首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The four orders of eutherian mammals which are traditionally placed in the superorder Archonta [Chiroptera (microbats and megabats), Dermoptera (flying lemurs), Primates (primates), and Scandentia (tree shrews)] are among the best-studied taxa of their infraclass from both the molecular and morphological perspectives. Nevertheless, the ordinal relationships of archontans remain unresolved. While morphological studies favor their monophyly, molecular investigations do not. To evaluate these opposing conclusions, parsimony analyses were conducted with three separate sets of DNA sequences from both the nuclear and mitochondrial genomes and one file of morphological data for archontans and other eutherian mammals. Statistical tests of character support and ordinal branching pattern differences documented that the three sets of DNA sequences and their results were homogeneous and congruent, thereby allowing for the combination of these data into one large matrix for further phylogenetic analysis. In contrast, these same tests revealed that the combined sequence and morphological files and their topologies were in strong conflict. Archontan monophyly was supported by the morphological evidence, but this arrangement was strongly rejected by the combined DNA sequences that favored instead a grouping of Dermoptera, Primates, and Scandentia with Lagomorpha (rabbits) and Rodentia (rodents). Resolution of these significant differences will require further evaluations about the homologies and evolutionary properties of the molecular and morphological characters and about the appropriateness of the chosen phylogenetic methods, as well as the incorporation of new comparative data from both sources.  相似文献   

2.
Recent advances in molecular phylogenetics indicate that the order Chiroptera is monophyletic and that one of four lineages of microbats (Rhinolophoidea) shares a common origin with megabats. Against this background we undertook a comprehensive analysis of placental evolution in bats. We defined a range of characters and character states associated with female reproduction, early development, placentation and the neonate. These were then mapped on a pre-existing hypothesis of bat relationships that represents the current view from molecular studies. Our purpose was threefold. First, on the assumption of bat monophyly, we wished to establish the stem species pattern of extant chiropterans. Secondly, we asked whether there are derived character conditions in support of a common origin for Rhinolophoidea and the megabats. Thirdly, we looked for evolutionary character transformations that characterize higher-level clades within Chiroptera, i.e. the megabats and the four lineages of microbats. The character condition occurring in the last common ancestor of Chiroptera was unequivocal for 21 of the 25 characters included in the analysis. The data did not offer support for a megabat-rhinolophoid clade or the implication that microbats are paraphyletic. However, analysis of early development, placentation and other reproductive parameters resulted in derived character conditions for the megabats as well as for each of the four major lineages of microbats.  相似文献   

3.
Complementary DNA (cDNA) was prepared with viral RNA-directed DNA polymerase from purified baboon globin messenger RNA (mRNA). Homologous and heterologous hybrids between human and baboon mRNAs and cDNAs were compared for extent of hybridisation and thermal stability. Higher mRNA inputs to the hybridizations were required to reach saturation in the heterologous cases. The melting temperature of the heterologous hybrid was 5 degrees C lower than the homologous hybrid. Between these two primates, divergence has occurred in the globin gene to a smaller extent than that possible from third position changes in the coding sequences of the divergence of total DNA. Globin cDNA prepared from baboon will not in general be useful as a probe for human globin mRNA or human globin gene sequences.  相似文献   

4.
5.
Evidence from DNA sequences on the phylogenetic systematics of primates is congruent with the evidence from morphology in grouping Cercopithecoidea (Old World monkeys) and Hominoidea (apes and humans) into Catarrhini, Catarrhini and Platyrrhini (ceboids or New World monkeys) into Anthropoidea, Lemuriformes and Lorisiformes into Strepsirhini, and Anthropoidea, Tarsioidea, and Strepsirhini into Primates. With regard to the problematic relationships of Tarsioidea, DNA sequences group it with Anthropoidea into Haplorhini. In addition, the DNA evidence favors retaining Cheirogaleidae within Lemuriformes in contrast to some morphological studies that favor placing Cheirogaleids in Lorisiformes. While parsimony analysis of the present DNA sequence data provides only modest support for Haplorhini as a monophyletic taxon, it provides very strong support for Hominoidea, Catarrhini, Anthropoidea, and Strepsirhini as monophyletic taxa. The parsimony DNA evidence also rejects the hypothesis that megabats are the sister group of either Primates or Dermoptera (flying lemur) or a Primate-Dermoptera clade and instead strongly supports the monophyly of Chiroptera, with megabats grouping with microbats at considerable distance from Primates. In contrast to the confused morphological picture of sister group relationships within Hominoidea, orthologous noncoding DNA sequences (spanning alignments involving as many as 20,000 base positions) now provide by the parsimony criterion highly significant evidence for the sister group relationships defined by a cladistic classification that groups the lineages to all extant hominoids into family Hominidae, divides this ape family into subfamilies Hylobatinae (gibbons) and Homininae, divides Homininae into tribes Pongini (orangutans) and Hominini, and divides Hominini into subtribes Gorillina (gorillas) and Hominina (humans and chimpanzees). A likelihood analysis of the largest body of these noncoding orthologues and counts of putative synapomorphies using the full range of sequence data from mitochondrial and nuclear genomes also find that humans and chimpanzees share the longest common ancestry. © 1994 Wiley-Liss, Inc.  相似文献   

