukai, Paiwan, Ami, Puyuma, and Yami. A comparison of 563-bp sequences showed that there were 61 different sequence types, of which 42 types were specific to respective aboriginal groups. D-loop sequence variation and phylogenetic analysis enabled the 180 aboriginal lineages to be classified into eight monophyletic clusters (designated C1-C8). Phylogeographic analysis revealed that two (C2 and C4) of the eight clusters were new characteristic clusters of aboriginal Taiwanese and accounted for 8.3% and 13.9% of the aboriginal lineages, respectively. From the estimated coalescent times for the two unique clusters, the mtDNA lineages leading to such clusters were inferred to have been introduced into Taiwan approximately 11,000-26,000 years ago, suggesting ancient immigrations of the two mtDNA lineages. Genetic distances, based on net nucleotide diversities between populations, revealed three distinct clusters that were comprised of northern mountain (Atayal and Saisiat), southern mountain (Rukai and Paiwan), and middle mountain/east coast (Bunun, Tsou, Ami, Puyuma, and Yami) groups, respectively. Furthermore, phylogenetic analysis of 16 human populations (including six other Asian populations and one African population) confirmed that the three clusters for aboriginal Taiwanese had remained largely intact. Each of the clusters (north, south, and middle-east coast) was characterized by a high frequency of a particular lineage (C4, C2, and 9-bp deletion, respectively). This may result from random genetic drift among the aboriginal groups after a single introduction of all the mtDNA lineages into Taiwan, but another plausible explanation is that at least three genetically distinct ancestral populations have contributed to the maternal gene pool of aboriginal Taiwanese.  相似文献   

16.
The nucleotide sequences of intergenic spacers located between the tRNAThr and tRNAPro genes in mitochondrial DNA of cod fishes (order Godiformes) were determined. Spacers from eight species representing two families of cod fishes were analyzed and found to vary in size from 25 to 99 bp. Each spacer sequence contains one or two copies of a conserved 17-bp motif. Four to five central nucleotides of this motif constitute a substitutional hot spot as observed from interspecific and intraspecific comparisons. The substitution rate of the spacer is approximately twice that of the variable part I of the mitochondrial DNA control region, making this sequence region interesting as a molecular marker in population studies or stock assessments of cod fishes. We propose that the spacer originated in a duplication event and evolved into a functional domain, perhaps by binding regulatory proteins. Accepted February 26, 1999  相似文献   

17.
Length variation in the human mtDNA intergenic region between the cytochrome oxidase II (COII) and tRNA lysine (tRNAlys) genes has been widely studied in world populations. Specifically, Austronesian populations of the Pacific and Austro-Asiatic populations of southeast Asia most frequently carry the 9-bp deletion in that region implying their shared common ancestry in haplogroup B. Furthermore, multiple independent origins of the 9-bp deletion at the background of other mtDNA haplogroups has been shown in populations of Africa, Europe, Australia, and India. We have analyzed 3293 Indian individuals belonging to 58 populations, representing different caste, tribal, and religious groups, for the length variation in the 9-bp motif. The 9-bp deletion (one copy) and insertion (three copies) alleles were observed in 2.51% (2.15% deletion and 0.36% insertion) of the individuals. The maximum frequency of the deletion (45.8%) was observed in the Nicobarese in association with the haplogroup B5a D-loop motif that is common throughout southeast Asia. The low polymorphism in the D-loop sequence of the Nicobarese B5a samples suggests their recent origin and a founder effect, probably involving migration from southeast Asia. Interestingly, none of the 302 (except one Munda sample, which has 9-bp insertion) from Mundari-speaking Austro-Asiatic populations from the Indian mainland showed the length polymorphism of the 9-bp motif, pointing either to their independent origin from the Mon-Khmeric-speaking Nicobarese or to an extensive admixture with neighboring Indo-European-speaking populations. Consistent with previous reports, the Indo-European and Dravidic populations of India showed low frequency of the 9-bp deletion/insertion. More than 18 independent origins of the deletion or insertion mutation could be inferred in the phylogenetic analysis of the D-loop sequences.  相似文献   

18.
Kim MJ  Wan X  Kim I 《Mitochondrial DNA》2012,23(3):179-181
The complete mitochondrial genome (mitogenome) of the seven-spotted lady beetle, Coccinella septempunctata (Coleoptera: Coccinellidae), which is one of the best known insects capable of predation, is described with an emphasis on the noteworthy composition of the A+T-rich region. The C. septempunctata genome consists of 2 rRNAs, 22 tRNAs, 13 protein-coding genes, and 1 control region, designated as the A+T-rich region in insects. Along with an unusually long A+T-rich region (4469 bp), the 18,965-bp long C. septempunctata mitogenome was the largest in Coleoptera. The A+T-rich region is composed of a 2214-bp long non-repeat region composed of 80.17% A/T nucleotides and a 2256-bp long repeat region composed of 65.71% A/T nucleotides. The repeat region harbors 32 identical 70-bp long tandem repeats plus one 15-bp long incomplete first repeat. These repeat sequences may possibly have been caused by slipped-strand mispairing and unequal crossing-over events during DNA replication.  相似文献   

19.
Archaeological, linguistic, and genetic studies show that Austronesian (AN)-speaking Polynesian ancestors came from Asia/Taiwan to the Bismarck Archipelago in Near Oceania more than 3,600 years ago, and then expanded into Remote Oceania. However, it remains unclear whether they extensively mixed with indigenous Melanesians who had populated the Bismarck Archipelago before their arrival. To examine the extent of admixture between Polynesian ancestors and indigenous Melanesians, mitochondrial DNA (mtDNA) variations in the D-loop region and the cytochrome oxidase and lysine transfer RNA (COII/tRNA(Lys)) intergenic 9-bp deletion were analyzed in the following three Oceanian populations: 1) Balopa Islanders as AN-speaking Melanesians living in the northwestern end of the Bismarck Archipelago, 2) Tongans as AN-speaking Polynesians, and 3) Gidra as non-Austronesian-speaking Melanesians in the southwestern lowlands of Papua New Guinea. Phylogenetic analysis of mtDNA sequences revealed that more than 60% of mtDNA sequences in the Balopa Islanders were very similar to those in Tongans, suggesting an extensive gene flow from Polynesian ancestors to indigenous Melanesians. Furthermore, analysis of pairwise difference distributions for the D-loop sequences with the 9-bp deletion and the Polynesian motif (i.e., T16217C, A16247G, and C16261T) suggested that the expansion of Polynesian ancestors possessing these variations occurred approximately 7,000 years ago.  相似文献   

20.
New data were obtained on mitochondrial DNA (mtDNA) from Guahibo from Venezuela, a group so far not studied using molecular data. A population sample (n = 59) was analyzed for mtDNA variation in two control-region hypervariable segments (HV1 and HV2) by sequencing. The presence or absence of a 9-bp polymorphism in the COII/tRNA(Lys) region was studied by direct amplification and electrophoretic identification. Thirty-eight variable sites were detected in regions HV1 and HV2, defining 26 mtDNA lineages; 23.7% of these were present in a single individual. The 9-bp deletion was found in 3.39% of individuals. Nucleotide and haplotype diversities were relatively high compared with other New World populations. The identified sequence haplotypes were classified into four major haplogroups (A-D) according to previous studies, with high frequencies for A (47.46%) and C (49.15%), low frequency for B (3.39%), and an absence of D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号