首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 4 毫秒
1.
Fitness advantage from nuptial gifts in female fireflies   总被引:3,自引:0,他引:3  
Abstract 1. In many insects, males provide nuptial gifts to females in the form of spermatophores, sperm-containing structures produced by male accessory glands.
2. The work reported here examined the influence of both spermatophore number and spermatophore size on female reproductive output in two related firefly beetles, Photinus ignitus and Ellychnia corrusca (Coleoptera: Lampyridae). Based on differences in adult diet, male spermatophores were predicted to increase female reproductive output to a greater extent in P. ignitus than in E. corrusca .
3. Female fecundity was significantly higher in triply mated females than in singly mated females in both species, with no difference between mating treatments in female lifespan or egg hatching success. No effects of second male spermatophore size on fecundity, lifespan, or egg hatching success were detected in either species.
4. These results suggest a direct fitness advantage from multiple mating for females in both species, although enhanced fecundity may be due either to allocation of spermatophore nutrients to eggs or to other substances transferred within the spermatophore acting as oviposition stimulants.  相似文献   

2.
Investment in current versus future reproduction represents a prominent trade‐off in life‐history theory and is likely dependent on an individual's life expectancy. The terminal investment hypothesis posits that a reduction in residual reproductive value (i.e. potential for future offspring) will result in increased investment in current reproduction. We tested the hypothesis that male decorated crickets (Gryllodes sigillatus), when cued to their impending mortality, should increase their reproductive effort by altering the composition of their nuptial food gifts (i.e. spermatophylaxes) to increase their gustatory appeal to females. Using a repeated‐measures design, we analysed the amino acid composition of spermatophylaxes derived from males both before and after injection of either a saline control or a solution of heat‐killed bacteria. The latter, although nonpathogenic, represents an immune challenge that may signal an impending survival threat. One principal component explaining amino acid variation in spermatophylaxes, characterized by a high loading to histidine, was significantly lower in immune‐challenged versus control males. The relevance of this difference for the gustatory appeal of gifts to females was assessed by mapping spermatophylax composition onto a fitness surface derived in an earlier study identifying the amino acid composition of spermatophylaxes preferred by females. We found that immune‐challenged males maintained the level of attractiveness of their gifts post‐treatment, whereas control males produced significantly less attractive gifts post‐injection. These results are consistent with the hypothesis that cues of a survival‐threatening infection stimulate terminal investment in male decorated crickets with respect to the gustatory appeal of their nuptial food gifts.  相似文献   

3.
4.
In mating of the dobsonfly, Protohermes grandis (Thunberg), the male attaches the spermatophore externally to the female genitalia. The spermatophore includes a large gelatinous mass which the female detaches and feeds on after mating. While the female consumes this nuptial food gift, sperm is evacuated from the remaining portion of the spermatophore (sperm package) into her reproductive tract. Under laboratory conditions, mated females maintained receptivity throughout their lifetime, and they remated even on the day following copulation. A single insemination may supply enough sperm, as females mated only once deposited fertile eggs throughout life and, when dissected after death, all females had sperm in the spermatheca. There was a positive correlation between longevity and the number of matings. Lifetime fecundity also increased as mating multiplied. However, the size of eggs and hatchlings was not influenced by the number of matings. It seems that large spermatophore consumption by female P. grandis provides nutrients that increase fitness not in offspring quality, but in their quantity.  相似文献   

5.
The evolution of male courtship signals such as the bioluminescentflashes of fireflies may be shaped, at least in part, by femalepreference for particular characteristics of the male signal.These female preferences for male courtship signals may ariseas a result of the benefits of choosing males with particulartraits. One possible benefit of mate choice occurs if femalescan use male courtship signals as an honest indicator of malenutritional contributions at mating, nuptial gifts. This paperreviews female preference for male flash characteristics inPhotinus fireflies (Coleoptera: Lampyridae), and the potentialfor females to use male flash characteristics to predict nuptialgift quality. In Photinus firefly species with single pulseflashes females preferentially respond to flashes of greaterintensity and duration. Male Photinus provide a nuptial giftto females at mating in the form of a spermatophore and flashduration serves as a good predictor of spermatophore mass formales collected early in the season. However, Photinus firefliesdo not feed as adults, so spermatophore mass decreases withsubsequent matings. In response, nutrient-limited females maystop preferentially responding to longer duration flashes, increasingtheir overall responsiveness later in the mating season as theyforage for spermatophores. Therefore, the evolution of malecourtship signals in Photinus fireflies is the product not onlyof female preference for male flash characteristics, but alsothe costs and benefits of female choice that shape these preferences.  相似文献   

