首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interplate dispersal paths for megathermal angiosperms   总被引:1,自引:0,他引:1  
The dispersal of megathermal angiosperms between tectonic plates is reviewed on the basis of fossil evidence for the Cretaceous and Tertiary periods, since the radiation of the angiosperms, and the period of break-up of Gondwana. The combination of tectonic plate disassembly and redistribution, coupled with phases of global warming followed by pronounced cooling, has resulted in the formation of intermittent dispersal opportunities for frost-intolerant plants, and has been a major factor in determining the direction of angiosperm diversification. The Early Cretaceous radiation of angiosperms seems to show little relationship to the formation of Tethys. However, for the Late Cretaceous and Tertiary nine relevant dispersal routes can be differentiated that can be divided into two distinct categories: routes which formed following the break-up of Gondwana during the Late Cretaceous and Earlier Tertiary, when warm climates encouraged dispersal of megathermal elements globally, and routes which formed since the Middle Eocene, following phases of plate collision, as global climates were cooling down, inhibiting such dispersal. Most inter-plate dispersal of megathermal angiosperms took place in the Late Cretaceous and Early Tertiary at a time when global climates were markedly different from those of today, and the global area of megathermal vegetation several times greater than at present. Under such a scenario, it is likely than opportunities for speciation were much higher than for present-day megathermal plants.  相似文献   

2.
Tectonic processes drive megacycles of atmospheric carbon dioxide (CO(2)) concentration, c(a), that force large fluctuations in global climate. With a period of several hundred million years, these megacycles have been linked to the evolution of vascular plants, but adaptation at the subcellular scale has been difficult to determine because fossils typically do not preserve this information. Here we show, after accounting for evolutionary relatedness using phylogenetic comparative methods, that plant nuclear genome size (measured as the haploid DNA amount) and the size of stomatal guard cells are correlated across a broad taxonomic range of extant species. This phylogenetic regression was used to estimate the mean genome size of fossil plants from the size of fossil stomata. For the last 400 Myr, spanning almost the full evolutionary history of vascular plants, we found a significant correlation between fossil plant genome size and c(a), modelled independently using geochemical data. The correlation is consistent with selection for stomatal size and genome size by c(a) as plants adapted towards optimal leaf gas exchange under a changing CO(2) regime. Our findings point to the possibility that major episodes of change in c(a) throughout Earth history might have selected for changes in genome size, influencing plant diversification.  相似文献   

3.
Movement of water from soil to atmosphere by plant transpiration can feed precipitation, but is limited by the hydraulic capacities of plants, which have not been uniform through time. The flowering plants that dominate modern vegetation possess transpiration capacities that are dramatically higher than any other plants, living or extinct. Transpiration operates at the level of the leaf, however, and how the impact of this physiological revolution scales up to the landscape and larger environment remains unclear. Here, climate modelling demonstrates that angiosperms help ensure aseasonally high levels of precipitation in the modern tropics. Most strikingly, replacement of angiosperm with non-angiosperm vegetation would result in a hotter, drier and more seasonal Amazon basin, decreasing the overall area of ever-wet rainforest by 80 per cent. Thus, flowering plant ecological dominance has strongly altered climate and the global hydrological cycle. Because tropical biodiversity is closely tied to precipitation and rainforest area, angiosperm climate modification may have promoted diversification of the angiosperms themselves, as well as radiations of diverse vertebrate and invertebrate animal lineages and of epiphytic plants. Their exceptional potential for environmental modification may have contributed to divergent responses to similar climates and global perturbations, like mass extinctions, before and after angiosperm evolution.  相似文献   