6.
A new method of membrane-bound DNA × DNA hybridization was devised to accommodate the study of small quantities of DNA obtained from museum specimens for phylogeny reconstruction. Membranebound, single-stranded target genomic DNAs were competitively hybridized with a total genomic DNA probe to form hybrid duplexes required for the DNA dissociation experiments. We compared the thermal elution profiles derived from dissociating duplexes made with probes of whole genomic, single-copy, and repetitive DNA, as well as solution DNA × DNA hybridization using sc tracer. Quantitatively, pairwise indices of genetic distance derived from duplexes made with genomic probes depended entirely on hybridization of repetitive sequences, but a parallel set of experiments using repetitive and sc probes produced qualitatively similar results. The indices of genetic distance generated by the membrane-bound hybrids form an internally consistent, resolved tree which is in agreement with the solution DNA × DNA hybridization trials and traditional views of the phylogeny of the taxa under study.Correspondence to: P. Houde  相似文献   

7.
It has long been recognized that bats and birds contain less DNA in their genomes than their non-flying relatives. It has been suggested that this relates to the high metabolic demands of powered flight, a notion that is supported by the fact that pterosaurs also appear to have exhibited small genomes. Given the long-standing interest in this question, it is surprising that almost no data have been presented regarding genome size diversity among megabats (family Pteropodidae). The present study provides genome size estimates for 43 species of megabats in an effort to fill this gap and to test the hypothesis that all bats, and not just microbats, possess small genomes. Intriguingly, megabats appear to be even more constrained in terms of genome size than the members of other bat families.  相似文献   

8.
The double D-loop DNA hybrid contains four DNA strands following hybridization of two RecA protein coated complementary single-stranded DNA probes with a homologous region of a double-stranded DNA target. A remarkable feature of the double D-loop DNA hybrids is their kinetic stabilities at internal sites within linear DNA targets after removal of RecA protein from hybrids. We report here that heterologous DNA inserts in one or both probe strands affect the kinetic stability of protein-free double D-loop hybrids. DNA heterologies normally distort DNA-DNA hybrids and consequently accelerate hybrid dissociation. In contrast, heterologous DNA inserts impede dissociation of double D-loops, especially when the insert sequences interact with each other by DNA base pairing. We propose a mechanism for this kinetic stabilization by heterologous DNA inserts based on the hypothesis that the main pathway of dissociation of double D-loop DNA hybrids is a DNA branch migration process involving the rotation of both probe-target duplexes in the hybrids. Heterologous DNA inserts constrain rotation of probe-target duplexes and consequently impede hybrid dissociation. Potential applications of the stabilized double D-loops for gene targeting are discussed.  相似文献   

9.
We examine the paraphylectic hypothesis of bat origins, both in the light of previous discussions, and in the light of new evidence from our analyses of neurological traits and wing morphology. Megabats share with primates a variety of complex details in the organization of neural pathways that have not been found in any other mammalian group, particularly not in microbats. The features previously used to link microbats and megabats have been examined and found to be questionable bases for support of a monophyletic origin. In particular, morphological analyses of the musculoskeletal adaptations associated with the flight apparatus are consistent with two separate origins of the mammalian wing. Taken together, these analyses suggest that megabats evolved from an early branch of the primate lineage. This branch was comprised of moderate-sized, phytophagous gliders, of which the other living descendants are the dermopterans. Microbats, in contrast, probably evolved much earlier from small, agile insectivores whose forelimbs had long metacarpals in relation to their phalanges.  相似文献   

