首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Symmetry detection is an interesting probe of pattern processing because it requires the matching of novel patterns without the benefit of prior recognition. However, there is evidence that prior knowledge of the axis location plays an important role in symmetry detection. We investigated how the prior information about the symmetry axis affects symmetry detection under noise-masking conditions. The target stimuli were random-dot displays structured to be symmetric about vertical, horizontal, or diagonal axes and viewed through eight apertures (1.2° diameter) evenly distributed around a 6° diameter circle. The information about axis orientation was manipulated by (1) cueing of axis orientation before the trial and (2) varying axis salience by including or excluding the axis region within the noise apertures. The percentage of correct detection of the symmetry was measured at for a range of both target and masking noise densities. The threshold vs. noise density function was flat at low noise density and increased with a slope of 0.75–0.8 beyond a critical density. Axis cueing reduced the target threshold 2–4fold at all noise densities while axis salience had an effect only at high noise density. Our results are inconsistent with an ideal observer or signal-to-noise account of symmetry detection but can be explained by a multiple-channel model is which the response in each channel is the ratio between the nonlinear transform of the responses of sets of early symmetry detectors and the sum of external and intrinsic sources of noise.  相似文献   

2.
The role of symmetry detection in early visual processing and the sensitivity of biological visual systems to symmetry across a wide range of organisms suggest that symmetry can be detected by low-level visual mechanisms. However, computational and functional considerations suggest that higher-level mechanisms may also play a role in facial symmetry detection. We tested this hypothesis by examining whether symmetry detection is better for faces than comparable patterns, which share low-level properties with faces. Symmetry detection was better for upright faces than for inverted faces (experiment 1) and contrast-reversed faces (experiment 2), implicating high-level mechanisms in facial symmetry detection. In addition, facial symmetry detection was sensitive to spatial scale, unlike low-level symmetry detection mechanisms (experiment 3), and showed greater sensitivity to a 45 degrees deviation from vertical than is found for other aspects of face perception (experiment 4). These results implicate specialized, higher-level mechanisms in the detection of facial symmetry. This specialization may reflect perceptual learning resulting from extensive experience detecting symmetry in faces or evolutionary selection pressures associated with the important role of facial symmetry in mate choice and 'mind-reading' or both.  相似文献   

3.
有性生殖是有花植物的一个重要特征, 胚胎则是实现有性生殖和世代交替的重要载体。植物胚胎从双受精开始, 经历了合子极性建立、顶基轴形成、细胞层分化和器官形成等过程, 这些过程都受到生长素的调控。近年来的研究表明, 生长素在生物合成、极性运输和信号转导3个层面上调控胚胎的发育过程。该文以双子叶植物拟南芥(Arabidopsis thaliana)为例, 综述了生长素对胚胎早期发育过程, 包括合子极性和顶基轴建立、表皮原特化和对称模式转变、胚根原特化和根尖分生组织形成及茎尖分生组织形成等发育的调控机制。  相似文献   

4.
The insulin receptor (IR) is a four-chain, transmembrane dimer held together by disulfide bonds. To gain information about the molecular envelope and the organization of its domains, single-molecule images of the IR ectodomain and its complexes with three Fabs have been analyzed by electron microscopy. The data indicate that the IR ectodomain resembles a U-shaped prism of approximate dimensions 90 x 80 x 120 A. The width of the cleft (assumed membrane-distal) between the two side arms is sufficient to accommodate ligand. Fab 83-7, which recognizes the cys-rich region of IR, bound halfway up one end of each side arm in a diametrically opposite manner, indicating a twofold axis of symmetry normal to the membrane surface. Fabs 83-14 and 18-44, which have been mapped respectively to the first fibronectin type III domain (residues 469-592) and residues 765-770 in the insert domain, bound near the base of the prism at opposite corners. These images, together with the data from the recently determined 3D structure of the first three domains of the insulin-like growth factor type I receptor, suggest that the IR dimer is organized into two layers with the L1/cys-rich/L2 domains occupying the upper (membrane distal) region of the U-shaped prism and the fibronectin type III domains and the insert domains located predominantly in the membrane-proximal region.  相似文献   

