首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Animals need to adjust reproductive decisions to environmental seasonality. In contrast to species from the well-studied temperate zones, little is known for tropical birds about the environmental cues that stimulate reproductive activity and the physiological mechanisms that regulate reproduction. I am investigating the environmental and endocrine mechanisms that underlie the timing of reproduction in spotted antbirds from the near-equatorial Panamanian rainforest and in small ground finches from the equatorial arid Galápagos islands. Spotted antbirds live in a fairly predictable seasonal environment and show regular changes in gonad sizes and some reproductive hormones. Despite the small annual variation in photoperiod close to the equator, these birds can measure slight photoperiodic increases and use it to initiate reproductive activity. Spotted antbirds also respond to seasonal changes in food availability, which allows them to flexibly adjust gonad growth to environmental conditions. Testosterone is involved in regulating song and aggressive behavior in these year-round territorial birds, although it can remain at low plasma levels throughout the year. In contrast, small ground finches exposed to a rather unpredictable climate on Galápagos appear to grow their gonads whenever heavy rains fall and have regressed gonads during other times of the year. The lack of a physiological preparation for the breeding season and their response to short-term cues related to rainfall indicate a striking flexibility in the regulation of breeding in small ground finches. I suggest that tropical birds can serve as model systems to study the physiological adaptations to different environments. Unraveling the neuroendocrine mechanisms behind the flexibility in reproductive timing will clarify whether differences found between temperate and tropical birds represent variations of the same basic mechanism or instead reflect a fundamental divergence in physiological control systems.  相似文献   

2.
In many vertebrates, elevated levels of plasma testosterone (T) are important for reproduction and territorial aggression. However, many tropical birds reproduce and defend territories while plasma T-levels are basal. We studied how aggression and T-levels are regulated in male neotropical spotted antbirds, which defend territories year-round in the Panamanian rainforest. Although spotted antbirds reproduce seasonally, T-levels of individual males often remained at baseline (0.2 ng ml-1) throughout the year, even in courting males. On the other hand, T-levels were elevated (maximally to 1.57 ng ml-1) during periods of social instability at any time of the year, even when males had entirely regressed gonads. Experimental territorial intrusions (broadcast of conspecific song) confirmed these observations by showing that T-levels increased after about two hours of playback time. Our data suggest that spotted antbirds avoided the potential costs associated with constantly high plasma T-levels (e.g. increased mortality rates). Contrary to temperate zone birds, spotted antbirds had the potential to react to social challenges with an increase of plasma T year-round. These results are, to our knowledge, presently unique, but may apply to many vertebrate species that inhabit the tropics.  相似文献   

3.
Most temperate-zone birds live in environments with a regular seasonality, and primarily use the long-term changes in photoperiod as a cue to initiate gonadal development in anticipation of the breeding season. Short-term cues such as food and temperature are later used to fine-tune the rate of gonadal development to local conditions. Many tropical habitats are seasonal, but the timing of the seasons (e.g., rainy season) can vary considerably between years. We hypothesize that to time breeding in environments with seasonal variability, tropical birds respond to both long-term and short-term environmental cues to initiate gonadal growth. We tested the effectiveness of photoperiod and food cues for the initiation of gonad growth in captive male spotted antbirds (Hylophylax n. naevioides) from Panama. A ‘control’ group was maintained on the short natural photoperiod of 12 h light and 12 h dark (LD 12:12) and adequate food. A ‘food-stimulated’ group was also held on LD 12:12 but received an increase in food quantity and quality. A ‘photo+food-stimulated’ group experienced an increase in daylength by 1 h (LD 13:11, the maximal photoperiod in Panama) and an increase in food quantity and quality. Within 3 weeks testis sizes of ‘food-stimulated’ birds increased significantly, suggesting that food cues alone can initiate gonad development. As expected from the previous experiment, testis sizes of ‘photo+food-stimulated’ birds, but not ‘control’ birds, also increased. We suggest that the capability to respond to both food and photoperiodic cues allows animal the flexibility to adjust reproductive activity to variable environmental conditions each year. Future work should elucidate whether food provides nutritional or non-nutritional cues, and the neurophysiological mechanisms by which food stimulates reproductive activity.  相似文献   