6.
In decorated crickets, Gryllodes sigillatus, the spermatophore that a male transfers at mating includes a gelatinous spermatophylax that the female consumes, delaying her removal of the sperm‐filled ampulla. Male fertilization success increases with the length of time females spend feeding on the spermatophylax, while females may benefit by prematurely discarding the spermatophylaxes of undesirable males. This sexual conflict should favour males that produce increasingly appealing spermatophylaxes, and females that resist this manipulation. To determine the genetic basis of female spermatophylax feeding behaviour, we fed spermatophylaxes to females of nine inbred lines and found that female genotype had a major influence on spermatophylax feeding duration. The amino acid composition of the spermatophylax was also significantly heritable. There was a positive genetic correlation between spermatophylax feeding duration and the gustatory appeal of the spermatophylax. This correlation suggests that genes expressed in males that produce more manipulative spermatophylaxes are positively linked to genes expressed in females that make them more vulnerable to manipulation. Outbred females spent less time feeding on spermatophylaxes than inbred females, and thus showed greater resistance to male manipulation. Further, in a nonspermatophylax producing cricket (Acheta domesticus), females were significantly more prone to feeding on spermatophylaxes than outbred female Gryllodes. Collectively, these results suggest a history of sexually antagonistic coevolution over the consumption of nuptial food gifts.  相似文献   

7.
8.
Nutritional benefits from nuptial gifts have been difficult to detect in some species, raising the question: what maintains nuptial feeding when gifts do not benefit females? The sensory trap hypothesis proposes that nuptial feeding may be explained by pre‐existing sensory responses that predispose females to ingest gifts. Recent studies have shown that male seminal proteins can induce a nonspecific increase in female feeding after mating, which may represent a sensory trap for nuptial feeding if it results in increased intake of post‐mating gifts. I tested these ideas using female beetles that ingest a spermatophore after mating. I show that males stimulate strongly increased female feeding post‐mating. However, there was little evidence for dose dependence in the feeding response that could allow males to stimulate feeding beyond the female optimum. Moreover, the post‐mating feeding response could not explain nuptial feeding: despite feeding more in general, newly mated females were less likely than nonmated females to ingest spermatophore gifts.  相似文献   

9.
Uniquely positioned at the intersection of sexual selection, nutritional ecology and life-history theory, nuptial gifts are widespread and diverse. Despite extensive empirical study, we still have only a rudimentary understanding of gift evolution because we lack a unified conceptual framework for considering these traits. In this opinion piece, we tackle several issues that we believe have substantively hindered progress in this area. Here, we: (i) present a comprehensive definition and classification scheme for nuptial gifts (including those transferred by simultaneous hermaphrodites), (ii) outline evolutionary predictions for different gift types, and (iii) highlight some research directions to help facilitate progress in this field.  相似文献   

10.
11.
Few studies of invertebrates have considered combinations of morphological and life history traits in the context of the evolution of reproductive strategies. Cricket species that exploit habitats harsh with respect to egg survival have evolved a long ovipositor, presumably because laying deep in the soil reduces egg mortality. Yet hatchling mortality increases with laying depth, and the ability of hatchlings to climb through the soil increases with egg size. Thus a conflict may exist between survival of the egg and that of the hatchling, inducing a positive covariation between egg size and ovipositor length across species evolving under contrasting selective habitats. We used the phylogenetic autocorrelation method and a path analysis to assess whether egg size coevolved with ovipositor length across 40 species of crickets, and whether egg size was affected by body size or ecological factors that influence egg mortality. Body size and ovipositor length were affected by taxonomic association, whereas common ancestry had no significant effect on egg size, diapausing strategy, and oviposition preference for soil types. The path model indicated that 29.11% of the variance in egg size was explained by independent evolution. As expected, ovipositor length was positively correlated with egg size, and species diapausing in the egg stage produced larger eggs than crickets diapausing in the nymphal stage or with no diapause. Ovipositor length and diapausing strategy were the first and second most important traits, respectively, in term of the proportion of variance in egg size explained by specific values. These results support the hypothesis that the ability of hatchlings to climb through the soil, and variation in diapause strategies, are general selective factors affecting the evolution of egg size in crickets. Phylogeny explained 51.01% of the variance in egg size. Egg size in a current cricket species, however, was not directly determined by egg size in its ancestor. Instead, it was strongly related to the phylogenetic values of body size and ovipositor length. Such indirect phylogenetic effects of body size and ovipositor length may have arisen because clades originating from ancestors with different ovipositor lengths experienced different selective pressures on egg size. Recelived: 13 October 1995 / Accepted: 30 September 1996  相似文献   