5.
Paulo R. Alves 《Chromosoma》1982,85(5):713-722
A mouse cell line of C57B1/6J spontaneous melanoma (clone PG 19), and a C-type virus transformed cell line (G-8 clone 124) originating from normal Balb/c mice were used in a study of the centromeric heterochromatin region of BrdU-labelled chromosomes stained by the Giemsa pH 10.4 method. Three possible explanations for the generation of compound lateral asymmetry within the centromeric heterochromatin region of the laboratory mouse are discussed: 1) inverted translocation; 2) centric fusion followed by paracentromeric fission and 3) inversion of part of the centromeric satellite DNA. These processes could be of considerable genetic and evolutionary significance. The non-random spatial position of unstained and dark stained C-bands in BrdU-labelled diplochromosomes of endoreduplicated cells can be explained as being due to the localization of the old and new DNA chains in a unineme chromatid model. The late replicating regions are shown to be located on the inside of the half-chromatid close to the axial symmetry axis of the metaphase chromosome.  相似文献   

6.
Using electron microscopy, the spatial structure of glutamine synthetase from pea leaf chloroplasts was studied. The enzyme was shown to consist of eight elongated subunits, which are arranged with a point of 42 symmetry at the vertices of two squares. These squares are twisted about a 4-fold axis at 40 degrees relative to each other.  相似文献   

7.
PurposeTo assess the quality of images obtained on a dual energy computed tomography (CT) scanner.MethodsImage quality was assessed on a 64 detector-row fast kVp-switching dual energy CT scanner (Revolution GSI, GE Medical Systems). The Catphan phantom and a low contrast resolution phantom were employed. Acquisitions were performed at eight different radiation dose levels that ranged from 9 mGy to 32 mGy. Virtual monochromatic spectral images (VMI) were reconstructed in the 40–140 keV range using all available kernels and iterative reconstruction (IR) at four different blending levels. Modulation Transfer Function (MTF) curves, image noise, image contrast, noise power spectrum and contrast to noise ratio were assessed.ResultsIn-plane spatial resolution at the 10% of the MTF curve was 0.60 mm−1. In-plane spatial resolution was not modified with VMI energy and IR blending level. Image noise was reduced from 16.6 at 9 mGy to 6.7 at 32 mGy, while peak frequency remained within 0.14 ± 0.01 mm−1. Image noise was reduced from 14.3 at IR 10% to 11.5 at IR 50% at a constant peak frequency. The lowest image noise and maximum peak frequency were recorded at 70 keV.ConclusionsOur results have shown how objective image quality is varied when different levels of radiation dose and different settings in IR are applied. These results provide CT operators an in depth understanding of the imaging performance characteristics in dual energy CT.  相似文献   

8.
We have studied the detection, by human observers, of suprathreshold bandlimited signals embedded at various locations in non-white, Gaussian filtered noise. Detection models based upon the direct cross-correlation between the signal and the noise image (matched filtering) cannot account for the results of our experiments. Our findings point instead at a detection process occurring at the level of signal decomposition, and jointly determined by: (a) the differential outputs of discrete, bandlimited spatial analyzers selectively responsive to different components of the signal; and (b) variable detection rules adaptively related to such outputs and to the type of signal information available to the observer.  相似文献   

9.
Predictions of the minimal size an organism must have to swim along stimulus gradients were used to compare the relative advantages of sensory systems employing spatial (simultaneous) and temporal (sequential) gradient detection mechanisms for small free-swimming bacteria, leading to the following conclusions: 1) there are environmental conditions where spatial detection mechanisms can function for smaller organisms than can temporal mechanisms, 2) temporal mechanisms are superior (have a smaller size limit) for the difficult conditions of low concentration and shallow gradients, but 3) observed bacterial chemotaxis occurs mostly under conditions where spatial mechanisms have a smaller size limit, and 4) relevant conditions in the natural environment favor temporal mechanisms in some cases and spatial mechanisms in others. Thus, sensory ecology considerations do not preclude free-swimming bacteria from employing spatial detection mechanisms, as has been thought, and microbiologists should be on the lookout for them. If spatial mechanisms do not occur, the explanation should be sought elsewhere.  相似文献   