4.
The global distribution of ecosystems in a world without fire   总被引:19,自引:0,他引:19  
This paper is the first global study of the extent to which fire determines global vegetation patterns by preventing ecosystems from achieving the potential height, biomass and dominant functional types expected under the ambient climate (climate potential). To determine climate potential, we simulated vegetation without fire using a dynamic global-vegetation model. Model results were tested against fire exclusion studies from different parts of the world. Simulated dominant growth forms and tree cover were compared with satellite-derived land- and tree-cover maps. Simulations were generally consistent with results of fire exclusion studies in southern Africa and elsewhere. Comparison of global 'fire off' simulations with landcover and treecover maps show that vast areas of humid C(4) grasslands and savannas, especially in South America and Africa, have the climate potential to form forests. These are the most frequently burnt ecosystems in the world. Without fire, closed forests would double from 27% to 56% of vegetated grid cells, mostly at the expense of C(4) plants but also of C(3) shrubs and grasses in cooler climates. C(4) grasses began spreading 6-8 Ma, long before human influence on fire regimes. Our results suggest that fire was a major factor in their spread into forested regions, splitting biotas into fire tolerant and intolerant taxa.  相似文献   

5.
This study aims to assess how high-latitude vegetation may respond under various climate scenarios during the 21st century with a focus on analyzing model parameters induced uncertainty and how this uncertainty compares to the uncertainty induced by various climates. The analysis was based on a set of 10,000 Monte Carlo ensemble Lund-Potsdam-Jena (LPJ) simulations for the northern high latitudes (45(o)N and polewards) for the period 1900-2100. The LPJ Dynamic Global Vegetation Model (LPJ-DGVM) was run under contemporary and future climates from four Special Report Emission Scenarios (SRES), A1FI, A2, B1, and B2, based on the Hadley Centre General Circulation Model (GCM), and six climate scenarios, X901M, X902L, X903H, X904M, X905L, and X906H from the Integrated Global System Model (IGSM) at the Massachusetts Institute of Technology (MIT). In the current dynamic vegetation model, some parameters are more important than others in determining the vegetation distribution. Parameters that control plant carbon uptake and light-use efficiency have the predominant influence on the vegetation distribution of both woody and herbaceous plant functional types. The relative importance of different parameters varies temporally and spatially and is influenced by climate inputs. In addition to climate, these parameters play an important role in determining the vegetation distribution in the region. The parameter-based uncertainties contribute most to the total uncertainty. The current warming conditions lead to a complexity of vegetation responses in the region. Temperate trees will be more sensitive to climate variability, compared with boreal forest trees and C3 perennial grasses. This sensitivity would result in a unanimous northward greenness migration due to anomalous warming in the northern high latitudes. Temporally, boreal needleleaved evergreen plants are projected to decline considerably, and a large portion of C3 perennial grass is projected to disappear by the end of the 21st century. In contrast, the area of temperate trees would increase, especially under the most extreme A1FI scenario. As the warming continues, the northward greenness expansion in the Arctic region could continue.  相似文献   

6.
气候制约着植被的地理分布,植被是区域气候特征的反映和指示,两者之间存在密不可分的联系.揭示植被与气候之间的关系是正确认识植被分布的前提,是进行植被区划的理论基础.植被区划是植被研究的归纳和总结,是其他自然地理区划和农林业区划的基础.本文在简要回顾中国植被气候关系及植被分区的研究历史的基础上,对我国以往的主要植被分区原则、依据和方案进行了评述,对有争议的主要植被界线进行了讨论.我们认为,在当今我国大部分地区的原生植被已遭到破坏的现实情况下,根据原生植被及其衍生植被类型的分布,确定其分布与限制性气候因子的关系,以此来进行植被带(区)的划分,不仅反映植被气候间密不可分的关系,在实践上也便于操作.尽管在一些植被带的命名、具体界线的划定上有分歧,但最近的中国植被分区方案大都认为我国基本的植被区有8至9个,即针叶林、针阔叶混交林、落叶阔叶林、常绿落叶阔叶混交林、常绿阔叶林以及雨林季雨林、草原、荒漠以及高寒植被.通过分析主要植被带附近的植被、气候等特征,本文认为,1)秦岭淮河线是一条重要的水分气候带,而不是温度带,不是亚热带植被的北界;2)我国亚热带植被的北界基本上沿长江北岸,从杭州湾经太湖、安徽宣城、铜陵经大别山南坡到武汉往西,与WI值130-140 ℃·月一致;3)我国热带区域的面积极小,仅分布在海南岛的东南部和台湾南端及其以南地区; 4) 我国东部地区暖温带的水热条件南北差异甚大,建议以秦岭淮河为界,将暖温带划分为两个植被带,即落叶阔叶疏林带和落叶常绿阔叶混交林带;华北地区的地带性植被为落叶阔叶疏林.最后,本文还强调了对应于气候变化进行动态植被分区的重要性.  相似文献   