4.
Food may act as a proximate factor in the regulation of avian seasonal breeding. Food cues could provide particularly important seasonal information to birds living in variable tropical environments, but this has not yet been tested. Spotted antbirds (Hylophylax n. naevioides) inhabiting a humid forest in central Panama (9 degrees N) likely use changes in the tropical photoperiod to time reproduction on a long-term, seasonal basis. We predicted that these insectivorous birds also adjust reproduction to short-term cues such as food availability because the onset of the rainy season and the resulting increase in insect abundance varies considerably between years. To test this prediction, prior to their breeding season (when they had half-maximal gonads), we either exposed captive male spotted antbirds to an ad libitum standard diet only or added live crickets to this diet. Males that received live crickets significantly increased gonad sizes within 3 weeks over controls on the standard diet. Moreover, in six additional experiments cricket availability always increased song rate, usually within a few days. The stimulatory effect of live crickets on song activity may function independent of nutritional aspects: Freshly killed crickets, providing similar nutritional content as live crickets, did not stimulate the birds' song activity. However, song activity increased to intermediate levels when live crickets were shown under a clear plastic wrap, i.e., when birds could see but not eat crickets. We hypothesize that the opportunity to see and handle live insects stimulates song and reproductive activity in these birds. Our data indicate for the first time that a tropical rainforest bird can use food cues to evaluate the suitability of local environmental conditions for breeding. J. Exp. Zool. 286:494-504, 2000.  相似文献   

5.
Summary Garden warblers (Sylvia borin) are migrating European passerines that spend the winter in tropical Africa. To investigate how photoperiod controls the annual cycles of reproduction, molt and migration, garden warblers were exposed to photoperiodic changes simulating those experienced by conspecifics with an equatorial wintering area. At three different times groups of birds were moved from a constant equatorial photoperiod of 12.8 h to a 15-h photoperiod: group 1 on November 19, group 2 on February 24, and group 3 on April 12. In all birds the changes in body weight, nocturnal migratory restlessness, testicular width or diameter of the largest oocyte, and plasma LH concentrations were determined. In addition, the birds were examined for molt. In all birds of groups 2 and 3 the transfer to long photoperiods induced a gonadal cycle associated with spring migratory restlessness and, in the group 3 birds, an increase in LH. In group 1 only few birds showed marginal gonadal responses and the gonadal cycles of the group 2 birds were less pronounced than those of group 3. The results suggest that the hypothalamo-pituitary-gonadal axis was refractory to stimulation by long photoperiods in autumn but, later in the season, became responsive to the same long photoperiods. Unlike the situation in other temperate zone birds, the transition from the photorefractory to the photosensitive state seems to be a gradual process which develops spontaneously and with the appropriate temporal characteristics in the absence of photoperiodic change.Abbreviation LH luteinizing hormone  相似文献   

6.
Male aggressive behavior is generally regulated by testosterone (T). In most temperate breeding males, aggressive behavior is only expressed during the reproductive period. At this time circulating T concentrations, brain steroid receptors, and steroid metabolic enzymes are elevated in many species relative to the nonreproductive period. Many tropical birds, however, display aggressive behavior both during the breeding and the nonbreeding season, but plasma levels of T can remain low throughout the year and show little seasonal fluctuation. Studies on the year-round territorial spotted antbird (Hylophylax n. naevioides) suggest that T nevertheless regulates aggressive behavior in both the breeding and nonbreeding season. We hypothesize that to regulate aggressive behaviors during the nonbreeding season, when T is at its minimum, male spotted antbirds increase brain sensitivity to steroids. This can be achieved by locally up-regulating androgen receptors (ARs), estrogen receptors (ERs), or the enzyme aromatase (AROM) that converts T into estradiol. We therefore compared mRNA expression of AR, ERalpha, and AROM in free- living male spotted antbirds across reproductive and nonreproductive seasons in two brain regions known to regulate both reproductive and aggressive behaviors. mRNA expression of ERalpha in the preoptic area and AR in the nucleus taeniae were elevated in male spotted antbirds during the nonbreeding season when circulating T concentrations were low. This unusual seasonal receptor regulation may represent a means for the year-round regulation of vertebrate aggressive behavior via steroids by increasing the brain's sensitivity to sex steroids during the nonbreeding season.  相似文献   