10.
Band-spectrum noise has been shown to suppress the visual perception of printed letters. The suppression exhibits a specific dependence on the spatial frequency of the noise, and the frequency domain of most effective inhibition has been related to the size of the letters. In this paper, we address two important questions that were left open by previous studies: (1) Is the observed effect specific to text, and which parameters determine the domain of most effective suppression? (2) What is the origin of the effect in terms of underlying neural processes? We conduct a series of psychophysical experiments that demonstrate that the frequency domain of most effective inhibition depends on the stroke width of the letter rather than on the letter size. These experiments also demonstrate that the effect is not specific to the recognition of letters but also applies to other objects and even to single bars. We attribute the observed effect to nonclassical receptive field (non-CRF) inhibition in visual area V1. This mechanism has previously been suggested as the possible origin of various other perceptual effects. We introduce computational models of two types of cell that incorporate non-CRF inhibition, which are based on Gabor energy filters extended by surround suppression of two kinds: isotropic and anisotropic. The computational models confirm previous qualitative explanations of perceptual effects, such as orientation contrast pop-out, reduced saliency of lines embedded in gratings, and reduced saliency of contours surrounded by textures. We apply the computational models to the images used in the psychophysical experiments. The computational results show a dependence of the inhibition effect on the spatial frequency of the noise that is similar to the suppression effect measured in the psychophysical experiments. The experimental results and their explanation give further support to the idea of a possible functional role of non-CRF inhibition in the separation of contour from texture information and the mediation of object contours to higher cortical areas.  相似文献   

11.
12.
Cai YC  Lu S  Li CY 《PloS one》2012,7(5):e38093
Several types of suppression phenomena have been observed in the visual system. For example, the ability to detect a target stimulus is often impaired when the target is embedded in a high-contrast surround. This contextual modulation, known as surround suppression, was formerly thought to occur only in the periphery. Another type of suppression phenomena is interocular suppression, in which the sensitivity to a monocular target is reduced by a superimposed mask in the opposite eye. Here, we explored how the two types of suppression operating across different spatial regions interact with one another when they simultaneously exert suppressive influences on a common target presented at the fovea. In our experiments, a circular target grating presented to the fovea of one eye was suppressed interocularly by a noise pattern of the same size in the other eye. The foveal stimuli were either shown alone or surrounded by a monocular annular grating. The orientation and eye-of-origin of the surround grating were varied. We found that the detection of the foveal target subjected to interocular suppression was severely impaired by the addition of the surround grating, indicating strong surround suppression in the fovea. In contrast, when the interocular suppression was released by superimposing a binocular fusion ring onto both the target and the dichoptic mask, the surround suppression effect was found to be dramatically decreased. In addition, the surround suppression was found to depend on the contrast of the dichoptic noise with the greatest surround suppression effect being obtained only when the noise contrast was at an intermediate level. These findings indicate that surround suppression and interocular suppression are not independent of each other, but there are strong interactions between them. Moreover, our results suggest that strong surround suppression may also occur at the fovea and not just the periphery.  相似文献   

13.
 The detection of compound sinusoidal gratings of various spatial frequency separations and four different grating sizes has been studied using the summation-to-threshold paradigm. Contrast interrelation functions have been measured and spatial frequency tuning estimates, based on the slope of the contrast interrelation function at two definite points, were derived using the “negative gradient technique” proposed by Logvinenko [Logvinenko (1995) Biol Cybern 73: 547–552]. It is shown that compound grating detection can be modelled by assuming pattern-specific sensory mechanisms for each of the spatial frequency components, which adapt to the periodicity and the size of the stimulus but not to its envelope function. Further, it is shown that relative sensitivity for a given spatial frequency separation can be predicted with good accuracy by the correlation of the grating components used for superposition. It is suggested that the most plausible implementation of the pattern correlation principle in human grating detection is the “grating cell” model. Received: 10 March 2000 / Accepted in revised form: 4 December 2000  相似文献   

