首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sperm form and size is tremendously variable within and across species. However, a general explanation for this variation is lacking. It has been suggested that sperm size may influence sperm competition, and there is evidence for this in some taxa but not others. In addition to normal fertilizing sperm, a number of molluscs and insects produce nonfertile sperm that are also extremely morphologically variable, and distinct from fertilizing forms. There is evidence that nonfertile sperm play an indirect role in sperm competition by decreasing female remating propensity in Lepidopterans, but in most taxa the function of parasperm is unknown. We investigated the role of nonfertile (oligopyrene) sperm during sperm competition in the fresh water snail Viviparus ater. Previous studies found that the proportion of oligopyrene sperm increased with the risk of sperm competition, and hence it seems likely that these sperm influence fertilization success during competitive matings. In mating experiments in which females were sequentially housed with males, we examined a range of male characteristics which potentially influence fertilization success. We found that the size of oligopyrene sperm was the best predictor of fertilization success, with males having the longer sperm siring the highest proportion of offspring. Furthermore, we found a positive shell size and sperm concentration effect on paternity, and females with multiply sired families produced more offspring than females mating with only one male. This result suggests polyandry is beneficial for female snails.  相似文献   

2.
Sperm competition, when sperm from different males compete to fertilize a female's ova, is a widespread and fundamental force in the evolution of animal reproduction. The earliest prediction of sperm competition theory was that sperm competition selected for the evolution of numerous, tiny sperm, and that this force maintained anisogamy. Here, we empirically test this prediction directly by using selective breeding to generate controlled and independent variance in sperm size and number traits in the cricket Gryllus bimaculatus. We find that sperm size and number are male specific and vary independently and significantly. We can therefore noninvasively screen individuals and then run sperm competition experiments between males that differ specifically in sperm size and number traits. Paternity success across 77 two-male sperm competitions (each running over 30-day oviposition periods) shows that males producing both relatively small sperm and relatively numerous sperm win competitions for fertilization. Decreased sperm size and increased sperm number both independently predicted sperm precedence. Our findings provide direct experimental support for the theory that sperm competition selects for maximal numbers of miniaturized sperm. However, our study does not explain why G. bimaculatus sperm length persists naturally at approximately 1 mm; we discuss possibilities for this sperm size maintenance.  相似文献   

3.
Sperm competition, in which the ejaculates of multiple males compete to fertilize a female''s ova, results in strong selection on sperm traits. Although sperm size and swimming velocity are known to independently affect fertilization success in certain species, exploring the relationship between sperm length, swimming velocity and fertilization success still remains a challenge. Here, we use the zebra finch (Taeniopygia guttata), where sperm size influences sperm swimming velocity, to determine the effect of sperm total length on fertilization success. Sperm competition experiments, in which pairs of males whose sperm differed only in length and swimming speed, revealed that males producing long sperm were more successful in terms of (i) the number of sperm reaching the ova and (ii) fertilizing those ova. Our results reveal that although sperm length is the main factor determining the outcome of sperm competition, complex interactions between male and female reproductive traits may also be important. The mechanisms underlying these interactions are poorly understood, but we suggest that differences in sperm storage and utilization by females may contribute to the outcome of sperm competition.  相似文献   

4.
Male animals often adjust their sperm investment in response to sperm competition environment. To date, only a few studies have investigated how juvenile sociosexual settings affect sperm production before adulthood and sperm allocation during the first mating. Yet, it is unclear whether juvenile sociosexual experience (1) determines lifetime sperm production and allocation in any animal species; (2) alters the eupyrene : apyrene sperm ratio in lifetime ejaculates of any lepidopteran insects, and (3) influences lifetime ejaculation patterns, number of matings and adult longevity. Here we used a polygamous moth, Ephestia kuehniella, to address these questions. Upon male adult emergence from juveniles reared at different density and sex ratio, we paired each male with a virgin female daily until his death. We dissected each mated female to count the sperm transferred and recorded male longevity and lifetime number of matings. We demonstrate for the first time that males ejaculated significantly more eupyrenes and apyrenes in their lifetime after their young were exposed to juvenile rivals. Adult moths continued to produce eupyrene sperm, contradicting the previous predictions for lepidopterans. The eupyrene : apyrene ratio in the lifetime ejaculates remained unchanged in all treatments, suggesting that the sperm ratio is critical for reproductive success. Male juvenile exposure to other juveniles regardless of sex ratio caused significantly shorter adult longevity and faster decline in sperm ejaculation over successive matings. However, males from all treatments achieved similar number of matings in their lifetime. This study provides insight into adaptive resource allocation by males in response to juvenile sociosexual environment.  相似文献   