7.
Long-term palaeoecological records are needed to test ecological hypotheses involving time, as short-term observations are of insufficient duration to capture natural variability. In this paper, we review the published palaeoecological evidence for the neotropical Gran Sabana (GS) region, to record the vegetation dynamics and evaluate the potential effects of natural climatic and anthropogenic (notably fire) drivers of change. The time period considered (last 13,000 years) covers major global climate changes and the arrival of humans in the region. The specific points addressed are climate–vegetation equilibrium, reversibility of vegetation changes, the origin of extant biodiversity and endemism patterns and biodiversity conservation in the face of global warming. Vegetation dynamics is reconstructed by pollen analysis and fire incidence is deduced from microscopic charcoal records. Palaeoclimatic inferences are derived from global and regional records using independent physico-chemical evidence to avoid circular reasoning. After analyzing all the long-term records available from both GS uplands and highlands, we conclude that: (1) Upland vegetation (mostly treeless savannas and savanna–forest mosaics, with occasional Mauritia palm swamps) is not in equilibrium with the dominant climates, but largely conditioned by burning practices; (2) a hypothetical natural or “original” vegetation type for these uplands has not been possible to identify due to continuous changes in both climate and human activities during the last 13,000 years; (3) at the time scale studied (millennial), the shift from forest to savanna is abrupt and irreversible due to the existence of tipping points, no matter the cause (natural or anthropogenic); (4) on the contrary, the shift from savanna to palm swamps is reversible at centennial time scales; (5) some of the reconstructed past vegetation types have no modern analogues owing to the individual species response to environmental shifts, leading to variations in community composition; (6) extant biodiversity and endemism patterns are not the result of a long history of topographical isolation, as previously proposed but, rather, the consequence of the action of climatic and palaeogeographic variations; (7) the projected global warming will likely exacerbate the expansion of upland savannas by favouring positive fire-climate feedbacks; (8) in the highlands, extinction by habitat loss will likely affect biodiversity but to a less extent that prognosticated by models based only on present-day climatic features; (9) future highland communities will likely be different to present ones due to the prevalence of individual species responses to global warming; and (10) conservation strategies at individual species level, rather than at community level, are enriched by long-term palaeoecological studies analyzed here. None of these conclusions would have been possible to derive from short-term neoecological observations.  相似文献   

8.
? Understory plants are subjected to highly intermittent light availability and their leaf gas exchanges are mediated by delayed responses of stomata and leaf biochemistry to light fluctuations. In this article, the patterns in stomatal delays across biomes and plant functional types were studied and their effects on leaf carbon gains and water losses were quantified. ? A database of more than 60 published datasets on stomatal responses to light fluctuations was assembled. To interpret these experimental observations, a leaf gas exchange model was developed and coupled to a novel formulation of stomatal movement energetics. The model was used to test whether stomatal delays optimize light capture for photosynthesis, whilst limiting transpiration and carbon costs for stomatal movement. ? The data analysis showed that stomatal opening and closing delays occurred over a limited range of values and were strongly correlated. Plant functional type and climate were the most important drivers of stomatal delays, with faster responses in graminoids and species from dry climates. ? Although perfectly tracking stomata would maximize photosynthesis and minimize transpiration at the expense of large opening costs, the observed combinations of opening and closure times appeared to be consistent with a near-optimal balance of carbon gain, water loss and movement costs.  相似文献   