7.
The hormonal control of territorial aggression in male and female vertebrates outside the breeding season is still unresolved. Most vertebrates have regressed gonads when not breeding and do not secrete high levels of sex steroids. However, recent studies implicate estrogens in the regulation of non-breeding territoriality in some bird species. One possible source of steroids during the non-breeding season could be the adrenal glands that are known to produce sex steroid precursors such as dehydroepiandrosterone (DHEA). We studied tropical, year-round territorial spotted antbirds (Hylophylax n. naevioides) and asked (1). whether both males and females are aggressive in the non-breeding season and (2). whether DHEA is detectable in the plasma at that time. We conducted simulated territorial intrusions (STIs) with live decoys to male and female free-living spotted antbirds in central Panama. Non-breeding males and females displayed robust aggressive responses to STIs, and responded more intensely to decoys of their own sex. In both sexes, plasma DHEA concentrations were detectable and higher than levels of testosterone (T) and 17beta-estradiol (E(2)). In males, plasma DHEA concentrations were positively correlated with STI duration. Next, we conducted STIs in captive non-breeding birds. Captive males and females displayed robust aggressive behavior. Plasma DHEA concentrations were detectable in both sexes, whereas T was non-detectable (E(2) was not measured). Plasma DHEA concentrations of males were positively correlated with aggressive vocalizations and appeared to increase with longer STI durations. We conclude that male and female spotted antbirds can produce DHEA during the non-breeding season and DHEA may serve as a precursor of sex steroids for the regulation of year-round territorial behavior in both sexes.  相似文献   

8.
Annual changes in and photoperiodic influence oh the weight of gonads, a parameter of gonadal activity, are much smaller in female birds than in males. Effect of season and photoperiod on the follicle-stimulating hormone receptors in the testis or ovary was studied using a subtropical weaver finch. The number of follicle-stimulating hormone binding sites per unit testicular weight showed a peak in the non-breeding phase; while the total number of binding sites per two testes was maximal in the breeding phase and minimal in the regressive phase. In contrast, seasonal changes in follicle-stimulating hormone binding sites in the ovary were less marked. Exposure to short-day during the breeding phase induced marked decreases in the numbers of binding sites per unit testicular weight and per two testes. These numbers markedly increased after transfer to long-day during the non-breeding phase. However, there was no significant effect of short-day or long-day exposure on follicle-stimulating hormone binding sites in the ovary. These results suggest that photoperiod is an effective environmental factor in the regulation of follicle-stimulating hormone receptors in the testis and the effect is manifested by pronounced changes in the testicular weight during annual breeding cycle.  相似文献   

9.
Abstract

Reproduction is a part of life cycle with great environmental dependence. In contrast to temperate avian species, which mostly breed during summer, the Indian songbirds have more flexible breeding programs and exhibit a spectrum of reproductive strategies with the breeding season scattered all over the year. Control of breeding cycles in the Indian songbirds, therefore, are broadly viewed in light of two strategies (i) birds showing strong photoperiodic component in regulation of reproductive and post-reproductive events (ii) birds that do not exhibit typical photoperiodic regulation indicating the involvement of an inherent rhythm of reproduction. Both circadian and circannual rhythms have been demonstrated to regulate annual gonadal cycles of Indian songbirds. While photoperiod continues to be a predominant proximate factor for timing of breeding in majority of Indian songbirds investigated so far, some studies reveal the role of non photoperiodic cues such as the food availability, temperature, rainfall, etc. in timing/modulating the timing of breeding. The conversion or non-conversion of thyroxine to triiodothyronine may act as a long or short photoperiod signal and may up or downregulate the synthesis and release of GnRH-I in hypothalamus, FSH and LH in anterior pituitary and gonadal steroids in gonads causing gonadal growth or regression, respectively.  相似文献   

10.
In European starlings, as in many other birds inhabiting higher latitudes, gonads develop in response to the increasing daylengths in early spring. Later in the year, however, the hypothalamo-pituitary-gonadal axis becomes refractory to the previously stimulatory long photoperiods and the gonads regress in summer. The present study addresses the question of when during the gonadal growth phase photorefractoriness is determined. A 13-h photoperiod induces testicular development and subsequent testicular regression associated with refractoriness in male starlings. An 11-h photoperiod, in contrast, induces only testicular development, and photorefractoriness never develops. When starlings were transferred to an 11-h photoperiod, either 12 or 25 days following exposure to a 13-h photoperiod, their testes developed to full size, but remained large to the end of the experiment, i.e. refractoriness did not develop. The same was even true of most birds in a third group that were transferred to an 11-h photoperiod after 46 days of the 13-h photoperiod, when gonads had developed to near maximal size. These data show that, in contrast to some other species of passerine birds, the onset of photorefractoriness does not become fixed before the testes have undergone considerable development, and that the photoperiodic conditions experienced at the end of the testicular growth phase are still effective in determining the precise time of onset of photorefractoriness. It is suggested that this peculiarity of the starling is related to the fact that its gonadal development begins rather early in spring and, hence, under much shorter photoperiods than the other species studied.  相似文献   