5.
1. Number of sperm and its relationship with larval rearing density were investigated in the armyworm Pseudaletia separata . Males that emerged from crowded larvae produced significantly more apyrene sperm than those from solitary larvae (375 700 ± 116 600 and 290 300 ± 99 600 at a mating with a 3-day old virgin, respectively), with no significant difference in number of eupyrene sperm between the two types being observed.
2. For both solitary- and crowded-type, the amount of fertile sperm the males produced at a mating exceeded the number needed to fertilize all of a female's eggs, suggesting that sperm competition may be a major selective force for keeping sperm numerous. The production of more apyrene sperm by crowded-type males may be an adaptation to cope with the increased sperm competition from rival males at high density.
3. The relationship between number of sperm and spermatophore size was also studied using solitary-type moths. Large spermatophores were found to have more eupyrene and apyrene sperm than small ones.  相似文献   

6.
In polyandrous species, sperm morphometry and sperm velocity are under strong sexual selection. Although several hypotheses have been proposed to explain the role of sperm competition in sperm trait variation, this aspect is still poorly understood. It has been suggested that an increase in sperm competition pressure could reduce sperm size variation or produce a diversity of sperm to maximize male fertilization success. We aim at elucidating the variability of sperm morphometric traits and velocity in two Tupinambis lizards in the context of sperm competition risk. Sperm traits showed substantial variation at all levels examined: between species, among males within species, and within the ejaculate of individual males. Sperm velocity was found to be positively correlated with flagellum: midpiece ratio, with relatively longer flagella associated with faster sperm. Our results document high variability in sperm form and function in lizards.  相似文献   

7.
Sperm competition theory predicts that males should increase their expenditure on the ejaculate with increasing risk of sperm competition, but decrease their expenditure with increasing intensity. There is accumulating evidence for sperm competition theory, based on examinations of testes size and/or the numbers of sperm ejaculated. However, recent studies suggest that ejaculate quality can also be subject to selection by sperm competition. We used experimental manipulations of the risk and intensity of sperm competition in the cricket, Teleogryllus oceanicus. We found that males produced ejaculates with a greater percentage of live sperm when they had encountered a rival male prior to mating. However, when mating with a female that presented a high intensity of sperm competition, males did not respond to risk, but produced ejaculates with a reduced percentage of live sperm. Our data suggest that males exhibit a fine-tuned hierarchy of responses to these cues of sperm competition.  相似文献   

8.
Sperm competition is now recognised as a potent selective force shaping many male reproductive traits. While the influence of sperm competition on sperm number is widely accepted, its effects upon sperm size remain controversial. It had been traditionally assumed that there is a trade-off between sperm number and sperm size, so that an increase in sperm number would result in a decrease in sperm size, under conditions of sperm competition. Contrary to this prediction, we proposed some time ago that sperm competition favours an increase in sperm size, because longer sperm swim faster and are more likely to win the race to fertilize ova. Comparative studies between species show that in many taxa such a relationship exists, but the consequences of an increase in sperm size may vary between taxa depending on the environment in which spermatozoa have to compete. We present new evidence showing that in mammals longer sperm swim at higher speeds. We also show that mean swimming speed is highly correlated with maximum swimming speed, so even if the fastest swimming sperm are more likely to fertilize, both measures are informative. When individuals of the same species are compared, ratios between the dimensions of different sperm components, as well as the shape of the head, seem better at explaining sperm swimming velocity. Finally, we show that mean and maximum sperm swimming speed determine male fertility. Other studies have shown that in competitive contexts, males with faster swimming sperm have higher fertilization success. We conclude that the available evidence supports our original hypothesis.  相似文献   