10.
Phylogenetic methods can produce biased estimates of phylogeny when base composition varies along different lineages. Pettigrew (1994,Curr. Biol.4:277–280) has suggested that base composition bias is responsible for the apparent support for the monophyly of bats (Chiroptera: megabats and microbats) from several different nuclear and mitochondrial genes. Pettigrew's “flying DNA” hypothesis makes several predictions: (1) that metabolic constraints associated with flying result in elevated levels of adenine and thymine throughout the genome of both megabats and microbats, (2) that the resulting base compositional bias in bats is sufficient to mislead phylogenetic methods and account for the support for bat monophyly from several nuclear and mitochondrial genes, and (3) that phylogenetic analysis using pairwise distances corrected for compositional bias should eliminate the support for bat monophyly. We tested these predictions by analyzing DNA sequences from two nuclear and three mitochondrial genes. The predicted base compositional bias does not appear to exist in some of the genes, and in other genes the differences in AT content are very small. Analyses under a wide diversity of criteria and models of evolution, including analyses that take base composition into account (using log-determinant distances), all strongly support bat monophyly. Moreover, simulation analyses indicate that even extreme bias toward AT-base composition in bats would be insufficient to explain the observed levels of support for bat monophyly. These analyses provide no support for the “flying DNA” hypothesis, whereas the monophyly of bats appears to be well supported by the DNA sequence data.  相似文献   

11.
Brown JD  Golden D  O'Neill RJ 《Genomics》2008,91(3):267-273
A reduction in the DNA modification of cytosine methylation has been linked directly to chromosome rearrangements concomitant with retroelement amplification in several marsupial hybrid genomes. While phenotypes observed for interspecific eutherian hybrids are suggestive of methylation perturbations and retroelement instability, no link between retroelements, DNA methylation, and chromosome instability has yet been identified. Previous studies in eutherian hybrids, however, have been limited to a gross examination of methylation using methylation-sensitive restriction enzyme analysis or focused on single-copy genes and/or have avoided examination of repetitive DNA. Methylation changes and retroelements are proposed as mechanisms for double minute chromosome formation and oncogene amplification, both present in the genome of a Mus hybrid model, thus making it an ideal system to evaluate methylation status more closely. We have used the PCR-based methodologies methylation-sensitive amplicon subtraction (MS-AS) and methylation-sensitive representational difference analysis (MS-RDA) to detect differentially methylated sequences between three complex genomes and to isolate methylation perturbations in a Mus musculusxMus caroli hybrid. This novel application of MS-AS and MS-RDA resulted in the isolation of differentially methylated retroelements surrounding the locus on Chromosome 10 responsible for double minute chromosome formation within this interspecific eutherian hybrid.  相似文献   

12.
Plants of the taxa Origanum onites and Origanum vulgare were allowed to cross-pollinate under natural open field conditions and to produce a mixed population of putative hybrid Origanum × intercedens and parent genotypes. Randomly collected plants were classified as putative hybrids or parent genotypes by inspection of their inflorescence. They were then subjected to analysis of their essential oil composition and were fingerprinted by randomly amplified polymorphic DNA (RAPD) fragments. DNA primers identifying the genotype as well as showing the distance of a particular putative hybrid plant from the parent genotypes were found. Alone or in combination with the essential oil composition they can be used as reliable tools for the genetic identification of the two parental taxa and the putative hybrid plants in natural populations.  相似文献   