9.
The three extant Divisions comprising the bryophytes extend, as fossils, well back into Palaeozoic time. Bryophyte origin is part of the rise of terrestrial, vascularized, plants with sporopollenin-walled spores in the Silurian. Before the end of Carboniferous time, bryophyte lines were widely present. Separation of Gondwana and Laurasia by the Permian Tethys Sea and subsequent widespread desert episodes fragmented an already diversified bryoflora subjecting it to intense selective pressure. The cool, mesic climate of southern Gondwana provided a refugium for austral bryophytes. Warmer and drier climates of the Permo-Triassic Laurentian-Laurasia favoured drought-adapted or niche-specific groups creating marked systematic discontinuities. The Angaran wet, probably cool, temperate region provided refuge for basic stock for much of today's rich holarctic and wet ‘tropical’ bryofloras. Climatic changes, correlated with tectonic events and the rise of angiosperms, opened habitats favourable for a diversity explosion. Despite demonstrated potential for long-distance dispersal, modern distributions are mostly linked with total floras or establishment on islands prior to niche saturation. Remnants of Gondwanan bryoflora persist in high southern latitudes as disjunctions with the possibility that the folded ranges of the African Cape have been an insular fragment at higher latitudes becoming attached shortly after angiosperm diversification. Floras of southern India and east Africa have common features but the Himalayan flora shows evidence that the Gondwanan flora of the Indian plate was lost during the movement through desert and tropical latitudes; neotropical and palaeotropical floras are distinctive. Much of the northern Australian bryoflora is recently Malesian-derived while the southeast shows strong austral influence and commonality with New Zealand. Tropical Pacific island floras are mostly Malesian-derived but with both holarctic and austral elements present as in Hawaii and the Society Islands. Holarctic bryoflora is circum-polar with temperate areas of Euro-American and far eastern elements floristically bound by disjunct and vicariad species. Kroeber Coefficients of Correlation differ as Pacific island floras are compared and Guttman-Lingoes Smallest Space Coordinates indicates floristic subgroups within Polynesia. Although these and other mathematical treatments yield potentially promising results, the methods are yet unrefined and there is some uncertainty whether characteristics of numbers or of organisms are implicit in the summations.  相似文献   

10.
In a spatially explicit climate change impact assessment, a Bayesian network (BN) model was implemented to probabilistically simulate future response of the four major vegetation types in Swaziland. Two emission scenarios (A2 and B2) from an ensemble of three statistically downscaled coupled atmosphere‐ocean global circulation models (CSIRO‐Mk3, CCCma‐CGCM3 and UKMO‐HadCM3) were used to simulate possible changes in BN‐based environmental envelopes of major vegetation communities. Both physiographic and climatic data were used as predictors representing the 2020s, 2050s and the 2080s periods. A comparison of simulated vegetation distribution and the expert vegetation map under baseline conditions showed an overall correspondence of 97.7% and a Kappa coefficient of 0.966. Although the ensemble projections showed comparable trends during the 2020s, the results from the A2 storyline were more drastic indicating that grassland and the Lebombo bushveld will be impacted negatively as early as the 2020s with about 1 °C temperature increase. The bioclimatically suitable areas of all but one vegetation type decline drastically after about 2 °C warming, more so under the more severe A2 scenario and in particular during the 2080s. The sour bushveld is the only vegetation type that initially responds positively to warming by possibly encroaching to the highly vulnerable grassland areas. Vulnerability of vegetation is increased by the limited ability to migrate into suitable climates due to close affinity to certain geological formations and the fragmentation of the landscape by agriculture and other land uses. This is expected to have serious impacts on biodiversity in the country. Under warmer climates, the likely vegetation types to emerge are uncertain due to future novel combinations of climate and bedrock lithology. The strengths and limitations of the BN approach are also discussed.  相似文献   