11.
The present study assessed annual adrenal gland activity in the Indian tropical Jungle bush quail, Perdicula asiatica. We also elucidated the role of the annual variations in gonadal steroids and melatonin in the regulation of its activity. Increasing day length (photoperiod), ambient temperature and rainfall are positively correlated with adrenal and gonadal functions, and inversely related to pineal gland activity. Pineal, adrenal and gonadal weights showed cyclical patterns relative to environmental factors, which were also correlated with plasma melatonin, corticosterone and gonadal steroids, respectively. In both sexes of P. asiatica, pineal gland weight and/or plasma melatonin levels were inversely related to adrenal lipids, (e.g. phospholipids, free and esterified cholesterol) and plasma corticosterone levels. Melatonin levels also showed an inverse relationship with plasma testosterone and estradiol levels. These studies indicate that changes in environmental factors promote annual variations in adrenal and gonadal activity probably by modulating the pineal gland. Melatonin receptors have been localized in the pars tuberalis, adrenal gland and gonads of birds, the pineal gland may, therefore, mediate environmental stimuli indirectly and directly to down regulate adrenal and gonadal activity, which run in parallel in this species.  相似文献   

12.
Annual rhythms of body weight and reproduction in the European hamster (Cricetus cricetus) are the result of an interaction between seasonal changes in day length (photoperiod) and seasonal changes in the responsiveness of animals to these photoperiods. The present study demonstrates that under natural conditions European hamsters are not able to perceive long photoperiods (i.e., a 16L:8D cycle) before mid-November. This is an important difference to other hamster species, in which regrowth of the gonads can be stimulated by exposure to long photoperiods at any stage of gonadal regression. The experiments also demonstrate the existence of an annual phase of sensitivity to long photoperiods that starts around mid-November and extends until March/April. During this phase of sensitivity, exposure to a long photoperiod (16L:8D) induced gonadal regrowth within 3 wk. Additional experiments with an accelerated photoperiodic lighting regimen indicated that a photoperiod of approximately 13 h is necessary to stimulate gonadal regrowth. Under natural light conditions in Stuttgart (48.46 degrees N), a photoperiod of 13 h is reached by the beginning of April, which fits well with the finding that the majority of animals kept under a natural light:dark cycle had well-developed gonads by the end of April. Nevertheless, these animals showed a rather variable timing of gonadal regrowth, ranging from early January to late April. This is most likely the result of two processes: first, an endogenous mechanism (photorefractoriness) that induces gonadal recrudescence without any photoperiodic information while the animals are still in their hibernation burrows, and second, a direct stimulatory effect of long photoperiods.  相似文献   

13.
In seasonal environments animals organize their behaviour around annual cycles of resource availability. Wild black-capped chickadees are most likely to hoard food in autumn. At this time of year chickadees are also reported to have a larger hippocampus, a brain area important for spatial memory. This study examined how photoperiodic condition affects these seasonal changes. Captive chickadees were exposed to one of three treatments. Photorefractory birds were held on long days (19:5 h light:dark) and had small gonads. Photosensitive birds were held on short days (LD 9:15 h) and also had small gonads. Photostimulated birds were switched from short to long days and quickly entered breeding condition with large gonads. Photosensitive birds (on short days) stored more seeds than photorefractory birds (on long days). Photostimulated birds stored seeds at a high rate when on short days, but reduced storing when transferred to long days. These results indicate that long days inhibit storing regardless of gonadal condition. There were no differences between groups in hippocampal volume, indicating that photoperiod can produce changes in food-storing behaviour without affecting hippocampal size. Copyright 2003 Published by Elsevier Science Ltd on behalf of The Association for the Study of Animal Behaviour.  相似文献   