13.
Phylogenetic methods can produce biased estimates of phylogeny when base composition varies along different lineages. Pettigrew (1994, Curr. Biol. 4:277-280) has suggested that base composition bias is responsible for the apparent support for the monophyly of bats (Chiroptera: megabats and microbats) from several different nuclear and mitochondrial genes. Pettigrew's "flying DNA" hypothesis makes several predictions: (1) that metabolic constraints associated with flying result in elevated levels of adenine and thymine throughout the genome of both megabats and microbats, (2) that the resulting base compositional bias in bats is sufficient to mislead phylogenetic methods and account for the support for bat monophyly from several nuclear and mitochondrial genes, and (3) that phylogenetic analysis using pairwise distances corrected for compositional bias should eliminate the support for bat monophyly. We tested these predictions by analyzing DNA sequences from two nuclear and three mitochondrial genes. The predicted base compositional bias does not appear to exist in some of the genes, and in other genes the differences in AT content are very small. Analyses under a wide diversity of criteria and models of evolution, including analyses that take base composition into account (using log-determinant distances), all strongly support bat monophyly. Moreover, simulation analyses indicate that even extreme bias toward AT-base composition in bats would be insufficient to explain the observed levels of support for bat monophyly. These analyses provide no support for the "flying DNA" hypothesis, whereas the monophyly of bats appears to be well supported by the DNA sequence data.  相似文献   

14.
Most short retroposons (SINEs) descend from cellular tRNA of 7SL RNA. Here, four new SINEs were found in megabats (Megachiroptera) but neither in microbats nor in other mammals. Two of them, MEG-RS and MEG-RL, descend from another cellular RNA, 5S rRNA; one (MEG-T2) is a tRNA-derived SINE; and MEG-TR is a hybrid tRNA/5S rRNA SINE. Insertion locus analysis suggests that these SINEs were active in the recent fruit bat evolution. Analysis of MEG-RS and MEG-RL in comparison with other few 5S rRNA-derived SINEs demonstrates that the internal RNA polymerase III promoter is their most invariant region, while the secondary structure is more variable. The mechanisms underlying the modular structure of these and other SINEs as well as their variation are discussed. The scenario of evolution of MEG SINEs is proposed.  相似文献   

15.
Most models of hybridization assume that hybrids are less fit than their parental taxa. In contrast, some researchers have explored the possibility that hybrid individuals may actually have higher fitness and so play an important role in the generation of new species or adaptations. By estimating age-specific fitness components, we can determine not only how hybrid fitness differs from parental taxa, but also whether the fitness of hybrids relative to parental taxa changes with age. Here we describe an analysis of age-specific fitness traits in two species of Drosophila, D. pseudoobscura and D. persimilis, and their F1 hybrids. At early ages, hybrid females lay as many eggs as parental individuals, on average, but produce far fewer offspring. By late ages, in contrast, parental taxa show a steep decline in production not seen in hybrids, such that hybrids produce more offspring, on average, than parental taxa. Furthermore, egg-adult survival in hybrids is negatively correlated with egg density, whereas these traits are only weakly correlated in parental taxa. The results are limited somewhat by the fact that we analyze only two strains, and that these may be partially inbred. Nonetheless, the results are certainly illustrative, pointing out not only that at least some hybrid individuals may be as fit or fitter than parental taxa, but also that the difference between hybrids and parental taxa varies with age.  相似文献   

16.
The relative contribution of DNA restriction and of sequence heterology as barriers to interspecies transfer of DNA was studied in the heterologous transformation of Bacillus subtilis recipients by DNA was studied in the heterologous transformation of Bacillus subtilis recipients by DNA isolated from B. globigii. Transformants were obtained at very low frequencies in the evolutionarily nonconserved aromatic region; high cotransfer of linked markers was observed. New mutations were introduced into the B. globigii intergenote sequence in the resulting hybrids; these markers could be transformed with high efficiency by both B. globigii and B. subtilis DNA, representing a 10(5)-fold increase in heterologous transforming efficiency. A restriction activity in B. globigii crude extracts inactivated the biological activity of B. subtilis and hybrid DNA but not B. globigii DNA in vitro, demonstrating different sites for restriction and modification between these species. In vivo, however, B. globigii and hybrid DNA transformed the B. globigii sequence in a hybrid recipient with the same efficiency. These results show that sequence heterology is the major barrier to interspecies transformation and that, in this system, enzymatic restriction does not prevent interspecies transformation.  相似文献   