14.
Aqueous mixtures of reaction centers of Rhodopseudomonas sphaeroides and gelatin were dried to form thin films. Following hydration, these films were stretched as much as two to three times their original length. Polarized absorption spectra showing linear dichroism were obtained for both unstretched and stretched films, with the planes and stretching axes of the films mounted in various geometries relative to the electric vector of the measuring beam. These data were analyzed in terms of the following model: Reaction centers possess an axis of symmetry that is fixed in relation to the reaction center structure. In unstretched films this axis is confined to the film plane and oriented at random within the plane. In stretched films the symmetry axis is aligned with the direction of stretching. In both preparations reaction centers are distributed randomly with respect to rotation about the axis of symmetry. The data are consistent with this model when the analysis acknowledges less than perfect orientation. For perfect orientation in a stretched film the model predicts uniaxial symmetry about the axis of stretching. The approach to this condition was examined with films stretched to different extents. Extrapolation yielded dichroic ratios for the ideal case of perfect orientation, and allowed calculation of the angles between the axis of symmetry and the various optical transition dipoles in the reaction center. This treatment included the two absorption bands of the bacteriochlorophyll 'special pair' (photochemical electron donor) in the Qx region, at 600 and 630 nm, which we were able to resolve in light minus dark difference spectra.  相似文献   

15.
The three-dimensional structure of the nuclear pore complex has been determined to a resolution of approximately 90 A by electron microscopy using nuclear envelopes from Xenopus oocytes. It is shown to be an assembly of several discrete constituents arranged with octagonal symmetry about a central axis. There are apparent twofold axes perpendicular to the octad axis which suggest that the framework of the pore complex is constructed from two equal but oppositely facing halves. The half facing the cytoplasm is in some instances decorated by large particles, similar in appearance and size to ribosomes.  相似文献   

16.
Dresp B 《Spatial Vision》1999,12(2):129-142
Psychophysical thresholds for the detection of luminance targets improve significantly when the targets are presented in a specific context of spatially separated, collinear inducing stimuli defining visual contours. This phenomenon is generally referred to as a special case of detection facilitation called spatial facilitation. Spatial facilitation has been observed with luminance-defined. achromatic stimuli on achromatic backgrounds as well as with targets and inducers defined by colour contrast. This paper reviews psychophysical results from detection experiments with human observers showing the conditions under which spatially separated contour inducers facilitate the detection of simultaneously presented target stimuli. The findings point towards two types of spatial mechanisms: (i) Short-range mechanisms that are sensitive to narrowly spaced stimuli of small size and, at distinct target locations, selective to the contrast polarity of targets and inducers. (ii) Long-range mechanisms that are triggered by longer stimuli, generate facilitation across wider spatial gaps between targets and inducers, and are insensitive to their contrast polarity. Spatial facilitation with chromatic stimuli requires a longer inducer exposure than spatial facilitation with achromatic stimuli, which is already fully effective at inducer exposures of 30 ms. This difference in temporal dynamics indicates some functional segregation between mechanisms for colour and luminance contrast in spatial coding. In general, spatially induced detection facilitation can to a large extent be explained by mechanisms involving from-short-to-long-range interactions between cortical detectors.  相似文献   