14.
Unlike other temperate owls, Indian spotted owlet Athene brama possesses a well-developed pineal gland that secrets moderate amount of hydroxy- (serotonin) and methoxy- (melatonin) indoles in circulation. However, in this study, we have reported the response of this endocrine gland to exogenous L-Tryptophan (precursor of the above indoles), and also its effect on gonads of this nocturnal bird. During breeding phase or pineal inactive phase (March), oral treatment of L-Trp (0.5 mg/100 g Bwt/day) significantly increased the pineal gland wt and plasma melatonin (MEL) level, while decreased the gonadal wt and plasma sex steroids levels (estradiol and progesterone in female and testosterone in male). Interestingly, during reproductively quiescent phase or pineal active phase (August), similar amount of L-Trp significantly decreased the plasma MEL level, while increased the above sex steroid levels in plasma. Finally, the results show a clear reproductive phase-dependent inverse effect of L-Trp on pineal gland and gonads for both sexes of the spotted owlets, and suggest that the therapeutic use of this amino acid would be a great advantage for controlling the reproduction of these economically important birds.  相似文献   

15.
In temperate zones, the reproductive physiology of most vertebrates is controlled by changes in photoperiod. Mechanisms for the regulation of photoperiodic gonadal responses are known to differ between mammals and birds: in mammals, melatonin is the photoperiodic signal messenger, whereas in birds, photoperiodic information is received by deep brain photoreceptors. Recently, the molecular mechanism of photoperiodism has been revealed by studies on Japanese quail, which exhibit a most remarkable responsiveness to photoperiod among vertebrates, and molecular cascades involved in photoperiodism have been elucidated. Long-day stimulus induces expression of the β-subunit of thyroid stimulating hormone (TSH-β) in the pars tuberalis (PT) of the pituitary gland, and TSH derived from the PT regulates reciprocal switching of genes encoding types 2 and 3 deiodinases (Dio2 and Dio3, respectively) in the mediobasal hypothalamus (MBH) by retrograde action. Dio2 locally converts prohormone thyroxine (T(4)) to bioactive triiodothyronine (T(3)) in the MBH, which subsequently stimulates the gonadal axis. These events have been confirmed to occur in mammals with seasonal breeding, such as hamsters and sheep, suggesting that similar mechanisms are involved among various vertebrates. In addition, nonphotoperiodic mice also appeared to possess the same molecular mechanisms at the hypothalamo-hypophysial level. It has been noted that melatonin regulates the above-mentioned key genes (Dio2, Dio3, and TSH-β) in mammals, while photoperiod directly regulates these genes in birds. Thus, the input pathway of photoperiod is different between mammals and birds (i.e., melatonin versus light); however, the essential mechanisms are conserved among these vertebrates.  相似文献   

16.
Birds use photoperiod to control the time of breeding and moult. However, it is unclear whether responses are dependent on absolute photoperiod, the direction and rate of change in photoperiod, or if photoperiod entrains a circannual clock. If starlings (Sturnus vulgaris) are kept on a constant photoperiod of 12h light:12h darkness per day (12L:12D), then they can show repeated cycles of gonadal maturation, regression and moult, which is evidence for a circannual clock. In this study, starlings kept on constant 11.5L:12.5D for 4 years or 12.5L:11.5D for 3 years showed no circannual cycles in gonadal maturation or moult. So, if there is a circannual clock, it is overridden by a modest deviation in photoperiod from 12L:12D. The responses to 11.5L:12.5D and 12.5L:11.5D were very different, the former perceived as a short photoperiod (birds were photosensitive for most of the time) and the latter as a long photoperiod (birds remained permanently photorefractory). Starlings were then kept on a schedule which ranged from 11.5L:12.5D in mid-winter to 12.5L:11.5D in mid-summer (simulating the annual cycle at 9 degrees N) for 3 years. These birds entrained precisely to calendar time and changes in testicular size and moult were similar to those of birds under a simulated cycle at 52 degrees N. These data show that birds are very sensitive to changes in photoperiod but that they do not simply respond to absolute photoperiod nor can they rely on a circannual clock. Instead, birds appear to respond to the shape of the annual change in photoperiod. This proximate control could operate from near equatorial latitudes and would account for similar seasonal timing in individuals of a species over a wide range of latitudes.  相似文献   