12.
ABSTRACT: Sexual selection is a major force driving evolution and is intertwined with ecological factors. Differential allocation of limited resources has a central role in the cost of reproduction. In this paper, I review the costs and benefits of mating in tettigoniids, focussing on nuptial gifts, their trade-off with male calling songs, protandry and how mate density influences mate choice. Tettigoniids have been widely used as model systems for studies of mating costs and benefits; they can provide useful general insights. The production and exchange of large nuptial gifts by males for mating is an important reproductive strategy in tettigoniids. As predicted by sexual selection theory spermatophylax size is condition dependent and is constrained by the need to invest in calling to attract mates also. Under some circumstances, females benefit directly from the nuptial gifts by an increase in reproductive output. However, compounds in the nuptial gift can also benefit the male by prolonging the period before the female remates. There is also a trade-off between adult male maturation and mating success. Where males mature before females (protandry) the level of protandry varies in the direction predicted by sperm competition theory; namely, early male maturation is correlated with a high level of first inseminations being reproductively successful. Lastly, mate density in bushcrickets is an important environmental factor influencing the behavioural decisions of individuals. Where mates are abundant, individuals are more choosey of mates; when they are scarce, individuals are less choosey. This review reinforces the view that tettigoniids provide excellent models to test and understand the economics of matings in both sexes.  相似文献   

13.
The relationship between mating systems and dispersal has generally been studied at the population and species levels. It has hardly ever been investigated at the individual level, by studying the variations of mating and dispersal strategies between individuals. We investigated this relationship in a natural population of the common lizard ( Lacerta vivipara ). Assuming that dispersal has a genetic basis, juvenile dispersal would be expected to be more family-dependent in monoandrous litters than in polyandrous litters. The opposite pattern was observed. Thus, maternal effects and/or litter effects play a greater role than genetic determinism in shaping the dispersal phenotype of juveniles. Moreover, the relationship between female mating strategy and offspring dispersal depended on litter success, in a way consistent with an influence of mother-offspring competition. Such a link between mating and dispersal strategies of individuals may have major repercussions for the way we consider the roles of these processes in population functioning.  相似文献   

14.
Many insects have a mating system where males transfer nutrients to females at mating, which are often referred to as ''nuptial gifts''. Among butterflies, some of the characteristic features of these species are polyandry (females mate multiple times), and relatively large male ejaculates. When males produce part of the resources used for offspring, the value of body size might then increase for males and decrease for females. The male/female size ratio is also observed to increase when the degree of polyandry and gift size increase. Butterfly species where gift-giving occurs are generally more variable in body size, suggesting that food quality/quantity fluctuates during juvenile stages. This will cause some males to have much to provide and some females to be in great need, and could be conducive to the evolution of a gift-giving mating system. In such a system, growing male and female juveniles should react differently to food shortage. Females should react by maturing at a smaller size since their own lack of reproductive resources can partly be compensated for by male contributions. Males have to pay the full cost of decreased reproduction if they mature at a small size, making it more important for males to keep on growing, even when growth is costly. An earlier experiment with the polyandrous and gift-giving butterfly, Pieris napi, supported this prediction. The pattern is expected to be absent or reversed for species with small nuptial gifts, where females do not benefit from mating repeatedly, and will thus be dependent on acquiring resources for reproduction on their own. To test this prediction, we report here on an experiment with the speckled wood butterfly, Pararge aegeria. We find that growth response correlates with mating system in the two above species, and we conclude that differences in environmental conditions between species may act as an important factor in the evolution of the mating system and sexual size dimorphism.  相似文献   

15.
Sperm competition theory predicts that males should allocate sperm according to the number of competing ejaculates. Prudent allocation of sperm in response to different levels of sperm competition has been found across a number of taxa; however, some studies suggest that males may not always allocate sperm as expected. Here we examine sperm allocation in the Australian field cricket Teleogryllus oceanicus, using female mating status (virgin, singly mated, or multiply mated) to manipulate male perception of sperm competition risk and intensity. Consistent with theory, we found that male crickets adjust their ejaculates in response to female mating status. However, rather than altering the absolute numbers of sperm transferred to a female, males altered the quality of their sperm. Males ejaculated sperm of low viability (proportion of live vs. dead sperm) when mating with virgins, increased sperm viability when mating with singly mated females, but reduced sperm viability when mating with multiply mated females. Our results show that variation in ejaculate quality can be an important aspect of strategic ejaculation by males and suggest caution in the interpretation of studies in which males do not appear to allocate sperm according to theory.  相似文献   