17.
The discovery of regulatory motifs embedded in upstream regions of plants is a particularly challenging bioinformatics task. Previous studies have shown that motifs in plants are short compared with those found in vertebrates. Furthermore, plant genomes have undergone several diversification mechanisms such as genome duplication events which impact the evolution of regulatory motifs. In this article, a systematic phylogenomic comparison of upstream regions is conducted to further identify features of the plant regulatory genomes, the component of genomes regulating gene expression, to enable future de novo discoveries. The findings highlight differences in upstream region properties between major plant groups and the effects of divergence times and duplication events. First, clear differences in upstream region evolution can be detected between monocots and dicots, thus suggesting that a separation of these groups should be made when searching for novel regulatory motifs, particularly since universal motifs such as the TATA box are rare. Second, investigating the decay rate of significantly aligned regions suggests that a divergence time of ~100 mya sets a limit for reliable conserved non-coding sequence (CNS) detection. Insights presented here will set a framework to help identify embedded motifs of functional relevance by understanding the limits of bioinformatics detection for CNSs.  相似文献   

18.
In natural settings, many stimuli impinge on our sensory organs simultaneously. Parsing these sensory stimuli into perceptual objects is a fundamental task faced by all sensory systems. Similar to other sensory modalities, increased odor backgrounds decrease the detectability of target odors by the olfactory system. The mechanisms by which background odors interfere with the detection and identification of target odors are unknown. Here we utilized the framework of the Drift Diffusion Model (DDM) to consider possible interference mechanisms in an odor detection task. We first considered pure effects of background odors on either signal or noise in the decision-making dynamics and showed that these produce different predictions about decision accuracy and speed. To test these predictions, we trained mice to detect target odors that are embedded in random background mixtures in a two-alternative choice task. In this task, the inter-trial interval was independent of behavioral reaction times to avoid motivating rapid responses. We found that increased backgrounds reduce mouse performance but paradoxically also decrease reaction times, suggesting that noise in the decision making process is increased by backgrounds. We further assessed the contributions of background effects on both noise and signal by fitting the DDM to the behavioral data. The models showed that background odors affect both the signal and the noise, but that the paradoxical relationship between trial difficulty and reaction time is caused by the added noise.  相似文献   

19.
The detection performance of conventional surface plasmon resonance (SPR) biosensors is limited to a 1 pg/mm(2) surface coverage of biomolecules, and consequently, such sensors struggle to detect the interaction of small molecules in low concentrations. The present study is attempted to propose the use of a novel SPR biosensor with Au nanoclusters embedded in a dielectric film to achieve a 10-fold improvement in the resolution performance. A co-sputtering method utilizing a multi-target sputtering system is used to fabricate the present dielectric films (SiO(2)) with embedded Au nanoclusters. It is shown that the sensitivity of the developed SPR biosensor can be improved by adjusting the size and volume fraction of the embedded Au nanoclusters in order to control the surface plasmon effect. The present gas detection and DNA hybridization experimental results confirm that the proposed Au nanocluster-enhanced SPR biosensor provides the potential to achieve an ultrahigh-resolution detection performance of approximately 0.1 pg/mm(2) surface coverage of biomolecules.  相似文献   

20.
Aqueous mixtures of reaction centers of Rhodopseudomonas sphaeroides and gelatin were dried to form thin films. Following hydration, these films were stretched as much as two to three times their original length. Polarized absorption spectra showing linear dichroism were obtained for both unstretched and stretched films, with the planes and stretching axes of the films mounted in various geometries relative to the electric vector of the measuring beam. These data were analyzed in terms of the following model: Reaction centers possess an axis of symmetry that is fixed in relation to the reaction center structure. In unstretched films this axis is confined to the film plane and oriented at random within the plane. In stretched films the symmetry axis is aligned with the direction of stretching. In both preparations reaction centers are distributed randomly with respect to rotation about the axis of symmetry. The data are consistent with this model when the analysis acknowledges less than perfect orientation. For perfect orientation in a stretched film the model predicts uniaxial symmetry about the axis of stretching. The approach to this condition was examined with films stretched to different extents. Extrapolation yielded dichroic ratios for the ideal case of perfect orientation, and allowed calculation of the angles between the axis of symmetry and the various optical transition dipoles in the reaction center. This treatment included the two absorption bands of the bacteriochlorophyll ‘special pair’ (photochemical electron donor) in the Qx region, at 600 and 630 nm, which we were able to resolve in light minus dark difference spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号