11.
1. Freshwater fish can affect aquatic vegetation directly by consuming macrophytes or indirectly by changing water quality. However, most fish in the temperate climate zone have an omnivorous diet. The impact of fish as aquatic herbivores in temperate climates therefore remains unclear and depends on their dietary flexibility. 2. We tested the effects of a flexible omnivore and an herbivore on aquatic vegetation by comparing the effects of rudd (Scardinius erythrophthalmus, the most herbivorous fish in temperate climates) with grass carp (Ctenopharyngodon idella) in a mesocosm pond study. Exclosures distinguished herbivorous effects of fish on submerged macrophytes from indirect effects through changes in water quality, whereas stable isotope food‐web analysis provided information on fish diets. 3. We hypothesised that rudd, with its flexible diet and preference for animal food items, would only indirectly affect macrophytes, whereas grass carp, with its inflexible herbivorous diet, would directly affect macrophyte biomass. 4. Only grass carp significantly reduced macrophyte biomass through consumption. Rudd had no effect. Food‐web analysis indicated that rudd predominantly consumed animal prey, whereas grass carp included more plants in their diet, although they also consumed animal prey. Grass carp significantly affected water quality, resulting in lowered pH and increased N‐NH4 concentrations, whereas more periphyton growth was observed in the presence of rudd. However, the indirect non‐herbivorous effects of both fish species had no effect on macrophyte biomass. 5. Both fish species should be considered as omnivores. Despite the fact that rudd is the most herbivorous fish in the western European climate zone, its effect on submerged macrophyte biomass is not substantial at natural densities and current temperatures.  相似文献   

12.
《植物生态学报》2017,41(9):1020
Water is a vital resource for plant survival, growth and distribution, and it is of significance to explore mechanisms of plant water-relations regulation and responses to drought in ecophysiology and global change ecology. Plants adapt to different climates and soil water regimes and develop divergent water-regulation strategies involving a suite of related traits, of which two typical types are isohydric and anisohydric behaviors. It is critical to distinguish water-regulation strategies of plants and reveal the underlying mechanisms for plant breeding and vegetation restoration especially in xeric regions; and it is also important for developing more accurate vegetation dynamic models and predicting vegetation distribution under climate change scenarios. In this review, we first recalled the definitions of isohydric and anisohydric regulations and three quantitative classification methods that were established based on the relationships (1) between stomatal conductance and leaf water potential, (2) between stomatal conductance and vapor pressure deficit, (3) between predawn and midday leaf water potentials. We then compared the two water-regulation strategies in terms of hydraulics and carbon-economics traits. We synthesized the mechanisms of plant water-regulation and found that the interaction between hydraulic and chemical signals was the dominant factor controlling plant water-regulation behavior. Last, we proposed three promising aspects in this field: (1) to explore reliable and universal methods for classifying plant water-regulation strategies based on extensive investigation of the traits related with plant water-relations in various regions; (2) to explore relationships between plant water-regulation strategies and traits of hydraulics, morphology, structure, and function in order to provide reliable parameters for improving vegetation dynamic models; and (3) to deeply understand the processes of plant water-regulation at different spatial and temporal scales, and reveal mechanisms of plants’ responses and adaption to environmental stresses (especially drought).  相似文献   

13.
The role of plants in global climate change discussions is usually considered only in terms of the albedo and sinks/sources of CO2 and other greenhouse gases. The main aim of this review article is to summarize the entire impact of vegetation on the climate change. It describes quantitatively the energy balance of vegetated surfaces and the effect of vegetation on the hydrological cycle. The distribution of solar energy in the landscape is dealt with in thermodynamic terms. The role of water and plants in the reduction of temperature gradients is emphasized. Papers dealing with the relationship between changes in the landscape cover and regional climates are reviewed, and the fundamental role of wetlands and forests in water cycling is outlined. Positive examples of restoration of dry landscapes, based on rainwater retention and the recovery of permanent vegetation, are described. It is recommended that the direct role of water and vegetation in cooling, reducing temperature and air pressure gradients should be included into all future recommendations for policymakers made by scientists.  相似文献   

14.
Although climates are rapidly changing on a global scale, these changes cannot easily be extrapolated to the local scales experienced by organisms. In fact, such generalizations might be quite problematic. For instance, models used to predict shifts in the ranges of species during climate change rarely incorporate data resolved to <1 km(2), although most organisms integrate climatic drivers at much smaller scales. Empirical studies alone suggest that the operative temperatures of many organisms vary by as much as 10-20 °C on a local scale, depending on vegetation, geology, and topography. Furthermore, this variation in abiotic factors ignores thermoregulatory behaviors that many animals use to balance heat loads. Through a set of simulations, we demonstrate how variability in elevational topography can attenuate the effects of warming climates. These simulations suggest that changing climates do not always impact organisms negatively. Importantly, these simulations involve well-known relationships in biophysical ecology that show how no two organisms experience the same climate in the same way. We suggest that, when coupled with thermoregulatory behavior, variation in topographic features can mask the acute effect of climate change in many cases.  相似文献   