9.
10.
The evolution of sperm length in moths   总被引:14,自引:0,他引:14  
Sperm form and function remain poorly understood despite being of fundamental biological importance. An instructive approach has been to examine evolutionary associations across comparable taxa between sperm characters and other, potentially selective reproductive traits. We adopt this approach here in a comparative study examining how sperm lengths are associated with male and female reproductive characters across moths. Primary data have revealed Lepidoptera to be an ideal order for examination: there is profound variation in the dimensions (but not organization) of the reproductive traits between closely related species which all share a monophyletic ancestry, for example, eupyrene sperm length varies from 110 to 12,675 microm. Eupyrene (normal fertilizing) and apyrene (anucleate and non-fertile) sperm lengths are positively correlated across taxa and both sperm types show positive associations with mating pattern (as measured by the residual testis size). At fertilization, eupyrene sperm must migrate down the often elongated female spermathecal duct from storage to unite with the ovum. Across taxa, the elongation of this duct is associated with increased eupyrene sperm length, suggesting a positive female influence on sperm size since longer, more powerful sperm may be selected to migrate and/or compete successfully down greater ductal lengths. Apyrene sperm length is not associated with female reproductive tract dimensions. However, we found a positive relationship between the residual testis volume and spermathecal volume, suggesting coevolution between male investment in spermatogenesis and the extent of the female sperm storage capacity. Within males, there is a positive association between the two organs which form the ejaculate-containing spermatophore: the testes and the accessory gland. The 'trade-up' in investment to these components is discussed in relation to paternal investment and mating patterns.  相似文献   

11.
Juvenile population size may affect the potential for future mating opportunities and therefore potentially sperm competition; this may favour ontogenetic adjustments in sperm production. Theory predicts that males should optimize their ejaculatory investment in accordance with the risk of sperm competition. Evidence for these theories is typically revealed in males of highly polyandrous species. Whether such responses to environmental cues exist for females, or are maintained in mildly polyandrous species in which most females do not re-mate, is unknown. Male lepidopterans produce normal, fertilizing sperm (eupyrene) and non-fertilizing (apyrene) sperm. Apyrene sperm are associated with reduced female receptivity, suggesting a role in sperm competition. We tested the effect of juvenile population size on life-history parameters and reproductive investment in the mildly polyandrous almond moth, Cadra cautella , a species in which current male ejaculate traits suggest previous selection for paternity protection consistent with a sperm-competitive environment. Larvae were reared at high (H) or low population sizes (L). We recorded larval development time, adult longevity and male gametic investment. Our results show a response by adults to signals in the juvenile environment. H males transferred more apyrene, but not eupyrene sperm. We also examined potential trade-offs between somatic characters and reproductive behaviours. Larval duration was longer for H individuals, females and heavier individuals. Further, H females and L males lived longer than L females. Our data are consistent with the theory that males should adjust their reproductive investment in accordance with sperm competition risk.  相似文献   

12.
Since natural populations of guppies, Poecilia reticulata, often differ from one another in social structure, the intensity of sperm competition is likely to vary between localities. Guppies are promiscuous, with female choice for colourful males playing a central role in the mating system. In addition, male guppies use forced copulations to circumvent female choice. Both methods of copulation are used interchangeably by individual males, but the degree to which either is used may depend on the social environment into which males are born. Here we show that male mating behaviour varies according to the rearing sex ratio: when reared in male-biased groups, males performed more forced copulations and fewer courtship displays but showed the opposite pattern of behaviour when reared in female-biased groups. Our prediction, based on sperm competition theory, that stripped sperm number would reflect social structure was not supported by our results. Instead, the overall level of sexual activity (gonopodial thrusts+sigmoid displays) was a better predictor of sperm number in the different groups of males. Rearing density, where sex ratio was controlled, did not significantly affect male mating behaviour or sperm traits. Males reared under the different sex ratios continued to show their characteristic behaviour patterns when placed in equal sex ratio tanks. We conclude, therefore, that males adopt mating strategies to suit their social environment, and that these strategies remain fixed, for short periods at least, if population structure changes. Copyright 1999 The Association for the Study of Animal Behaviour.  相似文献   