17.
Climatic warming has intensified selection for earlier reproduction in many organisms, but potential constraints imposed by climate change outside the breeding period have received little attention. Migratory birds provide an ideal model for exploring such constraints because they face warming temperatures on temperate breeding grounds and declining rainfall on many tropical non-breeding areas. Here, we use longitudinal data on spring departure dates of American redstarts (Setophaga ruticilla) to show that annual variation in tropical rainfall and food resources are associated with marked change in the timing of spring departure of the same individuals among years. This finding challenges the idea that photoperiod alone regulates the onset of migration, providing evidence that intensifying drought in the tropical winter could hinder adaptive responses to climatic warming in the temperate zone.  相似文献   

18.
It is known from field observations that vernal gonad recrudescence begins in January for the Stock dove, a month later at the end of February for the Wood pigeon, while many town pigeons ( Columba livia ) have active gonads throughout the year.
Photostimulation experiments demonstrate that spermatogenesis can be stimulated in the Stock dove by exposure to an artificial daylength regimeincreasing from 9.1 to 10.8 hours over 28 days. This photoperiod is the approximate equivalent of natural daylength changes occurring from late January onwards at 52° N. The same phototreatment, however, was not stimulatory for the testes of Wood pigeons, which required the equivalent of a March photoperiod. Natural daylength changes occurring in late November and December failed to evoke gametogenetic recovery in Stock dove controls.
The gonads of feral pigeons in full breeding condition were unaffected when the subjects were transferred from full summer photoperiods to those found in midwinter and spermatogenesis was maintained in birds kept under winter daylengths for four months.
The discussion mentions the problem of intraspecific geographical variation in photosensitivity. Scottish Wood pigeons begin their gonad recovery earlier and by March have considerably larger testes than birds in the south of England. Furthermore, they achieve this more advanced condition before the vernal equinox when daylengths are shorter in Scotland than in the south of England.  相似文献   

19.
The deciduous behavior of the tropical perennial Plumeria acuminata Ait., cultivar Sherman White, was investigated. The temperature during the period of experiment varied only 3°C, the mean maxima and minima, respectively, being; 28.5° and 23.5°C for summer months and 25.5° and 20.6°C for winter months. The length of the day-light period ranged from 14¼ hours on the longest day in June to 11¾ hours on the shortest day in December. Under naturally prevailing conditions of temperature and day-lengths, cessation of leaf formation and shedding of foliage occurred during the longer-night, autumn-winter months. The shedding was manifested in two stages: from mid-October to mid-January there was a slow but steady decrease in the number of leaves per plant, and in late January there occurred an abrupt abscission of all remaining leaves. Light interruptions during the middle of each night prevented a net loss in foliage as well as the en masse shedding in late January. Stem elongation was retarded during the autumn-winter months, but its rate was fully restored when the long nights were interrupted with artificial light. Flowering was unaffected by day-length. On the basis of these observations it is concluded that the deciduous behavior of Plumeria and perhaps other tropicals, alike temperate climate species, is governed by photoperiod. Cessation of leaf formation and en masse shedding of foliage are induced by long nights. However, in contrast to temperate zone plants, in which deciduousness is an adaptation against the winter cold and freeze, deciduousness provides tropical plants a survival advantage, perhaps, against seasonally recurring droughts.  相似文献   

20.
Appropriate timing of migratory behavior is critical for migrant species. For many temperate zone birds in the spring, lengthening photoperiod is the initial cue leading to morphological, physiological and behavior changes that are necessary for vernal migration and breeding. Strong evidence has emerged in recent years linking thyroid hormone signaling to the photoinduction of breeding in birds while more limited information suggest a potential role in the regulation of vernal migration in photoperiodic songbirds. Here we investigate the development and expression of the vernal migratory life history stage in captive Gambel's white-crowned sparrows (Zonotrichia leucophrys gambelii) in a hypothyroidic state, induced by chemical inhibition of thyroid hormone production. To explore possible variations in the effects of the two thyroid hormones, triiodothyronine and thyroxine, we subsequently performed a thyroid inhibition coupled with replacement therapy. We found that chemical inhibition of thyroid hormones resulted in complete abolishment of mass gain, fattening, and muscle hypertrophy associated with migratory preparation as well as resulting in failure to display nocturnal restlessness behavior. Replacement of thyroxine rescued all of these elements to near control levels while triiodothyronine replacement displayed partial or delayed rescue. Our findings support thyroid hormones as being necessary for the expression of changes in morphology and physiology associated with migration as well as migratory behavior itself.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号