15.
Sunken, covered, and encrypted stomata have been anecdotally linked with dry climates and reduced transpiration and therefore have been used to infer dry palaeoclimates from fossils. This study assesses the evolutionary and ecological associations of such stomatal protection in a model system-the diverse southern hemisphere family Proteaceae. Analyses were based on the morphology of over 1400 Australian, South African, New Caledonian, New Zealand, and South American species, anatomy of over 300 of these species, and bioclimatic data from all 1109 Australian species. Ancestral state reconstruction revealed that five or six evolutionary transitions explain over 98% of the dry climate species in the family, with a few other, minor invasions of dry climates. Deep encryption, i.e., stomata in deep pits, in grooves, enclosed by tightly revolute margins or strongly overarched by cuticle, evolved at least 11 times in very dry environments. Other forms of stomatal protection (sunken but not closely encrypted stomata, papillae, and layers of hairs covering the stomata) also evolved repeatedly, but had no systematic association with dry climates. These data are evidence for a strong distinction in function, with deep encryption being an adaptation to aridity, whereas broad pits and covered stomata have more complex relations to climate.  相似文献   

16.
Climate Leaf Analysis Multivariate Program (CLAMP) is a versatile technique for obtaining quantitative estimates for multiple terrestrial palaeoclimate variables from woody dicot leaf assemblages. To date it has been most widely applied to the Late Cretaceous and Tertiary of the mid- to high latitudes because of concerns over the relative dearth of calibration sites in modern low-latitude warm climates, and the loss of information associated with the lack of marginal teeth on leaves in paratropical to tropical vegetation. This limits CLAMP's ability to quantify reliably climates at low latitudes in greenhouse worlds of the past.One of the reasons for the lack of CLAMP calibration samples from warm environments is the paucity of climate stations close to potential calibration vegetation sites at low latitudes. Agriculture and urban development have destroyed most lowland sites and natural vegetation is now largely confined to mountainous areas where climate stations are few and climatic spatial variation is high due to topographic complexity. To attempt to overcome this we have utilised a 0.5° × 0.5° grid of global interpolated climate data based on the data set of New et al. (1999) supplemented by the ERA40 re-analysis data for atmospheric temperature at upper levels. For each location, the 3-D climatology of temperature from the ECMWF re-analysis project was used to calculate the mean lower tropospheric lapse rate for each month of the year. The gridded data were then corrected to the altitude of the plant site using the monthly lapse rates. Corrections for humidity were also made. From this the commonly returned CLAMP climate variables were calculated. A bilinear interpolation scheme was then used to calculate the climate parameters at the exact lat/long of the site.When CLAMP analyses using the PHYSG3BR physiognomic data calibrated with the climate station based MET3BR were compared to analyses using the gridded data at the same locations (GRIDMET3BR), the results were indistinguishable in that they fell within the range of statistical uncertainty determined for each analysis. This opens the way to including natural vegetation anywhere in the world irrespective of the proximity of a meteorological station.  相似文献   

17.
Forest vegetation has the ability to warm Recent climate by its effects on albedo and atmospheric water vapour, but the role of vegetation in warming climates of the geologic past is poorly understood. This study evaluates the role of forest vegetation in maintaining warm climates of the Late Cretaceous by (1) reconstructing global palaeovegetation for the latest Cretaceous (Maastrichtian); (2) modelling latest Cretaceous climate under unvegetated conditions and different distributions of palaeovegetation; and (3) comparing model output with a global database of palaeoclimatic indicators. Simulation of Maastrichtian climate with the land surface coded as bare soil produces high-latitude temperatures that are too cold to explain the documented palaeogeographic distribution of forest and woodland vegetation. In contrast, simulations that include forest vegetation at high latitudes show significantly warmer temperatures that are sufficient to explain the widespread geographic distribution of high-latitude deciduous forests. These warmer temperatures result from decreased albedo and feedbacks between the land surface and adjacent oceans. Prescribing a realistic distribution of palaeovegetation in model simulations produces the best agreement between simulated climate and the geologic record of palaeoclimatic indicators. Positive feedbacks between high-latitude forests, the atmosphere, and ocean contributed significantly to high-latitude warming during the latest Cretaceous, and imply that high-latitude forest vegetation was an important source of polar warmth during other warm periods of geologic history.  相似文献   