13.
Sperm competition theory predicts that males should modulate sperm investment according to their social status. Sperm speed, one proxy of sperm quality, also influences the outcome of sperm competition because fast sperm cells may fertilize eggs before slow sperm cells. We evaluated whether the social status of males predicted their sperm speed in a wild population of dunnocks (Prunella modularis). In addition to the traditional analysis of the average speed of sperm cells per sample, we also analysed subsamples of the fastest sperm cells per sample. In other words, we systematically evaluated the effects of including different numbers of the fastest sperm in our analyses, ranging from the 5‐fastest sperm cells to the 100‐fastest sperm cells in a sample. We further evaluated whether fitness, defined here as the number of chicks sired per male per breeding season, relates to the sperm speed in the same population. We found that males in monogamous pairings (i.e. low levels of sperm competition), produced the slowest sperm cells, whereas subordinate males in polyandrous male–male coalitions (i.e. high levels of sperm competition) produced the fastest sperm cells. This result was consistent regardless of the number of fastest sperm included in our analyses, but statistical support was conditional on the number of sperm cells included in the analysis. Interestingly, we found no significant relationship between fitness and sperm speed, which suggests that it is possible that the differential mating opportunities across social status levelled out any possible difference. Our study also suggests that it is important to identify biologically meaningful subsets of fastest sperm and cut‐offs for inclusions for assessing sperm competition via sperm speed.  相似文献   

14.
1. Females of the noctuid moth Heliothis virescens F. mate more than once. Thus, sperm from two or more males normally compete for fertilisations within the female reproductive tract. The eggs are typically fertilised by sperm from only one male, either the female's last mate or an earlier mate. Twice‐mated females store only one ejaculate's worth of fertilising sperm (eupyrene) but nearly two ejaculates' worth of a nonfertilising sperm morph (apyrene), which is thought to play a role in sperm competition. 2. The mechanism of sperm use in H. virescens was investigated by examining factors that vary with paternity, which was assigned based on allozyme variation. The factors included male and female body masses and ages, male genital characters, the size of the sperm package, and the number of sperm stored by the female. 3. One male typically gained sperm precedence; this was nearly twice as likely to be the second male as it was to be the first. Two factors were found to vary significantly with paternity: female mass and male age. The second male to mate was more likely to gain sperm precedence if the female was larger and if the male was older than the female's first mate. 4. The significance of male age and female mass to several hypothetical models of the mechanism of sperm use is discussed.  相似文献   

15.
Sperm length is extremely variable across species, but a general explanation for this variation is lacking. However, when the risk of sperm competition is high, sperm length is predicted to be less variable within species, and there is some evidence for this in birds and social insects. Here, we examined intraspecific variation in sperm length, both within and between males, and its potential associations with sperm competition risk and variation in female reproductive tract morphology across dung flies. We used two measures of variation in sperm size, and testis size was employed as our index of sperm competition risk. We found no evidence of associations between sperm length variation and sperm competition or female reproductive tract variation. These results suggest that variation in sperm competition risk may not always be associated with variation in sperm morphology, and the cause(s) of sperm length variation in dung flies remains unclear.  相似文献   

16.
Sperm competition theory predicts that under high risk of sperm competition, males will increase the number of sperm that they allocate to a female. This prediction has been supported by some experimental studies but not by others. Here, I conducted a meta-analysis to determine whether the increase in sperm allocation under high risk of sperm competition is a generalized response across taxa. I collected data from 39 studies and 37 species. Across taxa, males under a high risk of sperm competition respond by increasing their sperm allocation (mean effect size=0.32). Number of offspring did not explain a significant portion of the variation in effect sizes. A traditional meta-analysis (i.e. without phylogenetic information) described the variation among effect sizes better than a meta-analysis that incorporates the phylogenetic relationships among species, suggesting that the increase in sperm allocation under high risk of sperm competition is similarly prevalent across taxa.  相似文献   

17.
Sperm competition has been a major selective force acting on male and female behaviour. Theory predicts that when sperm compete numerically, selection will favour males that vary the number of sperm they transfer with sperm competition risk. This often leads to increased copula duration when sperm competition risk is high, the selective advantage of which is increased paternity. We investigated the copulatory behaviour of the common dung fly Sepsis cynipsea in relation to male and female size, female mating status, age, and presence or absence of dung. This fly is unusual in that males mate-guard before copula while females use the sperm of previous males for their current clutch. Body size had no effect on copula duration, but duration of first copulations depended on female age, with older females having longer copulations. For females that copulated twice, there was an interaction between female age and mating status influencing copula duration: old females had longer copulations than young females, but second copulas were longer for young females. Residual testis size of nonvirgin males was smaller than for virgins, and testis shrinkage was significantly associated with copula duration, which indicates that males transfer more ejaculate with longer copulations. We therefore conclude that copulation duration and ejaculate transfer vary in accordance with sperm competition theory.  相似文献   