17.
To investigate the time course of speciation, we gathered literature data on 119 pairs of closely related Drosophila species with known genetic distances, mating discrimination, strength of hybrid sterility and inviability, and geographic ranges. Because genetic distance is correlated with divergence time, these data provide a cross-section of taxa at different stages of speciation. Mating discrimination and the sterility or inviability of hybrids increase gradually with time. Hybrid sterility and inviability evolve at similar rates. Among allopatric species, mating discrimination and postzygotic isolation evolve at comparable rates, but among sympatric species strong mating discrimination appears well before severe sterility or inviability. This suggests that prezygotic reproductive isolation may be reinforced when allopatric taxa become sympatric. Analysis of the evolution of postzygotic isolation shows that recently diverged taxa usually produce sterile or inviable male but not female hybrids. Moreover, there is a large temporal gap between the evolution of male-limited and female hybrid sterility or inviability. This gap, which is predicted by recent theories about the genetics of speciation, explains the overwhelming preponderance of hybridizations yielding male-limited hybrid sterility or inviability (Haldane's rule).  相似文献   

18.
Asymmetrical introgression is an expected genetic consequence of hybridization when parental taxa differ in abundance; however, evidence for such effects in small populations is scarce. To test this prediction, we estimated the magnitude and direction of hybridization between red mulberry (Morus rubra L.), an endangered species in Canada, and the introduced and more abundant white mulberry (Morus alba L.) using nuclear (randomly amplified polymorphic DNA) and cytoplasmic (chloroplast DNA sequence) markers. Parentage of 184 trees (n = 42 using cpDNA) from four sympatric populations was estimated using a hybrid index and related to six morphological characters and population frequencies of the parental classes. Overall, the frequency of nuclear hybrids was 53.7% (n = 99) and ranged from 43% to 67% among populations. The parental and hybrid taxa differed with respect to all of the morphological traits. Sixty-seven percent of all hybrids contained more nuclear markers from M. alba than M. rubra (hybrid index x = 0.46); among populations, the degree of M. alba bias was correlated with the frequency of M. alba. In addition, the majority of hybrids (68%) contained the chloroplast genome of white mulberry. These results suggest that introgression is bidirectional but asymmetrical and is related, in part, to the relative frequency of parental taxa.  相似文献   

19.
Thermal stability of homologous and heterologous DNA duplexes renatured according to the renaturation-rate method of De Ley et al. (1970) for 35 min or 17 hr, was estimated from the melting profiles of the duplexes. Comparison of the melting points of native and renatured DNA revealed that in the first 35 min of renaturation highly stable homologous duplexes were mainly formed, whereas up to 7% mismatching occurred in duplexes renatured for 17 hr. Up to 8% more mismatching was found in heterologous DNA duplexes of moderately related coryneform bacteria than in homologous ones after 35 min renaturation. It can be concluded that mismatching in heterologous hybrids of closely related DNAs had been restricted to a few % and of moderately related DNAs to approximately 10% in the initial renaturation phase.  相似文献   

20.
Traditionally, bats (Order Chiroptera) are divided into two suborders, Megachiroptera (“megabats”) and Microchiroptera, and this nomenclature suggests a consistent difference in body size. To test whether megabats are, in fact, significantly larger than other bats, we compared them with respect to average body mass (log transformed), using both conventional and phylogenetic statistics. Because bat phylogeny is controversial, including the position of megabats, we employed several analyses. First, we derived two generic-level topologies for 101 genera, one with megabats as the sister of all other bats (“morphological” tree), the other with megabats as the sister of one specific group of microbats, the Rhinolophoidea (“molecular” tree). Second, we used a recently published “supertree” that allowed us to analyze body mass data for 656 species. In addition, because the way body mass has evolved is generally unknown, we employed several sets of arbitrary branch lengths on both topologies, as well as transformations of the branches intended to mimic particular models of character evolution. Irrespective of the topology or branch lengths used, log body mass showed highly significant phylogenetic signal for both generic and species-level analyses (all P≤ 0.001). Conventional statistics indicated that megabats were indeed larger than other bats (P ? 0.001). Phylogenetic analyses supported this difference only when performed with certain branch lengths, thus demonstrating that careful consideration of the branch lengths used in a comparative analysis can enhance statistical power. A conventional Levene's test indicated that log body mass was more variable in megabats as compared with other bats (P=0.075 for generic-level data set, P ? 0.001 for species-level). A phylogenetic equivalent, which gauges the amount of morphospace occupied (or average minimum rate of evolution) relative to topology and branch lengths specified, indicated no significant difference for the generic analyses, but did indicate a difference for some of the species-level analyses. The ancestral bat is estimated to have been approximately 20–23 g in body mass (95% confidence interval approximately 9–51 g).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号