18.
Modelling simulations of palaeoclimate and past vegetation form and function can contribute to global change research by constraining predictions of potential earth system responses to future warming, and by providing useful insights into the ecophysiological tolerances and threshold responses of plants to varying degrees of atmospheric change. We contrasted HadCM3LC simulations of Amazonian forest at the last glacial maximum (LGM; 21 kyr ago) and a Younger Dryas-like period (13-12 kyr ago) with predicted responses of future warming to provide estimates of the climatic limits under which the Amazon forest remains relatively stable. Our simulations indicate that despite lower atmospheric CO2 concentrations and increased aridity during the LGM, Amazonia remains mostly forested, and that the cooling climate of the Younger Dryas-like period in fact causes a trend toward increased above-ground carbon balance relative to today. The vegetation feedbacks responsible for maintaining forest integrity in past climates (i.e. decreased evapotranspiration and reduced plant respiration) cannot be maintained into the future. Although elevated atmospheric CO2 contributes to a positive enhancement of plant carbon and water balance, decreased stomatal conductance and increased plant and soil respiration cause a positive feedback that amplifies localized drying and climate warming. We speculate that the Amazonian forest is currently near its critical resiliency threshold, and that even minor climate warming may be sufficient to promote deleterious feedbacks on forest integrity.  相似文献   

19.
Naturalised, but not yet invasive plants, pose a nascent threat to biodiversity. As climate regimes continue to change, it is likely that a new suite of invaders will emerge from the established pool of naturalised plants. Pre-emptive management of locations that may be most suitable for a large number of potentially invasive plants will help to target monitoring, and is vital for effective control. We used species distribution models (SDM) and invasion-hotspot analysis to determine where in Australia suitable habitat may occur for 292 naturalised plants. SDMs were built in MaxEnt using both climate and soil variables for current baseline conditions. Modelled relationships were projected onto two Representative Concentration Pathways for future climates (RCP 4.5 and 8.5), based on seven global climate models, for two time periods (2035, 2065). Model outputs for each of the 292 species were then aggregated into single ‘hotspot’ maps at two scales: continental, and for each of Australia’s 37 ecoregions. Across Australia, areas in the south-east and south-west corners of the continent were identified as potential hotspots for naturalised plants under current and future climates. These regions provided suitable habitat for 288 and 239 species respectively under baseline climates. The areal extent of the continental hotspot was projected to decrease by 8.8% under climates for 2035, and by a further 5.2% by 2065. A similar pattern of hotspot contraction under future climates was seen for the majority of ecoregions examined. However, two ecoregions - Tasmanian temperate forests and Australian Alps montane grasslands - showed increases in the areal extent of hotspots of >45% under climate scenarios for 2065. The alpine ecoregion also had an increase in the number of naturalised plant species with abiotically suitable habitat under future climate scenarios, indicating that this area may be particularly vulnerable to future incursions by naturalised plants.  相似文献   

20.
Predictions of the effects of climate change on the extent of forests, savannas and deserts are usually based on simple response models derived from actual vegetation distributions. In this review, we show two major problems with the implicitly assumed straightforward cause–effect relationship. Firstly, several studies suggest that vegetation itself may have considerable effects on regional climate implying a positive feedback, which can potentially lead to large‐scale hysteresis. Secondly, vegetation ecologists have found that effects of plants on microclimate and soils can cause a microscale positive feedback, implying that critical precipitation conditions for colonization of a site may differ from those for disappearance from that site. We argue that it is important to integrate these nonlinearities at disparate scales in models to produce more realistic predictions of potential effects of climate change and deforestation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号