16.
The outcome of male–male contest competition is known to affect male mating success and is believed to confer fitness benefits to females through preference for dominant males. However, by mating with contest winners, females can incur significant costs spanning from decreased fecundity to negative effects on offspring. Hence, identifying costs and benefits of male dominance on female fitness is crucial to unravel the potential for a conflict of interests between the sexes. Here, we investigated males' pre‐ and post‐copulatory reproductive investment and its effect on female fitness after a single contest a using the field cricket Gryllus bimaculatus. We allowed males to fight and immediately measured their mating behaviour, sperm quality and offspring viability. We found that males experiencing a fight, independently of the outcome, delayed matings, but their courtship effort was not affected. However, winners produced sperm of lower quality (viability) compared to losers and to males that did not experience fighting. Results suggest a trade‐off in resource allocation between pre‐ and post‐mating episodes of sexual selection. Despite lower ejaculate quality, we found no fitness costs (fecundity and viability of offspring) for females mated to winners. Overall, our findings highlight the importance of considering fighting ability when assessing male reproductive success, as winners may be impaired in their competitiveness at a post‐mating level.  相似文献   

17.
Abstract.  1. Before copulation, male Panorpa cognata scorpionflies offer females a salivary secretion, which is consumed by the female during copulation. It has previously been demonstrated that this nuptial food gift functions as mating effort by increasing male attractiveness and by increasing ejaculate transfer during copulation.
2. In this study, the effect of saliva consumption on female reproductive output was investigated, and thus the possibility that nuptial food gifts also serve as paternal investment. The experimental design enabled the effect of nuptial gift consumption to be disentangled from other possible effects of multiple mating or increased copula duration.
3. The results showed that saliva consumption increases female egg production by on average 8% (4.5 eggs) per consumed salivary mass, whereas mean egg weight was not influenced.4. These results have important implications for the evolution and maintenance of both male nuptial gifts and female polyandry in this and other species.  相似文献   

18.
Female mate choice occurs in many animals, and in some species females prefer older males. Because older males have demonstrated their survival ability, they may be of higher genetic quality, providing genetic benefits to the offspring of their mates. However, in species where females receive direct benefits of matings, younger males may be more likely to provide more fertile or more nutritious ejaculates, so females may discriminate against older males. Males of the bushcricket Ephippiger ephippiger (Orthoptera: Tettigoniidae) produce large spermatophores at mating (>30% of body weight, circa 10% protein content). Female E. ephippiger discriminate against the song of older males. We examined the effects of male age and mating history on male reproductive investment (spermatophore size, sperm number, nitrogen content). Males produced spermatophores with significantly fewer sperm and of lower nitrogen content on their fourth mating, despite free access to food and a 1-week interval between matings, indicating that there is a cost of mating to males. There was no indication that older virgin males produced lower-quality spermatophores. Rather, older males produced bigger spermatophores of higher nutritional value and containing more sperm. Male age and mating history seem likely to be strongly correlated in the field. We conclude that female E. ephippiger probably prefer the songs of younger males, because in the field, this preference correlates with male mating history and therefore resources provided at mating. Thus, female preference for younger males could reflect discrimination against low-quality nuptial gifts.  相似文献   

19.
Abstract Direct costs and benefits to females of multiple mating have been shown to have large effects on female fecundity and longevity in several species. However, with the exception of studies examining genetic benefits of polyandry, little attention has been paid to the possible effects on offspring of multiple mating by females. We propose that nongenetic effects of maternal matings on offspring fitness are best viewed in the same context as other maternal phenotype effects on offspring that are well known even in species lacking parental care. Hence, matings can exert effects on offspring in the same way as other maternal environment variables, and are likely to interact with such effects. We have conducted a study using yellow dung flies ( Scathophaga stercoraria ), in which we independently manipulated female mating rate, number of mates and maternal thermal environment and measured subsequent fecundity, hatching success, and offspring life-history traits. To distinguish between direct effects of matings and potential genetic benefits of polyandry we split broods and reared offspring at three different temperature regimes. This allowed us to demonstrate that although we could not detect any simple benefits or costs to matings, there are effects of maternal environment on offspring and these effects interact with female mating regime affecting offspring fitness. Such interactions between female phenotype and the costs and benefits of matings have potentially broad implications for understanding female behavior.  相似文献   

20.
During copulation, male insects pass accessory gland components to the female with the spermatophore. These gifts can affect female reproductive behaviour, ovulation and oviposition. Here, we show that female mealworm beetles, Tenebrio molitor, mated with males infected with metacestodes of the rat tapeworm, Hymenolepis diminuta, produced significantly more offspring than those mated with uninfected males. There is a significant positive relationship between parasite intensity in the male and reproductive output in the female. Infection results in a significant increase in bean-shaped accessory gland (BAG) size. We suggest that infected males pass superior nuptial gifts to females and discuss the confounding effects of infection in male and female beetles upon overall fitness costs of infection for the host and the likelihood that the parasite is manipulating host investment in reproduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号