18.
Sperm velocity is one of the main determinants of the outcome of sperm competition. Since sperm vary considerably in their morphology between and within species, it seems likely that sperm morphology is associated with sperm velocity. Theory predicts that sperm velocity may be increased by enlarged midpiece (energetic component) or flagellum length (kinetic component), or by particular ratios between sperm components, such as between flagellum length and head size. However, such associations have rarely been found in empirical studies. In a comparative framework in passerine birds, we tested these theoretical predictions both across a wide range of species and within a single family, the New World blackbirds (Icteridae). In both study groups, sperm velocity was influenced by sperm morphology in the predicted direction. Consistent with theoretical models, these results show that selection on sperm morphology and velocity are likely to be concomitant evolutionary forces.  相似文献   

19.
Sperm number is an important predictor of paternity when there is sperm competition. Sperm number is often measured as maximum sperm reserves, but in species where mating is frequent, males will often be replenishing their reserves. Thus, variation in how quickly males can produce sperm is likely to be important in determining male success in sperm competition. Despite this, little is known about how male size, body condition or diet affects sperm production rates. We counted sperm number in large and small Gambusia holbrooki (eastern mosquitofish) after 3 weeks on either a high or low food diet. Sperm number was significantly higher in both larger males and in well‐fed males. We then stripped ejaculates again either 1, 2, 3, 4 or 5 days later to investigate subsequent sperm production. The rate of sperm replenishment was influenced by an interaction between size and diet. Large, well‐fed males had consistently high levels of sperm available over the 5 days (i.e. rapid replenishment), whereas small poorly fed males showed consistently low levels of sperm availability over the 5 days (i.e. slow replenishment). In contrast, large, poorly fed and small, well‐fed males increased their sperm numbers over the first 3 days (i.e. intermediate replenishment). Our study highlights that when mating is frequent and sperm competition is high, size and condition dependence of maximal sperm number and of sperm production rate might both contribute to variation in male reproductive success.  相似文献   

20.
Sperm deliver the male complement of DNA to the ovum, and thus play a key role in sexual reproduction. Accordingly, spermatogenesis has outstanding significance in fields as disparate as infertility treatments and pest-control, making it a broadly interesting and important focus for molecular genetics research in a wide range of species. Here we investigate spermatogenesis in the model lepidopteran insect Bombyx mori (silkworm moth), with particular focus on the gene PMFBP1 (polyamine modulated factor 1 binding protein 1). In humans and mouse, PMFBP1 is essential for spermatogenesis, and mutations of this gene are associated with acephalic spermatozoa, which cause infertility. We identified a B. mori gene labeled as “PMFBP1” in GenBank’s RefSeq database and sought to assess its role in spermatogenesis. Like in mammals, the silkworm version of this gene (BmPMFBP1) is specifically expressed in testes. We subsequently generated BmPMFBP1 mutants using a transgenic CRISPR/Cas9 system. Mutant males were sterile while the fertility of mutant females was comparable to wildtype females. In B. mori, spermatogenesis yields two types of sperm, the nucleated fertile eupyrene sperm, and anucleated unfertile apyrene sperm. Mutant males produced abnormal eupyrene sperm bundles but normal apyrene sperm bundles. For eupyrene sperm, nuclei were mislocated and disordered inside the bundles. We also found the BmPMFBP1 deficiency blocked the release of eupyrene sperm bundles from testes to ejaculatory seminalis. We found no obvious abnormalities in the production of apyrene sperm in mutant males, and double-matings with apyrene-deficient sex-lethal mutants rescued the ΔBmPMFBP1 infertility phenotype. These results indicate BmPMFBP1 functions only in eupyrene spermatogenesis, and highlight that distinct genes underlie the development of the two sperm morphs commonly found in Lepidoptera. Bioinformatic analyses suggest PMFBP1 may have evolved independently in lepidoptera and mammals, and that despite the shared name, are likely not homologous genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号